La Inteligencia Colectiva

Ana Lilia Laureano-Cruces Universidad Autónoma Metropolitana-Azcapotzalco

- * Desde hace tiempo la Ciencias Computacionales (IA) han considerado que los programas son capaces de simular el comportamiento humano
 - * Controlar y monitroizar procesos industriales
 - * Asistir en diagnósticos médicos
 - * Diseñar nuevas máquinas
- * Además estos programas se están humanizando
 - * A través de su físico, volviendolos más agradables
 - * Incluyendo emociones

* Muchos otros nombres se intentaron para este campo:

- * Comlpex information processing
- * Machine intelligence
- * Heuristic programming
- * Cognology
- * Artificial intelligence

La aproximación de la Prueba de Turing.

- * Esta prueba se propuso en 1950. Se desarrolló con el fin de proporcionar una definición operativa de la inteligencia.
- * Básicamente una computadora pasa la prueba si después de una serie de preguntas provenientes de un ser humano, éste no puede distinguir si las respuestas vienen de una computadora o un ser humano.

- * Como conclusión, una computadora que pasa la prueba debe tener las siguientes capacidades:
 - 1. Procesamiento de lenguaje natural: ser capaz de una exitosa comunicación.
 - 2. Representación del conocimiento: almacenar lo que sabe y escucha
 - 3. Razonamiento automatizado: utilizar la información para contestar preguntas y obtener nuevas conclusiones.
 - 4. Aprendizaje maquinal: adaptarse a nuevas circunstancias y detectar y extrapolar patrón

- * Deliberadamente La prueba de Turing evita la interacción física entre el interrogador y la computadora, dado que la simulación física de una persona no necesita inteligencia.
- * La prueba *Total de Turing* incluye una señal de video, de tal forma que que el interrogador puede probar las habilidades perceptuales además de poder pasar objetos físicos.
- * Además necesitaría ser capaz de comprender el estado emocional de la persona con la que habla.
- * Por lo anterior la computadora necesitará además...

- 5. Visión por computadora: para percibir objetos y
- 6. Robótica: para manipular objetos y moverse.
- 7. Computación afectiva: para poder entender las emociones y adaptarse al interlocutor

Estas siete disciplinas comprenden la mayoría de lo que se denomina IA.

- * Esta visión hace que veamos a los programas de computadoras como pensadores y resolvedores de problemas encerrados en ellos mismos.
- * Directamente pensamos en sistemas expertos, capaces de remplazar a los humanos resolviendo tareas con cierto grado de experticia y conocimiento.
- * El anterior concepto es el resultado del centralismo y procesos en secuencia; donde un mecanismo de control decide que se va hacer.

- * Lo anterior lleva a obstáculos tanto teóricos como prácticos.
- * En el nivel teórico la IA trabaja en mundos acotados y reducidos.
- * La inteligencia no es una característica individual que pueda abstraerse del contexto social en donde encuentra su expresión.
- Sin un adecuado contexto social el desarrollo cognitivo de un ser humano se verá bastante restringido.

- * En otras palabras nuestro desarrollo cognitivo y eso que llamamos inteligencia (definida por nuestra neuro-estructrua) y que no es más que el producto de las interacciones con el mundo que nos rodea y sobre todo con otros seres humanos.
- * Visto desde este punto de vista podemos entonces decir que el proyecto de lA como lo conocemos es inalcanzable.
 - * No podemos reproducir consciencia, debido a la imposibilidad de crear interacción entre programas y con el mundo externo.

Una crítica más específica

- * Que vine del investigador Dreyfus (1979) y Searle (1991). Es la incapacidad de conectar los programas al entrono.
- * Lo anterior conlleva una incapacidad para contar con una interacción significativa con el entorno.
- * Este problema condujo a uno real causado por la complejidad del las preguntas a ser contestadas.

- * Al volverse más y más complejos los sistemas computacionales; se creo una nueva forma de acercamiento.
- * En este acercamiento se dividía al sistema en módulos débilmente acoplados; unidades independientes con interacciones limitadas que podían ser totalmente controladas.
- * Y de esta forma en vez de estar frente a una máquina vista como un todo a través de su estructura y arquitectura.
- * Y así se acuño el concepto de organización.

- * Razones diferentes llevaron a la misma conclusión a los diseñadores de sistemas industriales; debido a dificultades en el desarrollo de las bases de datos de los sistemas.
- * La mayoría de las dificultades se presentan debido a las aplicaciones complejas donde el conocimiento no solo es de diferentes tipo, sino viene de diferentes fuentes. Lo que implica que los individuos que lo tienen son distintos.

- * Llevar a cabo una tarea común requiere: discusiones, ajuste, tal vez negociaciones y resolver conflictos.
- * Por otro lado existen los problemas distribuidos de forma natural.
- * Lo que tenemos que entender es que se diseñara un conjunto de entidades capaces de actuar e interactuar entre ellas y con el entrono con el fin de lograr un objetivo común.

- * Y de esta forma nos encontramos frente a un grupo de entidades interactuando; donde cada entidad es definida de forma local.
- * Y cada entidad es definida de forma local, sin contar con todos los detalles de las percepciones del sistema como un todo.
- * Y de esta forma llegamos a una nueva forma de ingeniería de software que cambiaron nuestros métodos y perspectivas

Organización artificial

- * La organización de estas estructuras emerge a partir de sus interacciones; estas últimas restringen y modifican el comportamiento de los agentes.
- * Kenetics (inteligencia kinestésica): Es la capacidad para usar todo el cuerpo para expresar ideas y sentimientos (por ejemplo un actor, un mimo, un atleta, un bailarín) y la facilidad en el uso de las propias manos para producir o transformar cosas (por ejemplo un artesano, escultor, mecánico, cirujano). Esta inteligencia incluye habilidades físicas como la coordinación, el equilibrio, la destreza, la fuerza, la flexibilidad y la velocidad así como las capacidades auto perceptivas, las táctiles y la percepción de medidas y volúmenes.

Kinética

- * Ferber (1995), define kinetica como la capacidad de planificar, diseñar y crear universos u organizaciones hechas de agentes artificiales (electrónicos o computacionales).
- * Estos agentes deben ser capaces de actuar y colaborar en tareas comunes, adaptandose, reproduciendo y percibiendo el entorno en el cual se mueven y planifican sus acciones para llevar a cabo sus objetivos.

- * Los objetivos pueden ser:
 - * Extrínsecos; definidos por los humano, o
 - * Intrínsecos; definidos con base en sus objetivos de supervivencia.
- * La kinetica aspira a ser tanto la ciencia como la parte tecnológica de la IA.
- * Estas organizaciones son llamadas: poblaciones, sociedades, grupos, mundos o universos.
- * Y así esta ciencia permite la construcción de los sistemas multiagente; a través de la creación de agentes computacionales o electrónicos.

Principios de la Kenetics (Kinética)

- Define una disciplina que considera la interacción entre agentes como la base del entendimiento de un sistema a través de su funcionalidad y evolución.
- 2. Se definen distintos tipos de interacción tales como: cooperación, competencia, obstrucción, entre otras. Y ligadas a estas distintas formas de cooperación se encuentran los aspectos de: auto-organización, performance o la supervivencia de los sistemas.

- 3. La salida de estos mecanismos da lugar a la: auto-organización, tales como el agrupamiento de especialistas, distribución de tareas y recursos, coordinación de acciones, resolución de conflictos, entre otros.
- 4. Definir modelos operacionales de estas interacciones; a través de la descripción del funcionamiento de los agentes y de los sistemas multiagente.

- * El análisis de la interacción de los sistemas multiagente entre los agentes es lo que distingue a estos de los sistemas clásicos de la IA.
- * En este sentido es que la emergencia, la interacción y la acción son considerados como parte de elementos del motor que dará una estructura a estos sistemas, para ser vistos como un todo.

Diferentes formas

- * Para lograrlo hay diferentes forma de categorizar la distribución del trabajo y de la interacción.
- * Y no hay que olvidar que el Univierso creado por la kenetics es puramente artificial, y todos los parámetros pueden ser controlados directamente por los diseñadores.

- * Los sistemas multiagente no están gobernados por el determinismo por lo que su comportamiento no puede ser precedido.
- * Sus principios son gobernados por el caos; cualquier modificación a las condiciones iniciales por infinitesimal que sea, cualquier introducción de variables random aunque sean con valores restringidos, tiene efectos amplificados por las interacciones entre agentes.
- * Lo anterior implica un impedimento para conocer con antelación el estado preciso que tendrán los agentes después de un 'X' lapso de tiempo.

Uno de los intereses en la modelación de SMA

- * Se pueden llevar a cabo pruebas de forma directa de las teorías que deseamos desarrollar sobre modelos de sociedades reducidos.
 - * Teorías relacionadas con la evolución biológica o social. Es permitida en este Universo.
 - * Y de esta forma llegamos a las funciones subsimbólicas

FIN