

This page intentionally left blank

www.itpub.net

 ABSOLUTE
C++ 5th edition

This page intentionally left blank

www.itpub.net

 Walter Savitch
 University of California, San Diego

 Contributor

 Kenrick Mock
 University of Alaska Anchorage

 ABSOLUTE
C++

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 5th Edition

This book was composed in InDesign. Basal font is Adobe Garamond 10/12. Display font is Optima LT Std.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Copyright © 2013, 2010, 2008, 2006, 2004 by Pearson Education, Inc., publishing as Addison-Wesley. All
rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and
permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designa-
tions have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Savitch, Walter J.
 Absolute C++ / Walter Savitch ; contributor, Kenrick Mock. -- 5th ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-13-283071-3 (alk. paper)
 1. C++ (Computer program language) I. Mock, Kenrick. II. Title.
 QA76.73.C153S279 2010
 005.13’3--dc23
 2012001325

1 2 3 4 5 6 7 8 9 10—EB—15 14 13 12

ISBN-10: 0-13-283071-X
ISBN-13: 978-0-13-283071-3

Vice President and Editorial Director, ECS:
Marcia Horton

Executive Editor: Matt Goldstein
Editorial Assistants: Chelsea Kharakozova/

Emma Snider
Vice President Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President and Director of Production:

Vince O’Brien
Managing Editor: Jeff Holcomb
Senior Production Project Manager: Marilyn Lloyd
Manufacturing Manager: Nick Skilitis

Operations Specialist: Lisa McDowell
Text Designer: Joyce Cosentino Wells
Cover Designer: Anthony Gemmellaro
Cover Image: © Shutterstock
Media Editor: Dan Sandin
Manager, Rights and Permissions: Michael Joyce
Text Permissions—assessment: Dana Weightman
Text Permissions—clearance: Nicole Coffi neau/

Creative Compliance
Full-Service Vendor: GEX Publishing Services
Project Management: GEX Publishing Services
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color

www.itpub.net

 This book is designed to be a textbook and reference for programming in the C++ language.
Although it does include programming techniques, it is organized around the features of the
C++ language, rather than any particular curriculum of techniques. The main audience I had
in mind is undergraduate students who had not had extensive programming experience with
the C++ language. As such, this book is a suitable C++ text or reference for a wide range of
users. The introductory chapters are written at a level that is accessible to beginners, while the
boxed sections of those chapters serve to introduce more experienced programmers to basic
C++ syntax. Later chapters are also understandable to beginners, but are written at a level
suitable for students who have progressed to these more advanced topics. Absolute C++ is also
suitable for anyone learning the C++ language on their own. (For those who want a textbook
with more pedagogical material and more on very basic programming technique, try my text
Problem Solving with C++ , Eighth Edition, Pearson Education.)

 The C++ coverage in this book goes well beyond what a beginner needs to know. In
particular, it has extensive coverage of inheritance, polymorphism, exception handling,
and the Standard Template Library (STL), as well as basic coverage of patterns and the
unified modeling language (UML).

 CHANGES IN THIS EDITION

 This fifth edition presents the same programming philosophy as the fourth edition. For
instructors, you can teach the same course, presenting the same topics in the same order
with no changes in the material covered or the chapters assigned. Changes include:

 ■ Chapter 1 now includes a short introduction to the string class and Chapter 2 includes
a short introduction to reading data from a text file. Together, this material allows
instructors to present students with problems of larger scale and real-world applicability
as early as Chapter 2.

 ■ Chapter 12 now includes a section on using stringstream to convert between
strings and other data types.

 ■ Chapter 13 briefly describes tail recursion and gives an example of mutual recursion.
 ■ Ten new self-test exercises have been added along with twenty-five new Programming

Projects. By request, some of these are longer and less prescriptive projects that give
the student more practice designing programming solutions.

 ■ Several errors that were found in the fourth edition have been corrected.
 ■ Fifteen new VideoNotes have been added to the book’s website (www.pearsonhighered.

com/savitch) for a total of forty-six videos. These VideoNotes walk students through the
process of problem solving and coding to reinforce key programming concepts. An icon
appears in the margin of the book when a video is available regarding the corresponding
topic in the text.

 ANSI/ISO C++ STANDARD

 This edition is fully compatible with compilers that meet the latest ANSI/ISO C++
standard.

 Preface

 v

www.pearsonhighered.com/savitch
www.pearsonhighered.com/savitch

vi Preface

 STANDARD TEMPLATE LIBRARY

 The Standard Template Library (STL) is an extensive collection of preprogrammed
data structure classes and algorithms. The STL is perhaps as big a topic as the core C++
language, so I have included a substantial introduction to STL. There is a full chapter
on the general topic of templates and a full chapter on the particulars of STL, as well as
other material on, or related to, STL at other points in the text.

 OBJECT-ORIENTED PROGRAMMING

 This book is organized around the structure of C++. As such, the early chapters cover
aspects of C++ that are common to most high-level programming languages but are
not particularly oriented toward object-oriented programming (OOP). For a reference
book—and for a book for learning a second language—this makes sense. However,
I consider C++ to be an OOP language. If you are programming in C++ and not C,
you must be using the OOP features of C++. This text offers extensive coverage
of encapsulation, inheritance, and polymorphism as realized in the C++ language.
 Chapter 20 , on patterns and UML, gives additional coverage of OOP-related material.

 FLEXIBILITY IN TOPIC ORDERING

 This book allows instructors wide latitude in reordering the material. This is important
if a book is to serve as a reference. This is also in keeping with my philosophy of
accommodating the instructor’s style, rather than tying the instructor to my own
personal preference of topic ordering. Each chapter introduction explains what material
must already have been covered before each section of the chapter can be covered.

 ACCESSIBLE TO STUDENTS

 It is not enough for a book to present the right topics in the right order. It is not
even enough for it be correct and clear to an instructor. The material also needs to
be presented in a way that is accessible to the novice. Like my other textbooks, which
proved to be very popular with students, this book was written to be friendly and
accessible to the student.

 SUMMARY BOXES

 Each major point is summarized in a boxed section. These boxed sections are spread
throughout each chapter. They serve as summaries of the material, as a quick reference
source, and as a quick way to learn the C++ syntax for a feature you know about in
general but for which you do not know the C++ particulars.

 SELF-TEST EXERCISES

 Each chapter contains numerous self-test exercises. Complete answers for all the self-
test exercises are given at the end of each chapter.

www.itpub.net

Preface vii

 VIDEO NOTES

 VideoNotes are step-by-step videos that guide readers through the solution to an end
of chapter problem or further illuminate a concept presented in the text. Icons in the
text indicate where a VideoNote enhances a topic. Fully navigable problems allow for
self-paced instruction. VideoNotes are located at www.pearsonhighered.com/savitch.

 OTHER FEATURES

 Pitfall sections, programming technique sections, and examples of complete programs
with sample input and output are given throughout each chapter. Each chapter ends
with a summary and a collection of programming projects.

 ONLINE PRACTICE AND ASSESSMENT WITH
MyProgrammingLab

 MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of
programming. Through practice exercises and immediate, personalized feedback,
MyProgrammingLab improves the programming competence of beginning students
who often struggle with the basic concepts and paradigms of popular high-level
programming languages.

 A self-study and homework tool, a MyProgrammingLab course consists of hundreds
of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable students to figure out what went
wrong—and why. For instructors, a comprehensive gradebook tracks correct and
incorrect answers and stores the code inputted by students for review.

 MyProgrammingLab is offered to users of this book in partnership with Turing’s
Craft, the makers of the CodeLab interactive programming exercise system. For a full
demonstration, to see feedback from instructors and students, or to get started using
MyProgrammingLab in your course, visit www.myprogramminglab.com.

 SUPPORT MATERIAL

 The following support materials are available to all users of this book at
www.pearsonhighered.com/cssupport:

■ Source code from the book

 The following resources are available to qualified instructors only at www.
pearsonhighered.com/irc. Please contact your local sales representative for access
information.

■ Instructor’s Manual with Solutions
■ PowerPoint® slides

VideoNote

www.pearsonhighered.com/savitch
www.myprogramminglab.com
www.pearsonhighered.com/cssupport
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

viii Preface

 ACKNOWLEDGMENTS

 Numerous individuals have contributed invaluable help and support to making this
book happen. Frank Ruggirello and Susan Hartman at Addison-Wesley first conceived
the idea and supported the first edition, for which I owe them a debt of gratitude.
A special thanks to Matt Goldstein who was the editor for the second, third, and
fourth editions. His help and support were critical to making this project succeed.
Chelsea Kharakozova, Marilyn Lloyd, Yez Alayan, and the other fine people at Pearson
Education also provided valuable support and encouragement.

 The following reviewers provided suggestions for the book. I thank them all for
their hard work and helpful comments.

 Richard Albright University of Delaware

 J. Boyd Trolinger Butte College

 Jerry K. Bilbrey, Jr Francis Marion University

 Albert M. K. Cheng University of Houston

 David Cherba Michigan State University

 Fredrick H. Colclough Colorado Technical University

 Drue Coles Boston University

 Stephen Corbesero Moravian College

 Christopher E. Cramer

 Ron DiNapoli Cornell University

 Qin Ding Pennsylvania State University, Harrisburg

 Martin Dulberg North Carolina State University

 H. E. Dunsmore Purdue University

 Evan Golub University of Maryland

 Terry Harvey University of Delaware

 Joanna Klukowska Hunter College, CUNY

 Lawrence S. Kroll San Francisco State University

 Stephen P. Leach Florida State University

 Alvin S. Lim Auburn University

 Tim H. Lin Cal Poly Pomona

 R. M. Lowe Clemson University

 Jeffrey L. Popyack Drexel University

 Amar Raheja Cal Poly Pomona

 Victoria Rayskin University of Central Los Angeles

 Loren Rhodes Juniata College

 Jeff Ringenberg University of Michigan

www.itpub.net

Preface ix

 Victor Shtern Boston University

 Aaron Striegel University of Notre Dame

 J. Boyd Trolinger Butte College

 Chrysafis Vogiatzis University of Florida

 Joel Weinstein Northeastern University

 Dick Whalen College of Southern Maryland

 A special thanks goes to Kenrick Mock (University of Alaska Anchorage) who
executed the updating of this edition. He once again had the difficult job of satisfying
me, the editor, and himself. I thank him for a truly excellent job.

 Walter Savitch

 LOCATION OF VIDEONOTES IN THE TEXT
www.pearsonhighered.com/savitch

 Chapter 1 Compiling and Running a C++ Program, page 4
 Solution to Programming Project 1.11, page 44

 Chapter 2 Nested Loop Example, page 83
 Solution to Programming Project 2.5, page 95
 Solution to Programming Project 2.9, page 96
 Solution to Programming Project 2.10, page 96

 Chapter 3 Generating Random Numbers, page 107
 Scope Walkthrough, page 125
 Solution to Programming Project 3.9, page 140

 Chapter 4 Using an Integrated Debugger, page 173
 Solution to Programming Project 4.4, page 180
 Solution to Programming Project 4.11, page 181

 Chapter 5 Array Walkthrough, page 187
 Solution to Programming Project 5.7, page 233
 Solution to Programming Project 5.15, page 237

 Chapter 6 Solution to Programming Project 6.5, page 272
 Solution to Programming Project 6.9, page 273

 Chapter 7 Constructor Walkthrough, page 276
 Solution to Programming Project 7.4, page 316
 Solution to Programming Project 7.7, page 317

 Chapter 8 Solution to Programming Project 8.7, page 366

 Chapter 9 Using cin and getline with the string class, page 399
 Solution to Programming Project 9.11, page 417
 Solution to Programming Project 9.13, page 418

 Chapter 10 Example of Shallow Copy vs. Deep Copy, page 459
 Solution to Programming Project 10.5, page 469

 Chapter 11 Avoiding Multiple Defi nitions with #ifndef, page 484
 Solution to Programming Project 11.5, page 512

 Chapter 12 Walkthrough of the stringstream demo, page 554
 Solution to Programming Project 12.17, page 566
 Solution to Programming Project 12.25, page 570

 Chapter 13 Recursion and the Stack, page 582
 Walkthrough of Mutual Recursion, page 591
 Solution to Programming Project 13.9, page 609
 Solution to Programming Project 13.11, page 610

 Chapter 14 Solution to Programming Project 14.7, page 657

VideoNote

www.itpub.net

www.pearsonhighered.com/savitch

 Chapter 15 Solution to Programming Project 15.5, page 689
 Solution to Programming Project 15.7, page 690

 Chapter 16 Solution to Programming Project 16.3, page 728
 Solution to Programming Project 16.7, page 729

 Chapter 17 Solution to Programming Project 17.5, page 820
 Solution to Programming Project 17.11, page 822

 Chapter 18 Solution to Programming Project 18.5, page 854

 Chapter 19 Solution to Programming Project 19.9, page 909
 Solution to Programming Project 19.12, page 911

 Chapter 20 Solution to Programming Project 20.6, page 931

This page intentionally left blank

www.itpub.net

 Brief Contents

 Chapter 1 C++ BASICS 1

 Chapter 2 FLOW OF CONTROL 45

 Chapter 3 FUNCTION BASICS 99

 Chapter 4 PARAMETERS AND OVERLOADING 145

 Chapter 5 ARRAYS 185

 Chapter 6 STRUCTURES AND CLASSES 239

 Chapter 7 CONSTRUCTORS AND OTHER TOOLS 275

 Chapter 8 OPERATOR OVERLOADING, FRIENDS,

AND REFERENCES 321

 Chapter 9 STRINGS 367

 Chapter 10 POINTERS AND DYNAMIC ARRAYS 419

 Chapter 11 SEPARATE COMPILATION AND NAMESPACES 471

 Chapter 12 STREAMS AND FILE I/O 515

 Chapter 13 RECURSION 571

 Chapter 14 INHERITANCE 613

 Chapter 15 POLYMORPHISM AND VIRTUAL FUNCTIONS 661

 Chapter 16 TEMPLATES 693

 Chapter 17 LINKED DATA STRUCTURES 731

 Chapter 18 EXCEPTION HANDLING 825

 Chapter 19 STANDARD TEMPLATE LIBRARY 857

 Chapter 20 PATTERNS AND UML (online at www.pearsonhighered.com/

savitch)

 Appendix 1 C++ KEYWORDS 915

 Appendix 2 PRECEDENCE OF OPERATORS 917

 Appendix 3 THE ASCII CHARACTER SET 919

 Appendix 4 SOME LIBRARY FUNCTIONS 921

 Appendix 5 OLD AND NEW HEADER FILES 929

 INDEX 931

 xiii

www.pearsonhighered.com/savitch
www.pearsonhighered.com/savitch

This page intentionally left blank

www.itpub.net

 Contents

 Chapter 1 C++ Basics 1

 1.1 INTRODUCTION TO C++ 2
 Origins of the C++ Language 2
 C++ and Object-Oriented Programming 3
 The Character of C++ 3
 C++ Terminology 4
 A Sample C++ Program 4

 1.2 VARIABLES, EXPRESSIONS, AND ASSIGNMENT STATEMENTS 6
 Identifi ers 7
 Variables 8
 Assignment Statements 10
 Introduction to the string class 12
 PITFALL: Uninitialized Variables 12
 TIP: Use Meaningful Names 13
 More Assignment Statements 14
 Assignment Compatibility 15
 Literals 16
 Escape Sequences 17
 Naming Constants 17
 Arithmetic Operators and Expressions 19
 Integer and Floating-Point Division 21
 PITFALL: Division with Whole Numbers 22
 Type Casting 23
Increment and Decrement Operators 25
 PITFALL: Order of Evaluation 27

 1.3 CONSOLE INPUT/OUTPUT 28
 Output Using cout 28
New Lines in Output 29
 TIP: End Each Program with \n or endl 30
 Formatting for Numbers with a Decimal Point 30
 Output with cerr 32
 Input Using cin 32
 TIP: Line Breaks in I/O 35

 xv

xvi Contents

 1.4 PROGRAM STYLE 36
 Comments 36

 1.5 LIBRARIES AND NAMESPACES 37
 Libraries and include Directives 37
 Namespaces 37
 PITFALL: Problems with Library Names 38

Chapter Summary 39
 Answers to Self-Test Exercises 40
 Programming Projects 42

 Chapter 2 Flow of Control 45

 2.1 BOOLEAN EXPRESSIONS 45
 Building Boolean Expressions 46
 PITFALL: Strings of Inequalities 47
 Evaluating Boolean Expressions 48
 Precedence Rules 50
 PITFALL: Integer Values Can Be Used as Boolean Values 54

 2.2 BRANCHING MECHANISMS 56
 if-else Statements 56
 Compound Statements 58
 PITFALL: Using = in Place of == 59
 Omitting the else 61
 Nested Statements 61
 Multiway if-else Statement 61
 The switch Statement 62
 PITFALL: Forgetting a break in a switch Statement 65
 TIP: Use switch Statements for Menus 65
Enumeration Types 66
 The Conditional Operator 66

 2.3 LOOPS 67
 The while and do-while Statements 68
 Increment and Decrement Operators Revisited 71
 The Comma Operator 72
 The for Statement 74
 TIP: Repeat-N-Times Loops 76
 PITFALL: Extra Semicolon in a for Statement 77
 PITFALL: Infi nite Loops 77
 The break and continue Statements 80
 Nested Loops 83

www.itpub.net

Contents xvii

 2.4 INTRODUCTION TO FILE INPUT 83
 Reading From a Text File Using ifstream 84

Chapter Summary 87
 Answers to Self-Test Exercises 87
 Programming Projects 93

 Chapter 3 Function Basics 99

 3.1 PREDEFINED FUNCTIONS 100
 Predefi ned Functions That Return a Value 100
 Predefi ned void Functions 105
 A Random Number Generator 107

 3.2 PROGRAMMER-DEFINED FUNCTIONS 111
 Defi ning Functions That Return a Value 112
 Alternate Form for Function Declarations 114
 PITFALL: Arguments in the Wrong Order 115
 PITFALL: Use of the Terms Parameter and Argument 115
 Functions Calling Functions 115
 EXAMPLE: A Rounding Function 115
 Functions That Return a Boolean Value 118
 Defi ning void Functions 119
 return Statements in void Functions 121
Preconditions and Postconditions 121
 main Is a Function 123
 Recursive Functions 123

 3.3 SCOPE RULES 125
Local Variables 125
 Procedural Abstraction 127
 Global Constants and Global Variables 128
 Blocks 131
 Nested Scopes 132
 TIP: Use Function Calls in Branching and Loop Statements 132
 Variables Declared in a for Loop 133

Chapter Summary 134
 Answers to Self-Test Exercises 134
 Programming Projects 138

xviii Contents

 Chapter 4 Parameters and Overloading 145

 4.1 PARAMETERS 146
 Call-by-Value Parameters 146
 A First Look at Call-by-Reference Parameters 148
 Call-by-Reference Mechanism in Detail 151
 Constant Reference Parameters 153
 EXAMPLE: The swapValues Function 153
 TIP: Think of Actions, Not Code 154
 Mixed Parameter Lists 155
 TIP: What Kind of Parameter to Use 156
 PITFALL: Inadvertent Local Variables 158
 TIP: Choosing Formal Parameter Names 159
 EXAMPLE: Buying Pizza 160

 4.2 OVERLOADING AND DEFAULT ARGUMENTS 163
 Introduction to Overloading 163
 PITFALL: Automatic Type Conversion and Overloading 166
 Rules for Resolving Overloading 167
 EXAMPLE: Revised Pizza-Buying Program 169
 Default Arguments 171

 4.3 TESTING AND DEBUGGING FUNCTIONS 173
 The assert Macro 173
 Stubs and Drivers 174

Chapter Summary 177
 Answers to Self-Test Exercises 177
 Programming Projects 179

 Chapter 5 Arrays 185

 5.1 INTRODUCTION TO ARRAYS 186
 Declaring and Referencing Arrays 186
 TIP: Use for Loops with Arrays 189
 PITFALL: Array Indexes Always Start with Zero 189
 TIP: Use a Defi ned Constant for the Size of an Array 189
 Arrays in Memory 190
 PITFALL: Array Index out of Range 192
 Initializing Arrays 192

 5.2 ARRAYS IN FUNCTIONS 195
 Indexed Variables as Function Arguments 195
 Entire Arrays as Function Arguments 196

www.itpub.net

Contents xix

 The const Parameter Modifi er 200
 PITFALL: Inconsistent Use of const Parameters 201
 Functions That Return an Array 202
 EXAMPLE: Production Graph 202

 5.3 PROGRAMMING WITH ARRAYS 207
 Partially Filled Arrays 207
 TIP: Do Not Skimp on Formal Parameters 208
 EXAMPLE: Searching an Array 211
 EXAMPLE: Sorting an Array 213

 5.4 MULTIDIMENSIONAL ARRAYS 218
 Multidimensional Array Basics 218
 Multidimensional Array Parameters 219
 EXAMPLE: Two-Dimensional Grading Program 220

Chapter Summary 225
 Answers to Self-Test Exercises 226
 Programming Projects 230

 Chapter 6 Structures and Classes 239

 6.1 STRUCTURES 240
 Structure Types 242
 PITFALL: Forgetting a Semicolon in a Structure Defi nition 246
 Structures as Function Arguments 246
 TIP: Use Hierarchical Structures 247
 Initializing Structures 249

 6.1 CLASSES 252
Defi ning Classes and Member Functions 252
 Encapsulation 258
 Public and Private Members 259
 Accessor and Mutator Functions 262
 TIP: Separate Interface and Implementation 264
TIP: A Test for Encapsulation 265
 Structures versus Classes 266
 TIP: Thinking Objects 268

Chapter Summary 268
 Answers to Self-Test Exercises 269
 Programming Projects 271

xx Contents

 Chapter 7 Constructors and Other Tools 275

 7.1 CONSTRUCTORS 276
 Constructor Defi nitions 276
 PITFALL: Constructors with No Arguments 281
 Explicit Constructor Calls 282
 TIP: Always Include a Default Constructor 283
 EXAMPLE: BankAccount Class 285
 Class Type Member Variables 292

 7.2 MORE TOOLS 295
 The const Parameter Modifi er 295
 PITFALL: Inconsistent Use of const 297
 Inline Functions 301
 Static Members 303
 Nested and Local Class Defi nitions 306

 7.3 VECTORS—A PREVIEW OF THE STANDARD T EMPLATE LIBRARY 307
 Vector Basics 307
 PITFALL: Using Square Brackets beyond the Vector Size 309
 TIP: Vector Assignment Is Well Behaved 311
 Effi ciency Issues 311

Chapter Summary 313
 Answers to Self-Test Exercises 313
 Programming Projects 315

 Chapter 8 Operator Overloading, Friends, and References 321

 8.1 BASIC OPERATOR OVERLOADING 322
 Overloading Basics 323
 TIP: A Constructor Can Return an Object 328
 Returning by const Value 329
 Overloading Unary Operators 332
 Overloading as Member Functions 332
 TIP: A Class Has Access to All Its Objects 335
 Overloading Function Application () 335
 PITFALL: Overloading &&, ||, and the Comma Operator 336

 8.2 FRIEND FUNCTIONS AND AUTOMATIC TYPE CONVERSION 336
Constructors for Automatic Type Conversion 336
 PITFALL: Member Operators and Automatic Type Conversion 337
 Friend Functions 338
 Friend Classes 341
 PITFALL: Compilers without Friends 342

www.itpub.net

Contents xxi

 8.3 REFERENCES AND MORE OVERLOADED OPERATORS 343
 References 344
 TIP: Returning Member Variables of a Class Type 345
 Overloading >> and << 346
 TIP: What Mode of Returned Value to Use 352
 The Assignment Operator 355
 Overloading the Increment and Decrement Operators 355
 Overloading the Array Operator [] 358
 Overloading Based on L-Value versus R-Value 360

Chapter Summary 360
 Answers to Self-Test Exercises 361
 Programming Projects 363

 Chapter 9 Strings 367

 9.1 AN ARRAY TYPE FOR STRINGS 368
 C-String Values and C-String Variables 369
 PITFALL: Using = and == with C-strings 372
 Other Functions in <cstring> 374
 EXAMPLE: Command-Line Arguments 376
 C-String Input and Output 379

 9.2 CHARACTER MANIPULATION TOOLS 381
 Character I/O 381
 The Member Functions get and put 382
 EXAMPLE: Checking Input Using a Newline Function 384
 PITFALL: Unexpected '\n' in Input 386
 The putback, peek, and ignore Member Functions 387
Character-Manipulating Functions 389
 PITFALL: toupper and tolower Return int Values 391

 9.3 THE STANDARD CLASS string 393
 Introduction to the Standard Class string 393
 I/O with the Class string 396
 TIP: More Versions of getline 399
 PITFALL: Mixing cin >> variable; and getline 399
 String Processing with the Class string 401
 EXAMPLE: Palindrome Testing 404
 Converting between string Objects and C-Strings 408

Chapter Summary 409
 Answers to Self-Test Exercises 409
 Programming Projects 413

xxii Contents

 Chapter 10 Pointers and Dynamic Arrays 419

 10.1 POINTERS 420
 Pointer Variables 421
 Basic Memory Management 429
 PITFALL: Dangling Pointers 432
 Dynamic Variables and Automatic Variables 432
 TIP: Defi ne Pointer Types 433
 PITFALL: Pointers as Call-by-Value Parameters 435
 Uses for Pointers 436

 10.2 DYNAMIC ARRAYS 437
 Array Variables and Pointer Variables 437
 Creating and Using Dynamic Arrays 439
 EXAMPLE: A Function That Returns an Array 442
 Pointer Arithmetic 444
 Multidimensional Dynamic Arrays 445

 10.3 CLASSES, POINTERS, AND DYNAMIC ARRAYS 448
The -> Operator 448
 The this Pointer 449
 Overloading the Assignment Operator 449
 EXAMPLE: A Class for Partially Filled Arrays 456
 Destructors 459
 Copy Constructors 460

Chapter Summary 465
 Answers to Self-Test Exercises 465
 Programming Projects 467

 Chapter 11 Separate Compilation and Namespaces 471

 11.1 SEPARATE COMPILATION 472
 Encapsulation Reviewed 473
 Header Files and Implementation Files 473
 EXAMPLE: DigitalTime Class 482
 TIP: Reusable Components 483
 Using #ifndef 483
 TIP: Defi ning Other Libraries 485

 11.2 NAMESPACES 487
 Namespaces and using Directives 487
 Creating a Namespace 489
 using Declarations 492

www.itpub.net

Contents xxiii

 Qualifying Names 493
 TIP: Choosing a Name for a Namespace 495
 EXAMPLE: A Class Defi nition in a Namespace 496
 Unnamed Namespaces 497
 PITFALL: Confusing the Global Namespace and the

Unnamed Namespace 503
 TIP: Unnamed Namespaces Replace the static Qualifi er 504
 TIP: Hiding Helping Functions 504
 Nested Namespaces 505
 TIP: What Namespace Specifi cation Should You Use? 505

Chapter Summary 508
 Answers to Self-Test Exercises 508
 Programming Projects 510

 Chapter 12 Streams and File I/O 515

 12.1 I/O STREAMS 517
 File I/O 517
 PITFALL: Restrictions on Stream Variables 522
 Appending to a File 522
 TIP: Another Syntax for Opening a File 524
 TIP: Check That a File Was Opened Successfully 526
 Character I/O 528
Checking for the End of a File 529

 12.2 TOOLS FOR STREAM I/O 533
 File Names as Input 533
 Formatting Output with Stream Functions 534
 Manipulators 538
 Saving Flag Settings 539
 More Output Stream Member Functions 540
 EXAMPLE: Cleaning Up a File Format 542
 EXAMPLE: Editing a Text File 544

 12.3 STREAM HIERARCHIES: A PREVIEW OF INHERITANCE 547
 Inheritance among Stream Classes 547
 EXAMPLE: Another newLine Function 549
 Parsing Strings with the stringstream Class 553

 12.4 RANDOM ACCESS TO FILES 556

Chapter Summary 558
 Answers to Self-Test Exercises 558
 Programming Projects 561

xxiv Contents

 Chapter 13 Recursion 571

 13.1 RECURSIVE void FUNCTIONS 573
 EXAMPLE: Vertical Numbers 573
 Tracing a Recursive Call 576
 A Closer Look at Recursion 579
 PITFALL: Infi nite Recursion 580
 Stacks for Recursion 582
 PITFALL: Stack Overfl ow 583
 Recursion versus Iteration 584

 13.2 RECURSIVE FUNCTIONS THAT RETURN A VALUE 585
 General Form for a Recursive Function That Returns a Value 585
 EXAMPLE: Another Powers Function 586
 Mutual Recursion 591

 13.3 THINKING RECURSIVELY 593
 Recursive Design Techniques 593
 Binary Search 594
Coding 596
 Checking the Recursion 600
 Effi ciency 600

Chapter Summary 602
 Answers to Self-Test Exercises 603
 Programming Projects 607

 Chapter 14 Inheritance 613

 14.1 INHERITANCE BASICS 614
 Derived Classes 614
 Constructors in Derived Classes 624
 PITFALL: Use of Private Member Variables from the Base Class 626
 PITFALL: Private Member Functions Are Effectively Not Inherited 628
 The protected Qualifi er 628
 Redefi nition of Member Functions 631
 Redefi ning versus Overloading 632
 Access to a Redefi ned Base Function 634
 Functions That Are Not Inherited 635

 14.2 PROGRAMMING WITH INHERITANCE 636
 Assignment Operators and Copy Constructors in Derived Classes 636
 Destructors in Derived Classes 637
 EXAMPLE: Partially Filled Array with Backup 638
 PITFALL: Same Object on Both Sides of the Assignment Operator 647

www.itpub.net

Contents xxv

 EXAMPLE: Alternate Implementation of PFArrayDBak 647
 TIP: A Class Has Access to Private Members of All Objects of the Class 650
 TIP: “Is a” versus “Has a” 650
 Protected and Private Inheritance 651
 Multiple Inheritance 652

Chapter Summary 653
 Answers to Self-Test Exercises 653
 Programming Projects 655

 Chapter 15 Polymorphism and Virtual Functions 661

 15.1 VIRTUAL FUNCTION BASICS 662
 Late Binding 662
 Virtual Function in C++ 663
 TIP: The Virtual Property Is Inherited 669
 TIP: When to Use a Virtual Function 670
 PITFALL: Omitting the Defi nition of a Virtual Member Function 670
 Abstract Classes and Pure Virtual Functions 671
 EXAMPLE: An Abstract Class 672

 15.2 POINTERS AND VIRTUAL FUNCTIONS 674
 Virtual Functions and Extended Type Compatibility 674
 PITFALL: The Slicing Problem 678
TIP: Make Destructors Virtual 679
 Downcasting and Upcasting 680
 How C++ Implements Virtual Functions 681

Chapter Summary 683
 Answers to Self-Test Exercises 684
 Programming Projects 684

 Chapter 16 Templates 693

 16.1 FUNCTION TEMPLATES 694
 Syntax for Function Templates 695
 PITFALL: Compiler Complications 698
 TIP: How to Defi ne Templates 700
 EXAMPLE: A Generic Sorting Function 701
 PITFALL: Using a Template with an Inappropriate Type 705

 16.2 CLASS TEMPLATES 707
 Syntax for Class Templates 708
 EXAMPLE: An Array Template Class 712
 The vector and basic_string Templates 718

xxvi Contents

 16.3 TEMPLATES AND INHERITANCE 718
 EXAMPLE: Template Class For a Partially Filled Array with Backup 719

Chapter Summary 724
 Answers to Self-Test Exercises 724
 Programming Projects 728

 Chapter 17 Linked Data Structures 731

 17.1 NODES AND LINKED LISTS 733
 Nodes 733
 Linked Lists 738
 Inserting a Node at the Head of a List 740
 PITFALL: Losing Nodes 743
 Inserting and Removing Nodes Inside a List 743
 PITFALL: Using the Assignment Operator with Dynamic Data Structures 747
Searching a Linked List 747
 Doubly Linked Lists 750
 Adding a Node to a Doubly Linked List 752
 Deleting a Node from a Doubly Linked List 752
 EXAMPLE: A Generic Sorting Template Version of Linked List Tools 759

 17.2 LINKED LIST APPLICATIONS 763
 EXAMPLE: A Stack Template Class 763
 EXAMPLE: A Queue Template Class 770
 TIP: A Comment on Namespaces 773
 Friend Classes and Similar Alternatives 774
 EXAMPLE: Hash Tables With Chaining 777
 Effi ciency of Hash Tables 783
 EXAMPLE: A Set Template Class 784
 Effi ciency of Sets Using Linked Lists 790

 17.3 ITERATORS 791
 Pointers as Iterators 792
 Iterator Classes 792
 EXAMPLE: An Iterator Class 794

 17.4 TREES 800
 Tree Properties 801
 EXAMPLE: A Tree Template Class 803

Chapter Summary 808
 Answers to Self-Test Exercises 809
 Programming Projects 818

www.itpub.net

Contents xxvii

 Chapter 18 Exception Handling 825

 18.1 EXCEPTION HANDLING BASICS 827
 A Toy Example of Exception Handling 827
 Defi ning Your Own Exception Classes 836
 Multiple Throws and Catches 836
 PITFALL: Catch the More Specifi c Exception First 840
 TIP: Exception Classes Can Be Trivial 841
 Throwing an Exception in a Function 841
 Exception Specifi cation 843
 PITFALL: Exception Specifi cation in Derived Classes 845

 18.2 PROGRAMMING TECHNIQUES FOR EXCEPTION HANDLING 846
 When to Throw an Exception 847
 PITFALL: Uncaught Exceptions 848
 PITFALL: Nested try-catch Blocks 849
 PITFALL: Overuse of Exceptions 849
 Exception Class Hierarchies 850
 Testing for Available Memory 850
 Rethrowing an Exception 851

Chapter Summary 851
 Answers to Self-Test Exercises 851
 Programming Projects 853

 Chapter 19 Standard Template Library 857

 19.1 ITERATORS 859
 Iterator Basics 859
 PITFALL: Compiler Problems 864
 Kinds of Iterators 865
 Constant and Mutable Iterators 868
 Reverse Iterators 870
 Other Kinds of Iterators 871

 19.2 CONTAINERS 872
 Sequential Containers 872
 PITFALL: Iterators and Removing Elements 877
 TIP: Type Defi nitions in Containers 878
 The Container Adapters stack and queue 878
 PITFALL: Underlying Containers 879
 The Associative Containers set and map 882
 Effi ciency 887

xxviii Contents

 19.3 GENERIC ALGORITHMS 889
 Running Times and Big-O Notation 890
 Container Access Running Times 894
 Nonmodifying Sequence Algorithms 895
 Modifying Sequence Algorithms 899
 Set Algorithms 900
 Sorting Algorithms 902

Chapter Summary 902
 Answers to Self-Test Exercises 903
 Programming Projects 905

 Chapter 20 Patterns and UML (online at www.pearsonhighered.com/
savitch)

 Appendix 1 C++ Keywords 915

 Appendix 2 Precedence of Operators 917

 Appendix 3 The ASCII Character Set 919

 Appendix 4 Some Library Functions 921

 Appendix 5 Old and New Header Files 929

 Index 931

www.itpub.net

www.pearsonhighered.com/savitch
www.pearsonhighered.com/savitch

 1.3 CONSOLE INPUT/OUTPUT 28
 Output Using cout 28
 New Lines in Output 29
 Tip: End Each Program with \n or endl 30
 Formatting for Numbers with a Decimal Point 30
 Output with cerr 32
 Input Using cin 32
 Tip: Line Breaks in I/O 35

 1.4 PROGRAM STYLE 36
 Comments 36

 1.5 LIBRARIES AND NAMESPACES 37
 Libraries and include Directives 37
 Namespaces 37
 Pitfall: Problems with Library Names 38

 1.1 INTRODUCTION TO C++ 2
 Origins of the C++ Language 2
 C++ and Object-Oriented Programming 3
 The Character of C++ 3
 C++ Terminology 4
 A Sample C++ Program 4

 1.2 VARIABLES, EXPRESSIONS, AND
ASSIGNMENT STATEMENTS 6

 Identifiers 7
 Variables 8
 Assignment Statements 10
 Introduction to the string class 12
 Pitfall: Uninitialized Variables 12
 Tip: Use Meaningful Names 13
 More Assignment Statements 14
 Assignment Compatibility 15
 Literals 16
 Escape Sequences 17
 Naming Constants 17
 Arithmetic Operators and Expressions 19
 Integer and Floating-Point Division 21
 Pitfall: Division with Whole Numbers 22
 Type Casting 23
 Increment and Decrement Operators 25
 Pitfall: Order of Evaluation 27

 1 C++ Basics

Chapter Summary 39 Answers to Self-Test Exercises 40 Programming Projects 42

 The Analytical Engine has no pretensions whatever to originate anything.

It can do whatever we know how to order it to perform. It can follow

analysis; but it has no power of anticipating any analytical relations or

truths. Its province is to assist us in making available what we are already

acquainted with.

 ADA AUGUSTA , Countess of Lovelace

 Introduction
 This chapter introduces the C++ language and gives enough detail to allow you to
handle simple programs involving expressions, assignments, and console input/output
(I/O). The details of assignments and expressions are similar to those of most other
high-level languages. Every language has its own console I/O syntax, so if you are not
familiar with C++, that may look new and different to you.

 1.1 Introduction to C++

 Language is the only instrument of science.

 SAMUEL JOHNSON

 This section gives an overview of the C++ programming language.

 Origins of the C++ Language

 The C++ programming language can be thought of as the C programming language
with classes (and other modern features) added. The C programming language was
developed by Dennis Ritchie of AT&T Bell Laboratories in the 1970s. It was first used
for writing and maintaining the UNIX operating system. (Up until that time, UNIX
systems programs were written either in assembly language or in a language called B,
a language developed by Ken Thompson, the originator of UNIX.) C is a general-
purpose language that can be used for writing any sort of program, but its success and
popularity are closely tied to the UNIX operating system. If you wanted to maintain
your UNIX system, you needed to use C. C and UNIX fit together so well that soon
not just systems programs but almost all commercial programs that ran under UNIX
were written in the C language. C became so popular that versions of the language were
written for other popular operating systems; its use is thus not limited to computers
that use UNIX. However, despite its popularity, C was not without its shortcomings.

 1 C++ Basics

www.itpub.net

Introduction to C++ 3

 The C language is peculiar because it is a high-level language with many of the
features of a low-level language. C is somewhere in between the two extremes of a very
high-level language and a low-level language, and therein lies both its strengths and
its weaknesses. Like (low-level) assembly language, C language programs can directly
manipulate the computer’s memory. On the other hand, C has the features of a high-
level language, which makes it easier to read and write than assembly language. This
makes C an excellent choice for writing systems programs, but for other programs
(and in some sense even for systems programs) C is not as easy to understand as other
languages; also, it does not have as many automatic checks as some other high-level
languages.

 To overcome these and other shortcomings of C, Bjarne Stroustrup of AT&T Bell
Laboratories developed C++ in the early 1980s. Stroustrup designed C++ to be a better
C. Most of C is a subset of C++ and so most C programs are also C++ programs. (The
reverse is not true; many C++ programs are definitely not C programs.) Unlike C, C++
has facilities for classes and so can be used for object-oriented programming.

 C++ and Object-Oriented Programming

 Object-oriented programming (OOP) is a currently popular and powerful programming
technique. The main characteristics of OOP are encapsulation, inheritance, and polymorphism.
Encapsulation is a form of information hiding or abstraction. Inheritance has to do
with writing reusable code. Polymorphism refers to a way that a single name can have
multiple meanings in the context of inheritance. Having made those statements, we must
admit that they will hold little meaning for readers who have not heard of OOP before.
However, we will describe all these terms in detail later in this book. C++ accommodates
OOP by providing classes, a kind of data type combining both data and algorithms.
C++ is not what some authorities would call a “pure OOP language.” C++ tempers its
OOP features with concerns for efficiency and what some might call “practicality.” This
combination has made C++ currently the most widely used OOP language, although not
all of its usage strictly follows the OOP philosophy.

 The Character of C++

 C++ has classes that allow it to be used as an object-oriented language. It allows for
overloading of functions and operators. (All these terms will be explained eventually, so
do not be concerned if you do not fully understand some terms.) C++’s connection to
the C language gives it a more traditional look than newer object-oriented languages,
yet it has more powerful abstraction mechanisms than many other currently popular
languages. C++ has a template facility that allows for full and direct implementation
of algorithm abstraction. C++ templates allow you to code using parameters for types.
The newest C++ standard, and most C++ compilers, allow multiple namespaces to
accommodate more reuse of class and function names. The exception handling facilities
in C++ are similar to what you would find in other programming languages. Memory
management in C++ is similar to that in C. The programmer must allocate his or her
own memory and handle his or her own garbage collection. Most compilers will allow

4 CHAPTER 1 C++ Basics

you to do C-style memory management in C++ since C is essentially a subset of C++.
However, C++ also has its own syntax for a C++ style of memory management, and
you are advised to use the C++ style of memory management when coding in C++.
This book uses only the C++ style of memory management.

 C++ Terminology

 All procedure-like entities are called functions in C++. Things that are called procedures ,
methods , functions , or subprograms in other languages are all called functions in C++. As we
will see in the next subsection, a C++ program is basically just a function called main ;
when you run a program, the run-time system automatically invokes the function named
main . Other C++ terminology is pretty much the same as most other programming
languages, and in any case, will be explained when each concept is introduced.

 A Sample C++ Program

 Display 1.1 contains a simple C++ program and two possible screen displays that
might be generated when a user runs the program. A C++ program is really a function
definition for a function named main . When the program is run, the function named
main is invoked. The body of the function main is enclosed in braces, {} . When the
program is run, the statements in the braces are executed.

 The following two lines set up things so that the libraries with console input and
output facilities are available to the program. The details concerning these two lines
and related topics are covered in Section 1.3 and in Chapters 9 , 11 , and 12 .

#include <iostream>
using namespace std;

 The following line says that main is a function with no parameters that returns an int
(integer) value:

int main()

 Some compilers will allow you to omit the int or replace it with void , which indicates
a function that does not return a value. However, the previous form is the most
universally accepted way to start the main function of a C++ program.

 The program ends when the following statement is executed:

return 0;

 This statement ends the invocation of the function main and returns 0 as the function’s
value. According to the ANSI/ISO C++ standard, this statement is not required, but
many compilers still require it. Chapter 3 covers all these details about C++ functions.

functions

program

Compiling and
Running a C++
Program

VideoNote

int main()

return 0;

www.itpub.net

Introduction to C++ 5

 Variable declarations in C++ are similar to what they are in other programming
languages. The following line from Display 1.1 declares the variable numberOfLanguages :

 int numberOfLanguages;

 The type int is one of the C++ types for whole numbers (integers).

User types in 0 on the keyboard.
User input is shown in bold.

User types in 1 on the keyboard.
User input is shown in bold.

 Display 1.1 A Sample C++ Program

 1 #include <iostream>
 2 using namespace std;

 3 int main()
 4 {
 5 int numberOfLanguages;

 6 cout << "Hello reader.\n"
 7 << "Welcome to C++.\n";

 8 cout << "How many programming languages have you used? ";
 9 cin >> numberOfLanguages;

 10 if (numberOfLanguages < 1)
 11 cout << "Read the preface. You may prefer\n"
 12 << "a more elementary book by the same author.\n";
 13 else

 14 cout << "Enjoy the book.\n";

 15 return 0;
 16 }

 Sample Dialogue 1

 Hello reader.

 Welcome to C++.

 How many programming languages have you used? 0

 Read the preface. You may prefer

 a more elementary book by the same author.

 Sample Dialogue 2

 Hello reader.

 Welcome to C++.

 How many programming languages have you used? 1

 Enjoy the book

6 CHAPTER 1 C++ Basics

 If you have not programmed in C++ before, then the use of cin and cout for
console I/O is likely to be new to you. That topic is covered a little later in this chapter,
but the general idea can be observed in this sample program. For example, consider the
following two lines from Display 1.1 :

cout << "How many programming languages have you used? ";
cin >> numberOfLanguages;

 The first line outputs the text within the quotation marks to the screen. The text inside
the quotation marks is called a string , or to be more precise, a C-string . The second
line reads in a number that the user enters at the keyboard and sets the value of the
variable numberOfLanguages to this number.

 The lines

cout << "Read the preface. You may prefer\n"
<< "a more elementary book by the same author.\n";

 output two strings instead of just one string. The details are explained in Section 1.3 later
in this chapter, but this brief introduction will be enough to allow you to understand
the simple use of cin and cout in the examples that precede Section 1.3 . The
symbolism \n is the newline character, which instructs the computer to start a new line
of output.

 Although you may not yet be certain of the exact details of how to write such
statements, you can probably guess the meaning of the if-else statement. The details
will be explained in the next chapter.

 (By the way, if you have not had at least some experience with some programming
languages, you should read the preface to see if you might prefer a more elementary
book. You need not have had any experience with C++ to read this book, but some
minimal programming experience is strongly suggested.)

 1.2 Variables, Expressions, and
Assignment Statements

 Once a person has understood the way variables are used in
programming, he has understood the quintessence of programming.

 E. W. DIJKSTRA , Notes on Structured Programming

 Variables, expressions, and assignments in C++ are similar to those in most other
general-purpose languages.

string

C-string

www.itpub.net

Variables, Expressions, and Assignment Statements 7

 Identifiers

 The name of a variable (or other item you might define in a program) is called an
identifier . A C++ identifier must start with either a letter or the underscore symbol,
and all the rest of the characters must be letters, digits, or the underscore symbol. For
example, the following are all valid identifiers:

x x1 x_1 _abc ABC123z7 sum RATE count data2 bigBonus

 All the names shown are legal and would be accepted by the compiler, but the first five
are poor choices for identifiers because they are not descriptive of the identifier’s use.
None of the following are legal identifiers, and all would be rejected by the compiler:

12 3X %change data-1 myfirst.c PROG.CPP

 The first three are not allowed because they do not start with a letter or an underscore.
The remaining three are not identifiers because they contain symbols other than letters,
digits, and the underscore symbol.

 Although it is legal to start an identifier with an underscore, you should avoid doing
so, because identifiers starting with an underscore are informally reserved for system
identifiers and standard libraries.

 C++ is a case-sensitive language; that is, it distinguishes between uppercase and
lowercase letters in the spelling of identifiers. Hence, the following are three distinct
identifiers and could be used to name three distinct variables:

rate RATE Rate

 However, it is not a good idea to use two such variants in the same program, since
that might be confusing. Although it is not required by C++, variables are usually
spelled with their first letter in lowercase. The predefined identifiers, such as main ,
cin , cout , and so forth, must be spelled in all lowercase letters. The convention that
is now becoming universal in object-oriented programming is to spell variable names
with a mix of upper- and lowercase letters (and digits), to always start a variable name
with a lowercase letter, and to indicate “word” boundaries with an uppercase letter, as
illustrated by the following variable names:

topSpeed, bankRate1, bankRate2, timeOfArrival

 This convention is not as common in C++ as in some other object-oriented languages,
but is becoming more widely used and is a good convention to follow.

 A C++ identifier can be of any length, although some compilers will ignore all
characters after some (large) specified number of initial characters.

identifier

case-
sensitive

 Identifiers
A C++ identifier must start with either a letter or the underscore symbol, and the remaining
characters must all be letters, digits, or the underscore symbol. C++ identifiers are case
sensitive and have no limit to their length.

8 CHAPTER 1 C++ Basics

 There is a special class of identifiers, called keywords or reserved words , which
have a predefined meaning in C++ and cannot be used as names for variables or
anything else. In the code displays of this book keywords are shown in a different color.
 A complete list of keywords is given in Appendix 1 .

 Some predefined words, such as cin and cout , are not keywords. These predefined
words are not part of the core C++ language, and you are allowed to redefine them.
Although these predefined words are not keywords, they are defined in libraries
required by the C++ language standard. Needless to say, using a predefined identifier
for anything other than its standard meaning can be confusing and dangerous and thus
should be avoided. The safest and easiest practice is to treat all predefined identifiers as
if they were keywords.

 Variables

 Every variable in a C++ program must be declared before it is used. When you declare
a variable you are telling the compiler—and, ultimately, the computer—what kind of
data you will be storing in the variable. For example, the following are two definitions
that might occur in a C++ program:

 int numberOfBeans;
 double oneWeight, totalWeight;

 The first defines the variable numberOfBeans so that it can hold a value of type int ,
that is, a whole number. The name int is an abbreviation for “integer.” The type int
is one of the types for whole numbers. The second definition declares oneWeight and
totalWeight to be variables of type double , which is one of the types for numbers
with a decimal point (known as floating-point numbers). As illustrated here, when
there is more than one variable in a definition, the variables are separated by commas.
Also, note that each definition ends with a semicolon.

 Every variable must be declared before it is used; otherwise, variables may be
declared anyplace. Of course, they should always be declared in a location that makes
the program easier to read. Typically, variables are declared either just before they are
used or at the start of a block (indicated by an opening brace, {). Any legal identifier,
other than a reserved word, may be used for a variable name. 1

 C++ has basic types for characters, integers, and floating-point numbers (numbers
with a decimal point). Display 1.2 lists the basic C++ types. The commonly used type
for integers is int . The type char is the type for single characters. The type char can
be treated as an integer type, but we do not encourage you to do so. The commonly

 keyword or
reserved

word

 declare

 floating-point
number

1 C++ makes a distinction between declaring and defining an identifier. When an identifier is declared,
the name is introduced. When it is defined, storage for the named item is allocated. For the kind of
variables we discuss in this chapter, and for much more of the book, what we are calling a variable
declaration both declares the variable and defines the variable, that is, allocates storage for the variable.
Many authors blur the distinction between variable definition and variable declaration. The difference
between declaring and defining an identifier is more important for other kinds of identifiers, which
we will encounter in later chapters.

www.itpub.net

Variables, Expressions, and Assignment Statements 9

used type for floating-point numbers is double , and so you should use double for
floating-point numbers unless you have a specific reason to use one of the other
floating-point types. The type bool (short for Boolean) has the values true and false .
It is not an integer type, but to accommodate older code, you can convert back and
forth between bool and any of the integer types. The programmer can also define types
for arrays, classes, and pointers, all of which are discussed in later chapters of this book.

 Display 1.2 Simple Types

 TYPE NAME MEMORY USED SIZE RANGE PRECISION

short
(also called
short int)

2 bytes −32,768 to 32,767 Not applicable

int 4 bytes −2,147,483,648 to
2,147,483,647

Not applicable

long
(also called
long int)

4 bytes −2,147,483,648 to
2,147,483,647

Not applicable

float 4 bytes approximately 10–38

to 1038
7 digits

double 8 bytes approximately
10–308 to 10308

15 digits

long double 10 bytes approximately
10–4932 to 104932

19 digits

char 1 byte All ASCII characters
(Can also be used
as an integer type,
although we do
not recommend
doing so.)

Not applicable

bool 1 byte true, false Not applicable

The values listed here are only sample values to give you a general idea of how the
types differ. The values for any of these entries may be different on your system.
Precision refers to the number of meaningful digits, including digits in front of the
decimal point. The ranges for the types float, double, and long double are the
ranges for positive numbers. Negative numbers have a similar range, but with a
negative sign in front of each number.

10 CHAPTER 1 C++ Basics

 Variable Declarations
All variables must be declared before they are used. The syntax for variable declarations is
as follows.

 SYNTAX

 Type_Name Variable_Name_1, Variable_Name_2,. . .;

 EXAMPLES

int count, numberOfDragons, numberOfTrolls;
double distance;

 Each of the integer types has an unsigned version that includes only nonnegative
values. These types are unsigned short , unsigned int , and unsigned long . Their
ranges do not exactly correspond to the ranges of the positive values of the types short ,
int , and long , but are likely to be larger (since they use the same storage as their
corresponding types short , int , or long , but need not remember a sign). You are
unlikely to need these types, but may run into them in specifications for predefined
functions in some of the C++ libraries , which we discuss in Chapter 3 .

 Assignment Statements

 The most direct way to change the value of a variable is to use an assignment
statement . In C++ the equal sign is used as the assignment operator. An assignment
statement always consists of a variable on the left-hand side of the equal sign and an
expression on the right-hand side. An assignment statement ends with a semicolon.
The expression on the right-hand side of the equal sign may be a variable, a number, or
a more complicated expression made up of variables, numbers, operators, and function
invocations. An assignment statement instructs the computer to evaluate (that is, to
compute the value of) the expression on the right-hand side of the equal sign and to set

unsigned

assignment
statement

 Assignment Statements
In an assignment statement, first the expression on the right-hand side of the equal sign is
evaluated and then the variable on the left-hand side of the equal sign is set equal to this value.

 SYNTAX

Variable = Expression;

 EXAMPLES

distance = rate * time;
count = count + 2;

www.itpub.net

Variables, Expressions, and Assignment Statements 11

the value of the variable on the left-hand side equal to the value of that expression. The
following are examples of C++ assignment statements:

totalWeight = oneWeight * numberOfBeans;
temperature = 98.6;
count = count + 2;

 The first assignment statement sets the value of totalWeight equal to the number in
the variable oneWeight multiplied by the number in numberOfBeans . (Multiplication
is expressed using the asterisk, * , in C++.) The second assignment statement sets the
value of temperature to 98.6 . The third assignment statement increases the value of
the variable count by 2 .

 In C++, assignment statements can be used as expressions. When used as an
expression, an assignment statement returns the value assigned to the variable. For
example, consider

n = (m = 2);

 The subexpression (m = 2) changes the value of m to 2 and returns the value 2 .
Thus, this sets both n and m equal to 2 . As you will see when we discuss precedence
of operators in detail in Chapter 2 , you can omit the parentheses, so the assignment
statement under discussion can be written as

n = m = 2;

 We advise you not to use an assignment statement as an expression, but you should
be aware of this behavior because it will help you understand certain kinds of coding
errors. For one thing, it will explain why you will not get an error message when you
mistakenly write

n = m = 2;

 when you meant to write

n = m + 2;

 (This is an easy mistake to make since = and + are on the same keyboard key.)

 Lvalues and Rvalues

Authors often refer to lvalue and rvalue in C++ books. An lvalue is anything that can appear
on the left-hand side of an assignment operator (=), which means any kind of variable. An
rvalue is anything that can appear on the right-hand side of an assignment operator, which
means any expression that evaluates to a value.

12 CHAPTER 1 C++ Basics

 Introduction to the string class

 Although C++ lacks a simple data type to directly manipulate strings (sequences of
text), there is a string class that may be used to process strings in a manner similar to
the data types we have seen thus far. The distinction between a class and a simple data
type such as an int is discussed in Chapter 6 . Further details about the string class
 are discussed in Chapter 9 .

 To use the string class we must first include the string library by adding the
following line of code at the top of your program:

#include <string>

 You declare variables of type string just as you declare variables of types int or
double . For example, the following declares one variable of type string and stores the
text “durian” in it:

string fruit;
fruit = "durian";

string

 PITFALL: Uninitialized Variables

 A variable has no meaningful value until a program gives it one. For example, if the
variable minimumNumber has not been given a value either as the left-hand side of an
assignment statement or by some other means (such as being given an input value
with a cin statement), then the following is an error:

desiredNumber = minimumNumber + 10;

 This is because minimumNumber has no meaningful value, and so the entire expression
on the right-hand side of the equal sign has no meaningful value. A variable like
minimumNumber that has not been given a value is said to be uninitialized . This
situation is, in fact, worse than it would be if minimumNumber had no value at all. An
uninitialized variable, like minimumNumber , will simply have some garbage value. The
value of an uninitialized variable is determined by whatever pattern of zeros and ones
was left in its memory location by the last program that used that portion of memory.

 One way to avoid an uninitialized variable is to initialize variables at the same time
they are declared. This can be done by adding an equal sign and a value, as follows:

int minimumNumber = 3;

 This both declares minimumNumber to be a variable of type int and sets the value of
the variable minimumNumber equal to 3 . You can use a more complicated expression
involving operations such as addition or multiplication when you initialize a variable
inside the declaration in this way. As another example, the following declares three
variables and initializes two of them:

double rate = 0.07, time, balance = 0.00;

uninitialized
variable

www.itpub.net

Variables, Expressions, and Assignment Statements 13

 PITFALL: (continued)

C++ allows an alternative notation for initializing variables when they are declared.
This alternative notation is illustrated by the following, which is equivalent to the
preceding declaration:

double rate(0.07), time, balance(0.00); ■

 Initializing Variables in Declarations
You can initialize a variable (that is, give it a value) at the time that you declare the variable.

 SYNTAX

Type_Name Variable_Name_1 = Expression_for_Value_1,

Variable_Name_2 = Expression_for_Value_2,...;

 EXAMPLES

int count = 0, limit = 10, fudgeFactor = 2;
double distance = 999.99;

 SYNTAX

Alternative syntax for initializing in declarations:

Type_Name Variable_Name_1 (Expression_for_Value_1),

Variable_Name_2 (Expression_for_Value_2),...;

 EXAMPLES

int count(0), limit(10), fudgeFactor(2);
double distance(999.99);

 TIP: Use Meaningful Names

 Variable names and other names in a program should at least hint at the meaning or
use of the thing they are naming. It is much easier to understand a program if the
variables have meaningful names. Contrast

x = y * z;

 with the more suggestive

distance = speed * time;

 The two statements accomplish the same thing, but the second is easier to understand. ■

14 CHAPTER 1 C++ Basics

 More Assignment Statements

 A shorthand notation exists that combines the assignment operator (=) and an
arithmetic operator so that a given variable can have its value changed by adding,
subtracting, multiplying by, or dividing by a specified value. The general form is

Variable Operator = Expression

 which is equivalent to

Variable = Variable Operator (Expression)

 The Expression can be another variable, a constant, or a more complicated arithmetic
expression. The following list gives examples.

 EXAMPLE EQUIVALENT TO

count += 2; count = count + 2;

total -= discount; total = total - discount;

bonus *= 2; bonus = bonus * 2;

time /= rushFactor; time = time / rushFactor;

change %= 100; change = change % 100;

amount *= cnt1 + cnt2; amount = amount * (cnt1 + cnt2);

 Self-Test Exercises

 1. Give the declaration for two variables called feet and inches . Both variables are
of type int and both are to be initialized to zero in the declaration. Give both
initialization alternatives.

 2. Give the declaration for two variables called count and distance . count is of
type int and is initialized to zero. distance is of type double and is initialized
to 1.5 . Give both initialization alternatives.

 3. Write a program that contains statements that output the values of fi ve or
six variables that have been defi ned, but not initialized. Compile and run the
program. What is the output? Explain.

www.itpub.net

Variables, Expressions, and Assignment Statements 15

 Assignment Compatibility

 As a general rule, you cannot store a value of one type in a variable of another type. For
example, most compilers will object to the following:

int intVariable;
intVariable = 2.99;

 The problem is a type mismatch. The constant 2.99 is of type double , and the variable
intVariable is of type int . Unfortunately, not all compilers will react the same way
to the previous assignment statement. Some will issue an error message, some will give
only a warning message, and some compilers will not object at all. Even if the compiler
does allow you to use the previous assignment, it will give intVariable the int value 2 ,
not the value 3 . Since you cannot count on your compiler accepting the previous
assignment, you should not assign a double value to a variable of type int .

 Even if the compiler will allow you to mix types in an assignment statement, in
most cases you should not. Doing so makes your program less portable, and it can be
confusing.

 There are some special cases in which it is permitted to assign a value of one type
to a variable of another type. It is acceptable to assign a value of an integer type, such
as int , to a variable of a floating-point type, such as type double . For example, the
following is both legal and acceptable style:

double doubleVariable;
doubleVariable = 2;

 The style shown will set the value of the variable named doubleVariable equal to 2.0 .
 Although it is usually a bad idea to do so, you can store an int value such as 65

in a variable of type char and you can store a letter such as 'Z' in a variable of type
int . For many purposes, the C language considers characters to be small integers, and
perhaps unfortunately, C++ inherited this from C. The reason for allowing this is that
variables of type char consume less memory than variables of type int ; thus, doing
arithmetic with variables of type char can save some memory. However, it is clearer to
use the type int when you are dealing with integers and to use the type char when you
are dealing with characters.

 The general rule is that you cannot place a value of one type in a variable of another
type—though it may seem that there are more exceptions to the rule than there are
cases that follow the rule. Even if the compiler does not enforce this rule strictly, it is
a good rule to follow. Placing data of one type in a variable of another type can cause
problems because the value must be changed to a value of the appropriate type and that
value may not be what you would expect.

 Values of type bool can be assigned to variables of an integer type (short , int ,
long), and integers can be assigned to variables of type bool . However, it is poor style
to do this. For completeness and to help you read other people’s code, here are the
details: When assigned to a variable of type bool , any nonzero integer will be stored as
the value true . Zero will be stored as the value false . When assigning a bool value to
an integer variable, true will be stored as 1 , and false will be stored as 0 .

assigning
int values
to double
variables

mixing types

integers
and Booleans

16 CHAPTER 1 C++ Basics

 Literals

 A literal is a name for one specific value. Literals are often called constants in contrast
to variables. Literals or constants do not change value; variables can change their values.
Integer constants are written in the way you are used to writing numbers. Constants
of type int (or any other integer type) must not contain a decimal point. Constants
of type double may be written in either of two forms. The simple form for double
constants is like the everyday way of writing decimal fractions. When written in this
form a double constant must contain a decimal point. No number constant (either
integer or floating-point) in C++ may contain a comma.

 A more complicated notation for constants of type double is called scientific
notation or floating-point notation and is particularly handy for writing very large
numbers and very small fractions. For instance, 3.67 � 10 17 , which is the same as

367000000000000000.0

 is best expressed in C++ by the constant 3.67e17 . The number 5.89 � 10-6 , which
is the same as 0.00000589 , is best expressed in C++ by the constant 5.89e-6 . The e
stands for exponent and means “multiply by 10 to the power that follows.” The e may
be either uppercase or lowercase.

 Think of the number after the e as telling you the direction and number of digits
to move the decimal point. For example, to change 3.49e4 to a numeral without an
e , you move the decimal point four places to the right to obtain 34900.0 , which is
another way of writing the same number. If the number after the e is negative, you
move the decimal point the indicated number of spaces to the left, inserting extra zeros
if need be. So, 3.49e-2 is the same as 0.0349 .

 The number before the e may contain a decimal point, although it is not required.
However, the exponent after the e definitely must not contain a decimal point.

literal constant

scientific
notation

or floating-
point

notation

 What Is Doubled?
Why is the type for numbers with a fractional part called double? Is there a type called
“single” that is half as big? No, but something like that is true. Many programming languages
traditionally used two types for numbers with a fractional part. One type used less storage
and was very imprecise (that is, it did not allow very many significant digits). The second type
used double the amount of storage and so was much more precise; it also allowed numbers
that were larger (although programmers tend to care more about precision than about
size). The kinds of numbers that used twice as much storage were called double-precision
numbers; those that used less storage were called single precision. Following this tradition,
the type that (more or less) corresponds to this double-precision type was named double in
C++. The type that corresponds to single precision in C++ was called float. C++ also has a
third type for numbers with a fractional part, which is called long double.

www.itpub.net

Variables, Expressions, and Assignment Statements 17

 Constants of type char are expressed by placing the character in single quotes, as
illustrated in what follows:

char symbol = 'Z';

 Note that the left and right single quote symbols are the same symbol.
 Constants for strings of characters are given in double quotes, as illustrated by the

following line taken from Display 1.1 :

cout << "How many programming languages have you used? ";

 Be sure to notice that string constants are placed inside double quotes, while constants
of type char are placed inside single quotes. The two kinds of quotes mean different
things. In particular, 'A' and "A" mean different things. 'A' is a value of type char and
can be stored in a variable of type char . "A" is a string of characters. The fact that the
string happens to contain only one character does not make "A" a value of type char .
Also notice that for both strings and characters, the left and right quotes are the same.

 Strings in double quotes, like "Hello" , are often called C-strings . A C-string is
not the same as the string class introduced earlier although both are used to store
sequences of text and we sometimes use the two interchangeably. The difference is
explained in detail in Chapter 9 . Experts recommend you use the string class when
possible instead of a C-string for purposes of security and flexibility.

 The type bool has two constants, true and false . These two constants may be
assigned to a variable of type bool or used anyplace else an expression of type bool is
allowed. They must be spelled with all lowercase letters.

 Escape Sequences

 A backslash, \ , preceding a character tells the compiler that the sequence following the
backslash does not have the same meaning as the character appearing by itself. Such a
sequence is called an escape sequence . The sequence is typed in as two characters with
no space between the symbols. Several escape sequences are defined in C++

 If you want to put a backslash, \ , or a quote symbol, " , into a string constant, you
must escape the ability of the " to terminate a string constant by using \" , or the ability of
the \ to escape, by using \\ . The \\ tells the compiler you mean a real backslash, \ , not
an escape sequence; the \" tells it you mean a real quote, not the end of a string constant.

 A stray \ , say \z , in a string constant will have different effects on different
compilers. One compiler may simply give back a z ; another might produce an error.
The ANSI/ISO standard states that unspecified escape sequences have undefined
behavior. This means a compiler can do anything its author finds convenient. The
consequence is that code that uses undefined escape sequences is not portable. You
should not use any escape sequences other than those provided by the C++ standard.
These C++ control characters are listed in Display 1.3 .

 Naming Constants

 Numbers in a computer program pose two problems. The first is that they carry no
mnemonic value. For example, when the number 10 is encountered in a program,
it gives no hint of its significance. If the program is a banking program, it might be

quotes

C-string

escape
sequence

18 CHAPTER 1 C++ Basics

the number of branch offices or the number of teller windows at the main office. To
understand the program, you need to know the significance of each constant. The
second problem is that when a program needs to have some numbers changed, the
changing tends to introduce errors. Suppose that 10 occurs twelve times in a banking
program—four of the times it represents the number of branch offices, and eight of the
times it represents the number of teller windows at the main office. When the bank
opens a new branch and the program needs to be updated, there is a good chance that
some of the 10 s that should be changed to 11 will not be, or some that should not be
changed will be. The way to avoid these problems is to name each number and use the
name instead of the number within your program. For example, a banking program
might have two constants with the names BRANCH_COUNT and WINDOW_COUNT .

 Both these numbers might have a value of 10 , but when the bank opens a new branch,
all you need do to update the program is change the definition of BRANCH_COUNT .

 How do you name a number in a C++ program? One way to name a number is to
initialize a variable to that number value, as in the following example:

int BRANCH_COUNT = 10;
int WINDOW_COUNT = 10;

 Display 1.3 Some Escape Sequences

 SEQUENCE MEANING

\n New line

\r Carriage return (Positions the cursor at the start of the current line.
You are not likely to use this very much.)

\t (Horizontal) Tab (Advances the cursor to the next tab stop.)

\a Alert (Sounds the alert noise, typically a bell.)

\\ Backslash (Allows you to place a backslash in a quoted expression.)

\' Single quote (Mostly used to place a single quote inside single
quotes.)

\" Double quote (Mostly used to place a double quote inside a quoted
string.)

The following are not as commonly used, but we include them for completeness:

\v Vertical tab

\b Backspace

\f Form feed

\? Question mark

www.itpub.net

Variables, Expressions, and Assignment Statements 19

 There is, however, one problem with this method of naming number constants: You
might inadvertently change the value of one of these variables. C++ provides a way
of marking an initialized variable so that it cannot be changed. If your program tries
to change one of these variables, it produces an error condition. To mark a variable
declaration so that the value of the variable cannot be changed, precede the declaration
with the word const (which is an abbreviation of constant). For example,

const int BRANCH_COUNT = 10;
const int WINDOW_COUNT = 10;

 If the variables are of the same type, it is possible to combine the previous two lines
into one declaration, as follows:

const int BRANCH_COUNT = 10, WINDOW_COUNT = 10;

 However, most programmers find that placing each name definition on a separate line
is clearer. The word const is often called a modifier , because it modifies (restricts) the
variables being declared.

 A variable declared using the const modifier is often called a declared constant .
Writing declared constants in all uppercase letters is not required by the C++ language,
but it is standard practice among C++ programmers.

 Once a number has been named in this way, the name can then be used anywhere
the number is allowed, and it will have exactly the same meaning as the number it
names. To change a named constant, you need only change the initializing value in
the const variable declaration. The meaning of all occurrences of BRANCH_COUNT , for
instance, can be changed from 10 to 11 simply by changing the initializing value of 10
in the declaration of BRANCH_COUNT .

 Display 1.4 contains a simple program that illustrates the use of the declaration
modifier const .

 Arithmetic Operators and Expressions

 As in most other languages, C++ allows you to form expressions using variables,
constants, and the arithmetic operators: + (addition), - (subtraction), * (multiplication),
/ (division), and % (modulo, remainder). These expressions can be used anyplace it is
legal to use a value of the type produced by the expression.

 All the arithmetic operators can be used with numbers of type int , numbers of
type double , and even with one number of each type. However, the type of the value
produced and the exact value of the result depend on the types of the numbers being
combined. If both operands (that is, both numbers) are of type int , then the result
of combining them with an arithmetic operator is of type int . If one or both of the
operands are of type double , then the result is of type double . For example, if the
variables baseAmount and increase are of type int , then the number produced by
the following expression is of type int :

baseAmount + increase

 However, if one or both of the two variables are of type double , then the result is of
type double . This is also true if you replace the operator + with any of the operators
-, * , or / .

const

modifier

declared
constant

mixing types

20 CHAPTER 1 C++ Basics

 More generally, you can combine any of the arithmetic types in expressions. If
all the types are integer types, the result will be the integer type. If at least one of the
subexpressions is of a floating-point type, the result will be a floating-point type. C++
tries its best to make the type of an expression either int or double , but if the value
produced by the expression is not of one of these types because of the value’s size, a
suitable different integer or floating-point type will be produced.

 You can specify the order of operations in an arithmetic expression by inserting
parentheses. If you omit parentheses, the computer will follow rules called precedence rules
that determine the order in which the operations, such as addition and multiplication,
are performed. These precedence rules are similar to rules used in algebra and other
mathematics classes. For example,

x + y * z

 is evaluated by first doing the multiplication and then the addition. Except in some
standard cases, such as a string of additions or a simple multiplication embedded
inside an addition, it is usually best to include the parentheses, even if the intended

precedence
rules

 Display 1.4 Named Constant

1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 const double RATE = 6.9;

7 double deposit

8 cout << "Enter the amount of your deposit $";

9 cin >> deposit;

10 double newBalance;

11 newBalance = deposit + deposit*(RATE/100);

12 cout << "In one year, that deposit will grow to\n"

13 << "$" << newBalance << " an amount worth waiting for.\n";

14 return 0;

15 }

 Sample Dialogue

Enter the amount of your deposit $100
In one year, that deposit will grow to
$106.9 an amount worth waiting for.

www.itpub.net

Variables, Expressions, and Assignment Statements 21

 order of operations is the one dictated by the precedence rules. The parentheses make
the expression easier to read and less prone to programmer error. A complete set of
C++ precedence rules is given in Appendix 2 .

 Integer and Floating-Point Division

 When used with one or both operands of type double , the division operator, / ,
behaves as you might expect. However, when used with two operands of type int , the
division operator yields the integer part resulting from division. In other words, integer
division discards the part after the decimal point. So, 10/3 is 3 (not 3.3333 …), 5/2 is 2
(not 2.5), and 11/3 is 3 (not 3.6666 …). Notice that the number is not rounded ; the
part after the decimal point is discarded no matter how large it is.

 The operator % can be used with operands of type int to recover the information
lost when you use / to do division with numbers of type int . When used with values
of type int , the two operators / and % yield the two numbers produced when you
perform the long division algorithm you learned in grade school. For example, 17
divided by 5 yields 3 with a remainder of 2 . The / operation yields the number of times
one number “goes into” another. The % operation gives the remainder. For example,
the statements

cout << "17 divided by 5 is " << (17 / 5) << "\n";
cout << "with a remainder of " << (17 % 5) << "\n";

 yield the following output:

17 divided by 5 is 3
with a remainder of 2

 When used with negative values of type int , the result of the operators / and % can
be different for different implementations of C++. Thus, you should use / and % with
int values only when you know that both values are nonnegative.

 Naming Constants with the const Modifier
When you initialize a variable inside a declaration, you can mark the variable so that the
program is not allowed to change its value. To do this, place the word const in front of the
declaration, as described here:

 SYNTAX

const Type_Name Variable_Name = Constant;

 EXAMPLES

const int MAX_TRIES = 3;
const double PI = 3.14159;

integer
division

the % operator

negative
integers in

division

22 CHAPTER 1 C++ Basics

 PITFALL: Division with Whole Numbers

 When you use the division operator / on two integers, the result is an integer. This
can be a problem if you expect a fraction. Moreover, the problem can easily go
unnoticed, resulting in a program that looks fine but is producing incorrect output
without you even being aware of the problem. For example, suppose you are a
landscape architect who charges $5,000 per mile to landscape a highway, and suppose
you know the length of the highway you are working on in feet. The price you charge
can easily be calculated by the following C++ statement:

totalPrice = 5000 * (feet/5280.0);

 This works because there are 5,280 feet in a mile. If the stretch of highway you are
landscaping is 15,000 feet long, this formula will tell you that the total price is

5000 * (15000/5280.0)

 Your C++ program obtains the final value as follows: 15000/5280.0 is computed as
2.84 . Then the program multiplies 5000 by 2.84 to produce the value 14200.00 .
With the aid of your C++ program, you know that you should charge $14,200 for
the project.

 Now suppose the variable feet is of type int , and you forget to put in the decimal
point and the zero, so that the assignment statement in your program reads

totalPrice = 5000 * (feet/5280);

 It still looks fine, but will cause serious problems. If you use this second form of the
assignment statement, you are dividing two values of type int , so the result of the
division feet/5280 is 15000/5280 , which is the int value 2 (instead of the value 2.84
that you think you are getting). The value assigned to totalPrice is thus 5000*2 , or
10000.00 . If you forget the decimal point, you will charge $10,000. However, as we
have already seen, the correct value is $14,200. A missing decimal point has cost you
$4,200. Note that this will be true whether the type of totalPrice is int or double ;
the damage is done before the value is assigned to totalPrice . ■

 Self-Test Exercises

 4. Convert each of the following mathematical formulas to a C++ expression.

3x 3x + y
x + y

7

3x + y

z + 2

 5. What is the output of the following program lines when they are embedded in a
correct program that declares all variables to be of type char ?

a = 'b';
b = 'c';
c = a;
cout << a << b << c << 'c';

www.itpub.net

Variables, Expressions, and Assignment Statements 23

 Type Casting

 A type cast is a way of changing a value of one type to a value of another type. A type
cast is a kind of function that takes a value of one type and produces a value of another
type that is C++’s best guess of an equivalent value. C++ has four to six different kinds
of casts, depending on how you count them. There is an older form of type cast that has
two notations for expressing it, and there are four new kinds of type casts introduced
with the latest standard. The new kinds of type casts were designed as replacements for
the older form; in this book, we will use the newer kinds. However, C++ retains the
older kind(s) of cast along with the newer kinds, so we will briefly describe the older
kind as well.

 Let’s start with the newer kinds of type casts. Consider the expression 9/2 . In C++
this expression evaluates to 4 because when both operands are of an integer type, C++
performs integer division. In some situations, you might want the answer to be the
double value 4.5 . You can get a result of 4.5 by using the “equivalent” floating-point
value 2.0 in place of the integer value 2 , as in 9/2.0 , which evaluates to 4.5 . But what
if the 9 and the 2 are the values of variables of type int named n and m ? Then, n/m
yields 4 . If you want floating-point division in this case, you must do a type cast from
int to double (or another floating-point type), such as in the following:

double ans = n/ static_cast<double>(m);

 Self-Test Exercises (continued)

6. What is the output of the following program lines when they are embedded in a
correct program that declares number to be of type int ?

number = (1/3) * 3;
cout << "(1/3) * 3 is equal to " << number;

 7. Write a complete C++ program that reads two whole numbers into two variables
of type int and then outputs both the whole number part and the remainder
when the fi rst number is divided by the second. This can be done using the
operators / and % .

 8. Given the following fragment that purports to convert from degrees Celsius to
degrees Fahrenheit, answer the following questions:

double c = 20;
double f;
f = (9/5) * c + 32.0;

 a. What value is assigned to f ?

 b. Explain what is actually happening, and what the programmer likely wanted.

 c. Rewrite the code as the programmer intended.

type cast

24 CHAPTER 1 C++ Basics

 The expression

static_cast<double>(m)

 is a type cast. The expression static_cast<double> is like a function that takes an int
argument (actually, an argument of almost any type) and returns an “equivalent” value
of type double . So, if the value of m is 2 , the expression static_cast<double>(m)
returns the double value 2.0 .

 Note that static_cast<double>(n) does not change the value of the variable n .
If n has the value 2 before this expression is evaluated, then n still has the value 2 after
the expression is evaluated. (If you know what a function is in mathematics or in some
programming language, you can think of static_cast<double> as a function that
returns an “equivalent” value of type double .)

 You may use any type name in place of double to obtain a type cast to another type.
We said this produces an “equivalent” value of the target type. The word equivalent is
in quotes because there is no clear notion of equivalent that applies to any two types. In
the case of a type cast from an integer type to a floating-point type, the effect is to add
a decimal point and a zero. The type cast in the other direction, from a floating-point
type to an integer type, simply deletes the decimal point and all digits after the decimal
point. Note that when type casting from a floating-point type to an integer type, the
number is truncated, not rounded. static_cast<int>(2.9) is 2 ; it is not 3 .

 This static_cast is the most common kind of type cast and the only one we will
use for some time. For completeness and reference value, we list all four kinds of type
casts. Some may not make sense until you reach the relevant topics. If some or all of the
remaining three kinds do not make sense to you at this point, do not worry. The four
kinds of type cast are as follows:

static_cast<Type>(Expression)
const_cast<Type>(Expression)
dynamic_cast<Type>(Expression)
reinterpret_cast<Type>(Expression)

 We have already discussed static_cast . It is a general-purpose type cast that applies
in most “ordinary” situations. The const_cast is used to cast away constantness. The
dynamic_cast is used for safe downcasting from one type to a descendent type in
an inheritance hierarchy. The reinterpret_cast is an implementation-dependent
cast that we will not discuss in this book and that you are unlikely to need. (These
descriptions may not make sense until you cover the appropriate topics, where they will
be discussed further. For now, we only use static_cast .)

 The older form of type casting is approximately equivalent to the static_cast kind
of type casting but uses a different notation. One of the two notations uses a type name as
if it were a function name. For example, int(9.3) returns the int value 9 ; double(42)
returns the value 42.0 . The second, equivalent, notation for the older form of type
casting would write (double)42 instead of double(42) . Either notation can be used
with variables or other more complicated expressions instead of just with constants.

 Although C++ retains this older form of type casting, you are encouraged to use the
newer form of type casting. (Someday, the older form may go away, although there is,
as yet, no such plan for its elimination.)

www.itpub.net

Variables, Expressions, and Assignment Statements 25

 As we noted earlier, you can always assign a value of an integer type to a variable of
a floating-point type, as in

double d = 5;

 In such cases C++ performs an automatic type cast, converting the 5 to 5.0 and placing
5.0 in the variable d . You cannot store the 5 as the value of d without a type cast, but
sometimes C++ does the type cast for you. Such an automatic conversion is sometimes
called a type coercion .

 Increment and Decrement Operators

 The ++ in the name of the C++ language comes from the increment operator, ++ . The
increment operator adds 1 to the value of a variable. The decrement operator, -- ,
subtracts 1 from the value of a variable. They are usually used with variables of type int ,
but they can be used with any numeric type. If n is a variable of a numeric type, then
n++ increases the value of n by 1 and n-- decreases the value of n by 1. So n++ and n--
(when followed by a semicolon) are executable statements. For example, the statements

int n = 1, m = 7;

n++
cout << "The value of n is changed to " << n << "\n";

m- -;
cout << "The value of m is changed to " << m << "\n";

 yield the following output:

The value of n is changed to 2
The value of m is changed to 6

 An expression like n++ returns a value as well as changing the value of the variable n ,
so n++ can be used in an arithmetic expression such as

2*(n++)

 The expression n++ first returns the value of the variable n , and then the value of n is
increased by 1. For example, consider the following code:

int n = 2;

int valueProduced = 2*(n++);
cout << valueProduced << "\n";
cout << n << "\n";

 This code will produce the output

4
3

 Notice the expression 2*(n++) . When C++ evaluates this expression, it uses the
value that number has before it is incremented, not the value that it has after it is
incremented. Thus, the value produced by the expression n++ is 2 , even though the
increment operator changes the value of n to 3 . This may seem strange, but sometimes

type coercion

decrement
operator

increment
operator

26 CHAPTER 1 C++ Basics

it is just what you want. And, as you are about to see, if you want an expression that
behaves differently, you can have it.

 The expression n++ evaluates to the value of the variable n , and then the value of the
variable n is incremented by 1. If you reverse the order and place the ++ in front of the
variable, the order of these two actions is reversed. The expression ++n first increments
the value of the variable n and then returns this increased value of n . For example,
consider the following code:

int n = 2;

int valueProduced = 2*(++n);
cout << valueProduced << "\n";
cout << n << "\n";

 This code is the same as the previous piece of code except that the ++ is before the
variable, so this code will produce the following output:

6
3

 Notice that the two increment operators in n++ and ++n have the same effect on a
variable n : They both increase the value of n by 1. But the two expressions evaluate to
different values. Remember, if the ++ is before the variable, the incrementing is done
before the value is returned; if the ++ is after the variable, the incrementing is done after
the value is returned.

 Everything we said about the increment operator applies to the decrement operator
as well, except that the value of the variable is decreased by 1 rather than increased by
 1. For example, consider the following code:

int n = 8;
int valueProduced = n- -;
cout << valueProduced << "\n";
cout << n << "\n";

 This produces the output

8
7

 On the other hand, the code

int n = 8;
int valueProduced = - -n;
cout << valueProduced << "\n";
cout << n << "\n";

 produces the output

7

7

n-- returns the value of n and then decrements n ; on the other hand, --n first
decrements n and then returns the value of n .

v++ versus ++v

www.itpub.net

Variables, Expressions, and Assignment Statements 27

 You cannot apply the increment and decrement operators to anything other than a
single variable. Expressions such as (x + y)++ , --(x + y) , 5++ , and so forth, are all
illegal in C++.

 The increment and decrement operators can be dangerous when used inside more
complicated expressions, as explained in the following Pitfall.

 PITFALL: Order of Evaluation

 For most operators, the order of evaluation of subexpressions is not guaranteed. In
particular, you normally cannot assume that the order of evaluation is left to right.
For example, consider the following expression:

n + (++n)

 Suppose n has the value 2 before the expression is evaluated. Then, if the first
expression is evaluated first, the result is 2 + 3 . If the second expression is evaluated
first, the result is 3 + 3 . Since C++ does not guarantee the order of evaluation, the
expression could evaluate to either 5 or 6 . The moral is that you should not program
in a way that depends on order of evaluation, except for the operators discussed in the
next paragraph.

 Some operators do guarantee that their order of evaluation of subexpressions is
left to right. For the operators && (and), || (or), and the comma operator (which is
discussed in Chapter 2) , C++ guarantees that the order of evaluations is left to right.
Fortunately, these are the operators for which you are most likely to want a predicable
order of evaluation. For example, consider

(n <= 2) && (++n > 2)

 Suppose n has the value 2 , before the expression is evaluated. In this case you know
that the subexpression (n <= 2) is evaluated before the value of n is incremented.

 You thus know that (n <= 2) will evaluate to true and so the entire expression will
evaluate to true .

 Do not confuse order of operations (by precedence rules) with order of evaluation.
For example,

(n + 2) * (++n) + 5

 always means

((n + 2) * (++n)) + 5

 However, it is not clear whether the ++n is evaluated before or after the n + 2 . Either
one could be evaluated first.

 Now you know why we said that it is usually a bad idea to use the increment (++)
and decrement (--) operators as subexpressions of larger expressions.

 If this is too confusing, just follow the simple rule of not writing code that depends
on the order of evaluation of subexpressions. ■

28 CHAPTER 1 C++ Basics

 1.3 Console Input/Output

 Garbage in means garbage out.

 Programmer’s saying

 Simple console input is done with the objects cin , cout , and cerr , all of which are
defined in the library iostream . In order to use this library, your program should
contain the following near the start of the file containing your code:

#include <iostream>
using namespace std;

 Output Using cout

 The values of variables as well as strings of text may be output to the screen using cout .
Any combination of variables and strings can be output. For example, consider the
following from the program in Display 1.1 :

cout << "Hello reader.\n"
<< "Welcome to C++.\n";

 This statement outputs two strings, one per line. Using cout , you can output any
number of items, each either a string, a variable, or a more complicated expression.
Simply insert a << before each thing to be output.

 As another example, consider the following:

cout << numberOfGames << " games played.";

 This statement tells the computer to output two items: the value of the variable
numberOfGames and the quoted string " games played." .

 Notice that you do not need a separate copy of the object cout for each item
output. You can simply list all the items to be output, preceding each item to be output
with the arrow symbols << . The previous single cout statement is equivalent to the
following two cout statements:

cout << numberOfGames;
cout << " games played.";

 You can include arithmetic expressions in a cout statement, as shown by the
following example, where price and tax are variables:

cout << "The total cost is $" << (price + tax);

 Parentheses around arithmetic expressions, such as price + tax , are required by some
compilers, so it is best to include them.

 The two < symbols should be typed without any space between them. The arrow
notation << is often called the insertion operator . The entire cout statement ends
with a semicolon.

cout

expression in a
cout statement

www.itpub.net

Console Input/Output 29

 Notice the spaces inside the quotes in our examples. The computer does not insert
any extra space before or after the items output by a cout statement, which is why
the quoted strings in the examples often start or end with a blank. The blanks keep the
various strings and numbers from running together. If all you need is a space and there
is no quoted string where you want to insert the space, then use a string that contains
only a space, as in the following:

cout << firstNumber << " " << secondNumber;

 Similarly, if you place the ‘+’ symbol between two variables of type string then this
operator concatenates (i.e. joins) the two strings together to create one longer string.
For example, the code

string day1 = "Monday", day2="Tuesday";
cout << day1 + day2;

 results in the concatenated string of

"MondayTuesday"

 New Lines in Output

 As noted in the subsection on escape sequences, \n tells the computer to start a new
line of output. Unless you tell the computer to go to the next line, it will put all the
output on the same line. Depending on how your screen is set up, this can produce
anything from arbitrary line breaks to output that runs off the screen. Notice that the
\n goes inside the quotes. In C++, going to the next line is considered to be a special
character, and the way you spell this special character inside a quoted string is \n , with
no space between the two symbols in \n . Although it is typed as two symbols, C++
considers \n to be a single character that is called the newline character .

 If you wish to insert a blank line in the output, you can output the newline character
\n by itself:

cout << "\n";

 Another way to output a blank line is to use endl , which means essentially the same
thing as "\n" . So you can also output a blank line as follows:

cout << endl;

 Although "\n" and endl mean the same thing, they are used slightly differently; \n
must always be inside quotes, and endl should not be placed in quotes.

 A good rule for deciding whether to use \n or endl is the following: If you can
include the \n at the end of a longer string, then use \n , as in the following:

cout << "Fuel efficiency is "
<< mpg << " miles per gallon\n";

 On the other hand, if the \n would appear by itself as the short string "\n" , then use
endl instead:

cout << "You entered " << number << endl;

spaces in
output

newline
character

deciding
between \n

and endl

30 CHAPTER 1 C++ Basics

 Starting New Lines in Output
To start a new output line, you can include \n in a quoted string, as in the following example:

cout << "You have definitely won\n"
<< "one of the following prizes:\n";

Recall that \n is typed as two symbols with no space in between the two symbols.

Alternatively, you can start a new line by outputting endl. An equivalent way to write the
previous cout statement is as follows:

cout << "You have definitely won" << endl
<< "one of the following prizes:" << endl;

 TIP: End Each Program with \n or endl

 It is a good idea to output a newline instruction at the end of every program. If the
last item to be output is a string, then include a \n at the end of the string; if not,
output an endl as the last output action in your program. This serves two purposes.
Some compilers will not output the last line of your program unless you include
a newline instruction at the end. On other systems, your program may work fine
without this final newline instruction, but the next program that is run will have its
first line of output mixed with the last line of the previous program. Even if neither
of these problems occurs on your system, putting a newline instruction at the end will
make your programs more portable. ■

 Formatting for Numbers with a Decimal Point

 When the computer outputs a value of type double , the format may not be what you
would like. For example, the following simple cout statement can produce any of a
wide range of outputs:

cout << "The price is $" << price << endl;

 If price has the value 78.5 , the output might be

The price is $78.500000

 or it might be

The price is $78.5

 or it might be output in the following notation (which was explained in the subsection
entitled “Literals”):

The price is $7.850000e01

format for
double values

www.itpub.net

Console Input/Output 31

 It is extremely unlikely that the output will be the following, however, even though this
is the format that makes the most sense:

The price is $78.50

 To ensure that the output is in the form you want, your program should contain some
sort of instructions that tell the computer how to output the numbers.

 There is a “magic formula” that you can insert in your program to cause numbers
that contain a decimal point, such as numbers of type double , to be output in everyday
notation with the exact number of digits after the decimal point that you specify. If you
want two digits after the decimal point, use the following magic formula:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

 If you insert the preceding three statements in your program, then any cout statements
that follow these statements will output values of any floating-point type in ordinary
notation, with exactly two digits after the decimal point. For example, suppose the
following cout statement appears somewhere after this magic formula and suppose the
value of price is 78.5 .

cout << "The price is $" << price << endl;

 The output will then be as follows:

The price is $78.50

 You may use any other nonnegative whole number in place of 2 to specify a different
number of digits after the decimal point. You can even use a variable of type int in
place of the 2 .

 We will explain this magic formula in detail in Chapter 12 . For now, you should
think of this magic formula as one long instruction that tells the computer how you
want it to output numbers that contain a decimal point.

 If you wish to change the number of digits after the decimal point so that different
values in your program are output with different numbers of digits, you can repeat the
magic formula with some other number in place of 2 . However, when you repeat
the magic formula, you only need to repeat the last line of the formula. If the magic
formula has already occurred once in your program, then the following line will change
the number of digits after the decimal point to five for all subsequent values of any
floating-point type that are output:

cout.precision(5);

magic
formula

outputting
money

amounts

32 CHAPTER 1 C++ Basics

 Output with cerr

 The object cerr is used in the same way as cout . The object cerr sends its output to
the standard error output stream, which normally is the console screen. This gives you
a way to distinguish two kinds of output: cout for regular output, and cerr for error
message output. If you do nothing special to change things, then cout and cerr will
both send their output to the console screen, so there is no difference between them.

 On some systems you can redirect output from your program to a file. This is an
operating system instruction, not a C++ instruction, but it can be useful. On systems
that allow for output redirection, cout and cerr may be redirected to different files.

 Input Using cin

 You use cin for input more or less the same way you use cout for output. The
syntax is similar, except that cin is used in place of cout and the arrows point in
the opposite direction. For example, in the program in Display 1.1 , the variable
numberOfLanguages was filled by the following cin statement:

cin >> numberOfLanguages;

 You can list more than one variable in a single cin statement, as illustrated by the
following:

cout << "Enter the number of dragons\n"
<< "followed by the number of trolls.\n";

cin >> dragons >> trolls;

 If you prefer, the above cin statement can be written on two lines, as follows:

cin >> dragons
>> trolls;

 Notice that, as with the cout statement, there is just one semicolon for each occurrence
of cin .

 Outputting Values of Type double

If you insert the following “magic formula” in your program, then all numbers of type
double (or any other type of floating-point number) will be output in ordinary notation with
two digits after the decimal point:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

You can use any other nonnegative whole number in place of the 2 to specify a different
number of digits after the decimal point. You can even use a variable of type int in place
of the 2.

cerr

cin

www.itpub.net

Console Input/Output 33

 When a program reaches a cin statement, it waits for input to be entered from the
keyboard. It sets the first variable equal to the first value typed at the keyboard, the
second variable equal to the second value typed, and so forth. However, the program
does not read the input until the user presses the Return key. This allows the user to
backspace and correct mistakes when entering a line of input. Display 1.5 illustrates
reading an int and a string in the same program along with a simple calculation.

 Numbers in the input must be separated by one or more spaces or by a line break.
These delimiting characters are called whitespace . When you use cin statements, the
computer will skip over any number of blanks or line breaks until it finds the next input
value. Thus, it does not matter whether input numbers are separated by one space or
several spaces or even a line break. This same behavior holds when you are reading data
into a string. This means that you cannot input a string that contains spaces. This may
sometimes cause errors, as indicated in Display 1.5 , Sample Dialogue 2. In this case,
the user intends to enter “Mr. Bojangles” as the name of the pet, but the string is only
read up to “Mr.” since the next character is a space. The “Bojangles” string is ignored
by this program but would be read next if there was another cin statement. Chapter 9
describes a technique to input a string that may include spaces.

 You can read in integers, floating-point numbers, characters, or strings using cin .
Later in this book we will discuss the reading in of other kinds of data using cin .

how cin works

separate
numbers with

spaces

whitespace

 Display 1.5 Using cin and cout with a string (part 1 of 2)

1 //Program to demonstrate cin and cout with strings

2 #include <iostream>

3 #include <string>

4 using namespace std;

5 int main()

6 {

7 string dogName;

8 int actualAge;

9 int humanAge;

10 cout << "How many years old is your dog?" << endl;

11 cin >> actualAge;

12 humanAge = actualAge * 7;

13 cout << "What is your dog's name?" << endl;

14 cin >> dogName;

15 cout << dogName << "'s age is approximately " <<

16 "equivalent to a " << humanAge << " year old human."

17 << endl;

18 return 0;

19 }
(continued)

Needed to access the
string class.

34 CHAPTER 1 C++ Basics

 Sample Dialogue 1

How many years old is your dog?

5

What is your dog's name?

Rex

Rex's age is approximately equivalent to a 35 year old human.

 Sample Dialogue 2

How many years old is your dog?

10

What is your dog's name?

Mr. Bojangles

Mr.'s age is approximately equivalent to a 70 year old human.

Display 1.5 Using cin and cout with a string (part 2 of 2)

“Bojangles” is not read into
dogName because cin stops
input at the space.

 cin Statements
A cin statement sets variables equal to values typed in at the keyboard.

 SYNTAX

cin >> Variable_1 >> Variable_2 >>... ;

 EXAMPLES

cin >> number >> size;
cin >> timeLeft

>> pointsNeeded;

 Self-Test Exercises

 9. Give an output statement that will produce the following message on the
screen.

The answer to the question of
Life, the Universe, and Everything is 42.

 10. Give an input statement that will fi ll the variable theNumber (of type int) with
a number typed in at the keyboard. Precede the input statement with a prompt
statement asking the user to enter a whole number.

www.itpub.net

Console Input/Output 35

 TIP: Line Breaks in I/O

 It is possible to keep output and input on the same line, and sometimes it can
produce a nicer interface for the user. If you simply omit a \n or endl at the end of
the last prompt line, then the user’s input will appear on the same line as the prompt.
For example, suppose you use the following prompt and input statements:

cout << "Enter the cost per person: $";
cin >> costPerPerson;

 When the cout statement is executed, the following will appear on the screen:

Enter the cost per person: $

 When the user types in the input, it will appear on the same line, like this:

Enter the cost per person: $ 1.25 ■

 Self-Test Exercises (continued)

11. What statements should you include in your program to ensure that when a
number of type double is output, it will be output in ordinary notation with
three digits after the decimal point?

 12. Write a complete C++ program that writes the phrase Hello world to the
screen. The program does nothing else.

 13. Give an output statement that produces the letter 'A' , followed by the newline
character, followed by the letter 'B' , followed by the tab character, followed by
the letter 'C' .

 14. The following code intends to input a user’s fi rst name, last name, and age.
However, it has an error. Fix the code.

string fullName;
int age;
cout << "Enter your first and last name." << endl;
cin >> fullName;
cout << "Enter your age." << endl;
cin >> age;
cout << "You are " << age << " years old, " << fullName << endl;

 15. What will the following code output?

string s1 = "5";
string s2 = "3";
string s3 = s1 + s2;
cout << s3 << endl;

36 CHAPTER 1 C++ Basics

 1.4 Program Style

 In matters of grave importance, style, not sincerity, is the vital thing.

 OSCAR WILDE , The Importance of Being Earnest

 C++ programming style is similar to that used in other languages. The goal is to make
your code easy to read and easy to modify. We will say a bit about indenting in the
next chapter. We have already discussed defined constants. Most, if not all, literals in a
program should be defined constants. Choice of variable names and careful indenting
should eliminate the need for very many comments, but any points that still remain
unclear deserve a comment.

 Comments

 There are two ways to insert comments in a C++ program. In C++, two slashes, //,
are used to indicate the start of a comment. All the text between the // and the end of
the line is a comment. The compiler simply ignores anything that follows // on a line.
If you want a comment that covers more than one line, place a // on each line of the
comment. The symbols // do not have a space between them.

 Another way to insert comments in a C++ program is to use the symbol pairs /*
and */. Text between these symbols is considered a comment and is ignored by the
compiler. Unlike the // comments, which require an additional // on each line, the
/* -to- */ comments can span several lines, like so:

/*This is a comment that spans

three lines. Note that there is no comment

symbol of any kind on the second line.*/

 Comments of the /* */ type may be inserted anywhere in a program that a space
or line break is allowed. However, they should not be inserted anywhere except where
they are easy to read and do not distract from the layout of the program. Usually,
comments are placed at the ends of lines or on separate lines by themselves.

 Opinions differ regarding which kind of comment is best to use. Either variety (the
// kind or the /* */ kind) can be effective if used with care. One approach is to use
the // comments in final code and reserve the /**/ -style comments for temporarily
commenting out code while debugging.

 It is difficult to say just how many comments a program should contain. The
only correct answer is “just enough,” which of course conveys little to the novice
programmer. It will take some experience to get a feel for when it is best to include a
comment. Whenever something is important and not obvious, it merits a comment.
However, too many comments are as bad as too few. A program that has a comment
on each line will be so buried in comments that the structure of the program is hidden
in a sea of obvious observations. Comments like the following contribute nothing to
understanding and should not appear in a program:

distance = speed * time; //Computes the distance traveled.

when to
comment

www.itpub.net

Libraries and Namespaces 37

 1.5 Libraries and Namespaces

 C++ comes with a number of standard libraries. These libraries place their definitions
in a namespace , which is simply a name given to a collection of definitions. The
techniques for including libraries and dealing with namespaces will be discussed in
detail later in this book . This section discusses enough details to allow you to use the
standard C++ libraries.

 Libraries and include Directives

 C++ includes a number of standard libraries. In fact, it is almost impossible to write a
C++ program without using at least one of these libraries. The normal way to make a
library available to your program is with an include directive. An include directive
for a standard library has the form

#include < Library_Name>

 For example, the library for console I/O is iostream . So, most of our demonstration
programs will begin

#include <iostream>

 Compilers (preprocessors) can be very fussy about spacing in include directives. Thus,
it is safest to type an include directive with no extra space: no space before the # , no
space after the # , and no spaces inside the <> .

 An include directive is simply an instruction to include the text found in a file
at the location of the include directive. A library name is simply the name of a file
that includes all the definition of items in the library. We will eventually discuss using
include directives for things other than standard libraries, but for now we only need
include directives for standard C++ libraries. A list of some standard C++ libraries is
given in Appendix 4 .

 C++ has a preprocessor that handles some simple textual manipulation before the
text of your program is given to the compiler. Some people will tell you that include
directives are not processed by the compiler but are processed by a preprocessor.
They’re right, but the difference is more of a word game than anything that need
concern you. On almost all compilers, the preprocessor is called automatically when
you compile your program.

 Technically speaking, only part of the library definition is given in the header file.
However, at this stage, that is not an important distinction, since using the include

directive with the header file for a library will (on almost all systems) cause C++ to
automatically add the rest of the library definition.

 Namespaces

 A namespace is a collection of name definitions. One name, such as a function
name, can be given different definitions in two namespaces. A program can then
use one of these namespaces in one place and the other in another location. We will

#include

preprocessor

namespace

38 CHAPTER 1 C++ Basics

discuss namespaces in detail later in this book. For now, we only need to discuss the
namespace std . All the standard libraries we will be using are defined in the std
(standard) namespace. To use any of these definitions in your program, you must
insert the following using directive:

using namespace std;

 Thus, a simple program that uses console I/O would begin

#include <iostream>
using namespace std;

 If you want to make some, but not all, names in a namespace available to your
program, there is a form of the using directive that makes just one name available. For
example, if you only want to make the name cin from the std namespace available to
your program, you could use the following using directive:

using std::cin;

 Thus, if the only names from the std namespace that your program uses are cin ,
count , and endl , you might start your program with

#include <iostream>
using std::cin;
using std::cout;
using std::endl;

 instead of

#include <iostream>
using namespace std;

 Older C++ header files for libraries did not place their definitions in the std
namespace, so if you look at older C++ code, you will probably see that the header
file names are spelled slightly differently and the code does not contain any using

directive. This is allowed for backward compatibility. However, you should use the
newer library header files and the std namespace directive .

 PITFALL: Problems with Library Names

 The C++ language is constantly in transition. If you are using a compiler that has
not yet been revised to meet the new standard, then you will need to use different
library names.

 If the following does not work

#include <iostream>

 use

#include <iostream.h>

using
namespace

www.itpub.net

Chapter Summary 39

 PITFALL: (continued)

Similarly, other library names are different for older compilers. Appendix 5 gives
the correspondence between older and newer library names. This book always uses
the new compiler names. If a library name does not work with your compiler, try the
corresponding older library name. In all probability, either all the new library names
will work or you will need to use all old library names. It is unlikely that only some of
the library names have been made up to date on your system.

 If you use the older library names (the ones that end in .h), you do not need the
using directive

using namespace std; ■

 Chapter Summary

• C++ is case sensitive . For example, count and COUNT are two different identifiers.

• Use meaningful names for variables.

• Variables must be declared before they are used. Other than following this rule, a
variable declaration may appear anyplace.

• Be sure that variables are initialized before the program attempts to use their value.
This can be done when the variable is declared or with an assignment statement before
the variable is first used.

• You can assign a value of an integer type, like int , to a variable of a floating-point
type, like double , but not vice versa.

• Almost all number constants in a program should be given meaningful names that
can be used in place of the numbers. This can be done by using the modifier const
in a variable declaration.

• Use enough parentheses in arithmetic expressions to make the order of operations clear.

• The object cout is used for console output.

• A \n in a quoted string or an endl sent to console output starts a new line of output.

• The object cerr is used for error messages. In a typical environment, cerr behaves
the same as cout .

• The object cin is used for console input.

• In order to use cin , cout , or cerr , you should place the following directives near
the beginning of the file with your program:

#include <iostream>
using namespace std;

• There are two forms of comments in C++: Everything following // on the same line
is a comment, and anything enclosed in /* and */ is a comment.

• Do not over comment.

 Answers to Self-Test Exercises

 1. int feet = 0, inches = 0;

 int feet(0), inches(0);

 2. int count = 0;

 double distance = 1.5;

 int count(0);

 double distance(1.5);

public static void main(String[] args)

 3. The actual output from a program such as this is dependent on the system and the
history of the use of the system.

 #include <iostream>
 using namespace std;

 int main()
{

int first, second, third, fourth, fifth;

cout << first << " " << second << " " << third

 << " " << fourth << " " << fifth << "\n";

return 0;

 }

 4. 3*x
 3*x + y

 (x + y)/7 Note that x + y/7 is not correct.
 (3*x + y)/(z + 2)

5. bcbc

 6. (1/3) * 3 is equal to 0

 Since 1 and 3 are of type int , the / operator performs integer division, which dis-
cards the remainder, so the value of 1/3 is 0 , not 0.3333 …. This makes the value
of the entire expression 0 * 3 , which of course is 0 .

 7. #include <iostream>
using namespace std;

 int main()

 {

 int number1, number2;

 cout << "Enter two whole numbers: ";

 cin >> number1 >> number2;

 cout << number1 << " divided by " << number2

 << " equals " << (number1/number2) << "\n"

40 CHAPTER 1 C++ Basics

www.itpub.net

Answers to Self-Test Exercises 41

 << "with a remainder of " << (number1%number2)

 << "\n";

 return 0;

 }

 8. a. 52.0

 b. 9/5 has int value 1 . Since the numerator and denominator are both int , integer
division is done; the fractional part is discarded. The programmer probably wanted
floating-point division, which does not discard the part after the decimal point.

 c. f = (9.0/5) * c + 32.0;
 or
 f = 1. 8 * c + 32.0;

 9. cout << "The answer to the question of\n"
 << "Life, the Universe, and Everything is 42.\n";

 10. cout << "Enter a whole number and press Return: ";
 cin >> theNumber;

 11. cout.setf(ios::fixed);
 cout.setf(ios::showpoint);

 cout.precision(3);

 12. #include <iostream>
 using namespace std;

 int main()

 {

 cout << "Hello world\n";

 return 0;

 }

 13. cout << 'A' << endl << 'B' << '\t' << 'C';

 Other answers are also correct. For example, the letters could be in double quotes
instead of single quotes. Another possible answer is the following:

 cout << "A\nB\tC";

 14. cin only reads up to the next whitespace, so the first and last name cannot be
read into a single string as written if there is a space between the first name and
last name. For now the easiest solution is to read the first and last name into two
separate variables:

 string first, last;

 int age;

 cout << "Enter your first and last name." << endl;

 cin >> first >> last;

 cout << "Enter your age." << endl;

 cin >> age;

 cout << "You are " << age << " years old, " << first <<

 " " << last << endl;

 15. The + operator concatenates two string operands. The result is s3 = "53". If s1
and s2 were numeric data types then the values would be added.

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. A metric ton is 35,273.92 ounces. Write a program that will read the weight of a
package of breakfast cereal in ounces and output the weight in metric tons as well
as the number of boxes needed to yield one metric ton of cereal.

 2. A government research lab has concluded that an artificial sweetener commonly
used in diet soda will cause death in laboratory mice. A friend of yours is desperate
to lose weight but cannot give up soda. Your friend wants to know how much diet
soda it is possible to drink without dying as a result. Write a program to supply
the answer. The input to the program is the amount of artificial sweetener needed
to kill a mouse, the weight of the mouse, and the weight of the dieter. To ensure
the safety of your friend, be sure the program requests the weight at which the
dieter will stop dieting, rather than the dieter’s current weight. Assume that diet
soda contains one-tenth of 1% artificial sweetener. Use a variable declaration with
the modifier const to give a name to this fraction. You may want to express the
percentage as the double value 0.001 .

 3. Workers at a particular company have won a 7.6% pay increase retroactive for six
months. Write a program that takes an employee’s previous annual salary as input
and outputs the amount of retroactive pay due the employee, the new annual
salary, and the new monthly salary. Use a variable declaration with the modifier
const to express the pay increase.

 4. Negotiating a consumer loan is not always straightforward. One form of loan is the
discount installment loan, which works as follows. Suppose a loan has a face value
of $1,000, the interest rate is 15%, and the duration is 18 months. The interest is
computed by multiplying the face value of $1,000 by 0.15, yielding $150. That
figure is then multiplied by the loan period of 1.5 years to yield $225 as the total
interest owed. That amount is immediately deducted from the face value, leaving
the consumer with only $775. Repayment is made in equal monthly installments
based on the face value. So the monthly loan payment will be $1,000 divided
by 18, which is $55.56. This method of calculation may not be too bad if the
consumer needs $775 dollars, but the calculation is a bit more complicated if the
consumer needs $1,000. Write a program that will take three inputs: the amount
the consumer needs to receive, the interest rate, and the duration of the loan in
months. The program should then calculate the face value required in order for
the consumer to receive the amount needed. It should also calculate the monthly
payment.

 5. Write a program that determines whether a meeting room is in violation of fire law
regulations regarding the maximum room capacity. The program will read in the
maximum room capacity and the number of people to attend the meeting. If the
number of people is less than or equal to the maximum room capacity, the program
announces that it is legal to hold the meeting and tells how many additional people
may legally attend. If the number of people exceeds the maximum room capacity,
the program announces that the meeting cannot be held as planned due to fire

42 CHAPTER 1 C++ Basics

www.itpub.net

www.myprogramminglab.com

Programming Projects 43

regulations and tells how many people must be excluded in order to meet the fire
regulations.

 6. An employee is paid at a rate of $16.78 per hour for regular hours worked in a
week. Any hours over that are paid at the overtime rate of one and one-half times
that. From the worker’s gross pay, 6% is withheld for Social Security tax, 14% is
withheld for federal income tax, 5% is withheld for state income tax, and $10 per
week is withheld for union dues. If the worker has three or more dependents, then
an additional $35 is withheld to cover the extra cost of health insurance beyond
what the employer pays. Write a program that will read in the number of hours
worked in a week and the number of dependents as input and that will then output
the worker’s gross pay, each withholding amount, and the net take-home pay for
the week.

 7. One way to measure the amount of energy that is expended during exercise is to
use metabolic equivalents (MET). Here are some METS for various activities:

 Running 6 MPH: 10 METS

 Basketball: 8 METS

 Sleeping: 1 MET

 The number of calories burned per minute may be estimated using the formula

 Calories/Minute = 0.0175 × 1 MET × (Weight in kilograms)

 Write a program that inputs a subject’s weight in pounds, the number of METS
for an activity, and the number of minutes spent on that activity, and then out-
puts an estimate for the total number of calories burned. One kilogram is equal
to 2.2 pounds.

 8. The Babylonian algorithm to compute the square root of a positive number n is as
follows:

 1. Make a guess at the answer (you can pick n/2 as your initial guess).

 2. Compute r = n / guess .

 3. Set guess = (guess + r) / 2 .

 4. Go back to step 2 for as many iterations as necessary. The more steps 2 and 3
are repeated, the closer guess will become to the square root of n .

 Write a program that inputs a double for n , iterates through the Babylonian algo-
rithm five times, and outputs the answer as a double to two decimal places. Your
answer will be most accurate for small values of n .

 9. The video game machines at your local arcade output coupons depending on how
well you play the game. You can redeem 10 coupons for a candy bar or 3 coupons
for a gumball. You prefer candy bars to gumballs. Write a program that inputs the
number of coupons you win and outputs how many candy bars and gumballs you
can get if you spend all of your coupons on candy bars first and any remaining
coupons on gumballs.

 10. Write a program that allows the user to enter a time in seconds and then outputs
how far an object would drop if it is in freefall for that length of time. Assume no
friction or resistance from air and a constant acceleration of 32 feet per second due
to gravity. Use the equation

 Distance = 1
2 * acceleration * time2

 11. Write a program that inputs an integer that represents a length of time in seconds.
The program should then output the number of hours, minutes, and seconds that
corresponds to that number of seconds. For example, if the user inputs 50391 total
seconds then the program should output 13 hours, 59 minutes, and 51 seconds.

 12. A simple rule to estimate your ideal body weight is to allow 110 pounds for the first 5
feet of height and 5 pounds for each additional inch. Write a program with a variable
for the height of a person in feet and another variable for the additional inches and
input values for these variables from the keyboard. Assume the person is at least 5 feet
tall. For example, a person that is 6 feet and 3 inches tall would be represented with
a variable that stores the number 6 and another variable that stores the number 3.
Based on these values calculate and output the ideal body weight.

Solution to
Programming
Project 1.11

VideoNote

44 CHAPTER 1 C++ Basics

www.itpub.net

 2.3 LOOPS 67
 The while and do-while Statements 68
 Increment and Decrement Operators Revisited 71
 The Comma Operator 72
 The for Statement 74
 Tip: Repeat- N -Times Loops 76
 Pitfall: Extra Semicolon in a for Statement 77
 Pitfall: Infinite Loops 77
 The break and continue Statements 80
 Nested Loops 83

 2.4 INTRODUCTION TO FILE INPUT 83
 Reading from a Text File Using ifstream 84

 2.1 BOOLEAN EXPRESSIONS 46
 Building Boolean Expressions 46
 Pitfall: Strings of Inequalities 47
 Evaluating Boolean Expressions 48
 Precedence Rules 50
 Pitfall: Integer Values Can Be Used as

Boolean Values 54

 2.2 BRANCHING MECHANISMS 56
 if-else Statements 56
 Compound Statements 58
 Pitfall: Using = in Place of == 59
 Omitting the else 61
 Nested Statements 61
 Multiway if-else Statement 61
 The switch Statement 62
 Pitfall: Forgetting a break in

a switch Statement 65
 Tip: Use switch Statements for Menus 65
 Enumeration Types 66
 The Conditional Operator 66

 2

Flow of Control

 Chapter Summary 87 Answers to Self-Test Exercises 87 Programming Projects 93

 “Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

 LEWIS CARROLL , Alice in Wonderland

 Introduction
 As in most programming languages, C++ handles flow of control with branching and
looping statements. C++ branching and looping statements are similar to branching
and looping statements in other languages. They are the same as in the C language and
very similar to what they are in the Java programming language. Exception handling
is also a way to handle flow of control. Exception handling is covered in Chapter 18 .

 2.1 Boolean Expressions

 He who would distinguish the true from the false must have an adequate idea
of what is true and false.

 BENEDICT SPINOZA , Ethics

 Most branching statements are controlled by Boolean expressions. A Boolean
expression is any expression that is either true or false. The simplest form for a
Boolean expression consists of two expressions, such as numbers or variables, which
are compared with one of the comparison operators shown in Display 2.1 . Notice that
some of the operators are spelled with two symbols, for example, == , != , <= , or >= .
Be sure to notice that you use a double equal == for the equal sign and that you use the
two symbols != for not equal. Such two-symbol operators should not have any space
between the two symbols.

 Building Boolean Expressions

 You can combine two comparisons using the “and” operator, which is spelled && in
C++. For example, the following Boolean expression is true provided x is greater than
2 and x is less than 7 :

(2 < x) && (x < 7)

 When two comparisons are connected using an && , the entire expression is true,
provided both of the comparisons are true; otherwise, the entire expression is false.

2 Flow of Control

Boolean
expression

&& means
“and”

www.itpub.net

Boolean Expressions 47

 You can also combine two comparisons using the “or” operator, which is spelled
|| in C++. For example, the following is true provided y is less than 0 or y is greater
than 12 :

(y < 0)||(y < 12)

 When two comparisons are connected using a || , the entire expression is true provided
that one or both of the comparisons are true; otherwise, the entire expression is false.

 You can negate any Boolean expression using the ! operator. If you want to
negate a Boolean expression, place the expression in parentheses and place the !

operator in front of it. For example, !(x < y) means “ x is not less than y .” The !
operator can usually be avoided. For example, !(x < y) is equivalent to x >= y . In
some cases you can safely omit the parentheses, but the parentheses never do any
harm. The exact details on omitting parentheses are given in the subsection entitled
“Precedence Rules.”

|| means
“or”

 The “and” Operator, &&
You can form a more elaborate Boolean expression by combining two simpler Boolean
expressions using the “and” operator, &&.

 SYNTAX FOR A BOOLEAN EXPRESSION USING &&

(Boolean_Exp_1) && (Boolean_Exp_2)

 SYNTAX (WITHIN AN if-else STATEMENT)

if ((score > 0) && (score < 10))
 cout << "score is between 0 and 10.\n";
else
 cout << "score is not between 0 and 10.\n";

If the value of score is greater than 0 and the value of score is also less than 10, then
the first cout statement will be executed; otherwise, the second cout statement will be
executed. (if-else statements are covered a bit later in this chapter, but the meaning of
this simple example should be intuitively clear.)

 PITFALL: Strings of Inequalities

 Do not use a string of inequalities such as x < z < y . If you do, your program will
probably compile and run, but it will undoubtedly give incorrect output. Instead,
you must use two inequalities connected with an &&, as follows:

(x < z) && (z < y) ■

48 CHAPTER 2 Flow of Control

 MATH
SYMBOL

ENGLISH

C++ NOTATION

C++ SAMPLE

 MATH
EQUIVALENT

= Equal to == x + 7 = = 2*y x + 7 = 2y

Z Not equal to != ans != 'n' ans Z ‘n’

< Less than < count < m + 3 count < m + 3

… Less than or
equal to

 <= time <= limit time … limit

> Greater than > time > limit time > limit

Ú Greater than
or equal to

 >= age >= 21 age Ú 21

 Display 2.1 Comparison Operators

 Evaluating Boolean Expressions

 As you will see in the next two sections of this chapter, Boolean expressions are used
to control branching and looping statements. However, a Boolean expression has an
independent identity apart from any branching or looping statement you might use it

 The “or” Operator, ||
You can form a more elaborate Boolean expression by combining two simpler Boolean
expressions using the “or” operator, ||.

 SYNTAX FOR A BOOLEAN EXPRESSION USING ||

(Boolean_Exp_1) || (Boolean_Exp_2)

 EXAMPLE WITHIN AN if-else STATEMENT

 if ((x = = 1) || (x = = y))
cout << "x is 1 or x equals y.\n";

else
 cout << "x is neither 1 nor equal to y.\n";

If the value of x is equal to 1 or the value of x is equal to the value of y (or both), then
the first cout statement will be executed; otherwise, the second cout statement will be
executed. (if-else statements are covered a bit later in this chapter, but the meaning of
this simple example should be intuitively clear.)

www.itpub.net

Boolean Expressions 49

in. A variable of type bool can store either of the values true or false . Thus, you can
set a variable of type bool equal to a Boolean expression. For example,

bool result = (x < z) && (z < y);

 A Boolean expression can be evaluated in the same way that an arithmetic expression
is evaluated. The only difference is that an arithmetic expression uses operations such
as + , * , and / and produces a number as the final result, whereas a Boolean expression
uses relational operations such as == and < and Boolean operations such as && , || , and
! and produces one of the two values true or false as the final result. Note that = ,
!= , < , <= , and so forth, operate on pairs of any built-in type to produce a Boolean value
true or false .

 First let’s review evaluating an arithmetic expression. The same technique will work
to evaluate Boolean expressions. Consider the following arithmetic expression:

(x + 1) * (x + 3)

 Assume that the variable x has the value 2 . To evaluate this arithmetic expression, you
evaluate the two sums to obtain the numbers 3 and 5 , and then you combine these two
numbers 3 and 5 using the * operator to obtain 15 as the final value. Notice that in
performing this evaluation, you do not multiply the expressions (x + 1) and (x + 3) .
Instead, you multiply the values of these expressions. You use 3 ; you do not use (x + 1) .
You use 5 ; you do not use (x + 3).

 The computer evaluates Boolean expressions the same way. Subexpressions are
evaluated to obtain values, each of which is either true or false . These individual
values of true or false are then combined according to the rules in the tables shown
in Display 2.2 . For example, consider the Boolean expression

!((y < 3) || (y > 7))

 which might be the controlling expression for an if-else statement. Suppose the
value of y is 8 . In this case (y < 3) evaluates to false and (y > 7) evaluates to true ,
so the previous Boolean expression is equivalent to

!(false || true)

 Consulting the tables for || (which is labeled OR), the computer sees that the
expression inside the parentheses evaluates to true . Thus, the computer sees that the
entire expression is equivalent to

!(true)

 Consulting the tables again, the computer sees that !(true) evaluates to false , and so
it concludes that false is the value of the original Boolean expression.

truth tables

50 CHAPTER 2 Flow of Control

 Precedence Rules

 Boolean expressions (and arithmetic expressions) need not be fully parenthesized.
If you omit parentheses, the default precedence is as follows: Perform ! first, then
perform relational operations such as < , then && , and then || . However, it is a good
practice to include most parentheses to make the expression easier to understand. One
place where parentheses can safely be omitted is a simple string of && ’s or || ’s (but not
a mixture of the two). The following expression is acceptable in terms of both the C++
compiler and readability:

(temperature > 90) && (humidity > 0.90) && (poolGate = = OPEN)

 The Boolean (bool) Values Are true and false
true and false are predefined constants of type bool. (They must be written in
lowercase.) In C++, a Boolean expression evaluates to the bool value true when it is
satisfied and to the bool value false when it is not satisfied.

parentheses

 Display 2.2 Truth Tables

 AND

Exp_1 Exp_2 Exp_1 &&
Exp_2

true true true

true false false

false true false

false false false

 OR NOT

Exp_1 Exp_2 Exp_1 || Exp_2

true true true

true false true

false true true

false false false

Exp !(Exp)

true false

false true

www.itpub.net

Boolean Expressions 51

 Since the relational operations > and = = are performed before the && operation, you
could omit the parentheses in the previous expression and it would have the same
meaning, but including some parentheses makes the expression easier to read.

 When parentheses are omitted from an expression, the compiler groups items
according to rules known as precedence rules . Most of the precedence rules for
C++ are given in Display 2.3 . The table includes a number of operators that are not
discussed until later in this book , but they are included for completeness and for those
who may already know about them.

 Display 2.3 Precedence of Operators (part 1 of 2)

:: Scope resolution operator

. Dot operator
-> Member selection
[] Array indexing
() Function call
++ Postfix increment operator (placed after the variable)
- - Postfix decrement operator (placed after the variable)

++ Prefix increment operator (placed before the variable)
- - Prefix decrement operator (placed before the variable)
! Not
- - Unary minus
+ Unary plus
* Dereference
& Address of
new
delete
delete []
sizeof

Create (allocate memory)
Destroy (deallocate)
Destroy array (deallocate)
Size of object

() Type cast

* Multiply
/ Divide
% Remainder (modulo)

+ Addition
- Subtraction

<< Insertion operator (console output)
>> Extraction operator (console input)

precedence
rules

Lower precedence
(done later)

Highest precedence
(done first)

(continued)

52 CHAPTER 2 Flow of Control

 Display 2.3 Precedence of Operators (part 2 of 2)

All operators in part 2 are of lower precedence than those in part 1.

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= = Equal

!= Not equal

&& And

|| Or

= Assignment

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulo and assign

? : Conditional operator

throw Throw an exception

, Comma operator

Lowest precedence Lowest precedence
(done last)(done last)

 If one operation is performed before another, the operation that is performed first
is said to have higher precedence. All the operators in a given box in Display 2.3 have
the same precedence. Operators in higher boxes have higher precedence than operators
in lower boxes.

 When operators have the same precedences and the order is not determined by
parentheses, then unary operations are done right to left. The assignment operations
are also done right to left. For example, x = y = z means x = (y = z) . Other binary

higher
precedence

www.itpub.net

Boolean Expressions 53

operations that have the same precedences are done left to right. For example, x + y + z
means (x + y) + z .

 Notice that the precedence rules include both arithmetic operators such as + and
* as well as Boolean operators such as && and || . This is because many expressions
combine arithmetic and Boolean operations, as in the following simple example:

(x + 1) > 2 || (x + 1) < -3

 If you check the precedence rules given in Display 2.3 , you will see that this expression
is equivalent to

((x + 1) > 2) || ((x + 1) < -3)

 because > and < have higher precedence than || . In fact, you could omit all the
parentheses in the previous expression and it would have the same meaning, although
it would be harder to read. Although we do not advocate omitting all the parentheses, it
might be instructive to see how such an expression is interpreted using the precedence
rules. Here is the expression without any parentheses:

x + 1 > 2 || x + 1 < -3

 The precedences rules say first apply the unary - , then apply the + ’s, then the > and
the < , and finally apply the || , which is exactly what the fully parenthesized version
says to do.

 The previous description of how a Boolean expression is evaluated is basically
correct, but in C++, the computer actually takes an occasional shortcut when
evaluating a Boolean expression. Notice that in many cases you need to evaluate only
the first of two subexpressions in a Boolean expression. For example, consider the
following:

(x >= 0) && (y > 1)

 If x is negative, then (x >= 0) is false . As you can see in the tables in Display 2.2 ,
when one subexpression in an && expression is false , then the whole expression is
false , no matter whether the other expression is true or false . Thus, if we know
that the first expression is false , there is no need to evaluate the second expression.
A similar thing happens with || expressions. If the first of two expressions joined
with the || operator is true , then you know the entire expression is true , no matter
whether the second expression is true or false . The C++ language uses this fact to
sometimes save itself the trouble of evaluating the second subexpression in a logical
expression connected with an && or || . C++ first evaluates the leftmost of the two
expressions joined by an && or || . If that gives it enough information to determine the
final value of the expression (independent of the value of the second expression), then
C++ does not bother to evaluate the second expression. This method of evaluation is
called short-circuit evaluation .

 Some languages other than C++ use complete evaluation . In complete evaluation,
when two expressions are joined by an && or || , both subexpressions are always
evaluated and then the truth tables are used to obtain the value of the final expression.

short-circuit
evaluation

complete
evaluation

54 CHAPTER 2 Flow of Control

integers
convert to

bool

 PITFALL: Integer Values Can Be Used as Boolean Values

 C++ sometimes uses integers as if they were Boolean values and bool values as if
they were integers. In particular, C++ converts the integer 1 to tru e and converts
the integer 0 to false , and vice versa. The situation is even a bit more complicated
than simply using 1 for true and 0 for false . The compiler will treat any nonzero
number as if it were the value true and will treat 0 as if it were the value false .
As long as you make no mistakes in writing Boolean expressions, this conversion
causes no problems. However, when you are debugging, it might help to know
that the compiler is happy to combine integers using the Boolean operators && ,
|| , and ! .

 For example, suppose you want a Boolean expression that is true provided that
time has not yet run out (in some game or process). You might use the following:

!time > limit

 This sounds right if you read it out loud: “not time greater than limit .” The Boolean
expression is wrong, however, and unfortunately, the compiler will not give you an
error message. The compiler will apply the precedence rules from Display 2.3 and
interpret your Boolean expression as the following:

(!time) > limit

 This looks like nonsense, and intuitively it is nonsense. If the value of time is, for
 example, 36 , what could possibly be the meaning of (!time) ? After all, that is equiva-
lent to “not 36 .” But in C++, any nonzero integer converts to true and 0 is converted
to fal se. Thus, !36 is interpreted as “not true ” and so it evaluates to false , which is
in turn converted back to 0 because we are comparing to an int .

 What we want as the value of this Boolean expression and what C++ gives us are
not the same. If time has a value of 36 and limit has a value of 60 , you want the pre-
viously displayed Boolean expression to evaluate to true (because it is not true that
time > limit). Unfortunately, the Boolean expression instead evaluates as follows:
(!time) evaluates to false , which is converted to 0 , so the entire Boolean expression
is equivalent to

0 > limit

 That in turn is equivalent to 0 > 60 , because 60 is the value of limit , and that evalu-
ates to false . Thus, the above logical expression evaluates to false , when you want
it to evaluate to true .

 There are two ways to correct this problem. One way is to use the ! operator
 correctly. When using the ! operator, be sure to include parentheses around the argu-
ment. The correct way to write the above Boolean expression is

!(time > limit)

www.itpub.net

Boolean Expressions 55

 Both short-circuit evaluation and complete evaluation give the same answer, so why
should you care that C++ uses short-circuit evaluation? Most of the time you need not
care. As long as both subexpressions joined by the && or the || have a value, the two
methods yield the same result. However, if the second subexpression is undefined,
you might be happy to know that C++ uses short-circuit evaluation. Let’s look at an
example that illustrates this point. Consider the following statement:

if ((kids != 0) && ((pieces/kids) >= 2))
 cout << "Each child may have two pieces!";

 If the value of kids is not zero, this statement involves no subtleties. However, suppose
the value of kids is zero; consider how short-circuit evaluation handles this case. The
expression (kids!=0) evaluates to false , so there would be no need to evaluate the
second expression. Using short-circuit evaluation, C++ says that the entire expression is
false , without bothering to evaluate the second expression. This prevents a run-time
error, since evaluating the second expression would involve dividing by zero.

 PITFALL: (continued)

 Another way to correct this problem is to completely avoid using the ! operator. For
example, the following is also correct and easier to read:

if (time <= limit)

 You can almost always avoid using the ! operator, and some programmers advocate
avoiding it as much as possible. ■

(continued)

 Self-Test Exercises

 1. Determine the value, true or false , of each of the following Boolean
expressions, assuming that the value of the variable count is 0 and the value of
the variable limit is 10 . Give your answer as one of the values true or false .

 a. (count = = 0) && (limit < 20)

 b. count = = 0 && limit < 20
c. (limit > 20) || (count < 5)
d. !(count = = 12)
e. (count = = 1) && (x < y)
f. (count < 10) || (x < y)
 g. !(((count < 10) || (x < y)) && (count >= 0))
h. ((limit / count) > 7) || (limit < 20)
i. (limit < 20) || ((limit / count) > 7)
 j. ((limit / count) > 7) && (limit < 0)
k. (limit < 0) && ((limit / count) > 7)

l. (5 && 7) + (!6)

56 CHAPTER 2 Flow of Control

 2.2 Branching Mechanisms

 When you come to a fork in the road, take it.

 Attributed to YOGI BERRA

 if-else Statements

 An if-else statement chooses between two alternative statements based on the
value of a Boolean expression. For example, suppose you want to design a program to
compute a week’s salary for an hourly employee. Assume the firm pays an overtime rate
of one-and-one-half times the regular rate for all hours after the first 40 hours worked.
When the employee works 40 or more hours, the pay is then equal to

rate * 40 + 1.5 * rate * (hours - 40)

if-else
statement

 Self-Test Exercises (continued)

 2. You sometimes see numeric intervals given as

2 < x < 3

 In C++ this interval does not have the meaning you may expect. Explain
and give the correct C++ Boolean expression that specifi es that x lies between 2
and 3.

 3. Consider a quadratic expression, say

x2 - x - 2

 Describing where this quadratic is positive (that is, greater than 0) involves
describing a set of numbers that are either less than the smaller root (which is -1)
or greater than the larger root (which is 2). Write a C++ Boolean expression that
is true when this formula has positive values.

 4. Consider the quadratic expression

x2 - 4x + 3

 Describing where this quadratic is negative involves describing a set of numbers
that are simultaneously greater than the smaller root (1) and less than the larger
root (3). Write a C++ Boolean expression that is true when the value of this
quadratic is negative.

www.itpub.net

Branching Mechanisms 57

if-else Statement
The if-else statement chooses between two alternative actions based on the value of a
Boolean expression. The syntax is shown next. Be sure to note that the Boolean expression
must be enclosed in parentheses.

 SYNTAX: A SINGLE STATEMENT FOR EACH ALTERNATIVE

if (Boolean_Expression)
Yes_Statement

else
No_Statement

If the Boolean_Expression evaluates to true, then the Yes_Statement is executed.
If the Boolean_Expression evaluates to false, then the No_Statement is executed.

 SYNTAX: A SEQUENCE OF STATEMENTS FOR EACH ALTERNATIVE

if (Boolean_Expression)
{

Yes_Statement_1
Yes_Statement_2

 ...
Yes_Statement_Last

}
else
{

No_Statement_1
No_Statement_2

...
No_Statement_Last

}

 EXAMPLE

if (myScore > yourScore)
{
 cout << "I win!\n";
 wager = wager + 100;
}
else
{
 cout << "I wish these were golf scores.\n";
 wager = 0;
}

58 CHAPTER 2 Flow of Control

 However, if the employee works less than 40 hours, the correct pay formula is simply

rate * hours

 The following if-else statement computes the correct pay for an employee whether
the employee works less than 40 hours or works 40 or more hours,

if (hours > 40)
 grossPay = rate * 40 + 1.5 * rate * (hours - 40);
else
 grossPay = rate * hours;

 The syntax for an if-else statement is given in the accompanying box. If the
Boolean expression in parentheses (after the if) evaluates to true , then the statement
before the else is executed. If the Boolean expression evaluates to false , the statement
after the else is executed.

 Notice that an if-else statement has smaller statements embedded in it. Most
of the statement forms in C++ allow you to make larger statements out of smaller
statements by combining the smaller statements in certain ways.

 Remember that when you use a Boolean expression in an if-else statement, the
Boolean expression must be enclosed in parentheses.

 Compound Statements

 You will often want the branches of an if-else statement to execute more than one
statement each. To accomplish this, enclose the statements for each branch between a
pair of braces, { and } , as indicated in the second syntax template in the box entitled
“if-else Statement.” A list of statements enclosed in a pair of braces is called a
compound statement . A compound statement is treated as a single statement by C++
and may be used anywhere that a single statement may be used. (Thus, the second
syntax template in the box entitled “ if-else Statement” is really just a special case of
the first one.)

 There are two commonly used ways of indenting and placing braces in if-else
statements, which are illustrated here:

if (myScore > yourScore)
{

cout << "I win!\n";
 wager = wager + 100;
}
else
{
 cout << "I wish these were golf scores.\n";
 wager = 0;
}

parentheses

if-else with
multiple

statements

compound
statement

www.itpub.net

Branching Mechanisms 59

 and

if (myScore > yourScore){
 cout << "I win!\n";
 wager = wager + 100;
} else {
 cout << "I wish these were golf scores.\n";
 wager = 0;
}

 The only differences are the placement of braces. We find the first form easier to read
and therefore prefer it. The second form saves lines, so some programmers prefer the
second form or some minor variant of it.

 PITFALL: Using = in Place of = =

 Unfortunately, you can write many things in C++ that you would think are incorrectly
formed C++ statements but which turn out to have some obscure meaning. This means
that if you mistakenly write something that you would expect to produce an error
message, you may find that the program compiles and runs with no error messages but
gives incorrect output. Since you may not realize you wrote something incorrectly, this
can cause serious problems. For example, consider an if-else statement that begins
as follows:

if (x = 12)
 Do_Something
else
 Do_Something_Else

 Suppose you wanted to test to see if the value of x is equal to 12 , so that you really
meant to use = = rather than = . You might think the compiler would catch your mistake.
The expression

x = 12

 is not something that is satisfi ed or not. It is an assignment statement, so surely the
compiler will give an error message. Unfortunately, that is not the case. In C++ the
expression x = 12 is an expression that returns a value, just like x + 12 or 2 + 3 .
An assignment expression’s value is the value transferred to the variable on the left.
For example, the value of x = 12 is 12 . We saw in our discussion of Boolean value
compatibility that nonzero int values are converted to true . If you use x = 12 as
the Boolean expression in an if-else statement, the Boolean expression will always
evaluate to true .

 This error is very hard to fi nd, because it looks right. The compiler can fi nd the error
without any special instructions if you put the 12 on the left side of the comparison:
12 = = x will produce no error message, but 12 = x will generate an error message. ■

60 CHAPTER 2 Flow of Control

 Self-Test Exercises

 5. Does the following sequence produce division by zero?

j = -1;
if ((j > 0) && (1/(j + 1) > 10))

 cout << i << endl;

 6. Write an if-else statement that outputs the word High if the value of the
variable score is greater than 100 and Low if the value of score is at most 100 .
The variable score is of type int .

 7 . Suppose savings and expenses are variables of type double that have been
given values. Write an if-else statement that outputs the word Solvent ,
decreases the value of savings by the value of expenses , and sets the value
of expenses to zero provided that savings is at least as large as expenses .
If, however, savings is less than expenses , the if-else statement simply
outputs the word Bankrupt and does not change the value of any variables.

 8. Write an if-else statement that outputs the word Passed provided the value
of the variable exam is greater than or equal to 60 and also the value of the
variable programsDone is greater than or equal to 10 . Otherwise, the if-else
statement outputs the word Failed . The variables exam and programsDone are
both of type int .

 9. Write an if-else statement that outputs the word Warning provided that
either the value of the variable temperature is greater than or equal to 100 ,
or the value of the variable pressure is greater than or equal to 200 , or
both. Otherwise, the if-else statement outputs the word OK . The variables
temperature and pressure are both of type int .

 10. What is the output of the following? Explain your answers.

 a. if(0)
 cout << "0 is true";
else
 cout << "0 is false";
cout << endl;

 b. if(1)
 cout << "1 is true";
else
 cout << "1 is false";
cout << endl;

 c. if(-1)
cout << "-1 is true";

else
 cout << "-1 is false";
cout << endl;

 Note: This is an exercise only. This is not intended to illustrate programming
style you should follow.

www.itpub.net

Branching Mechanisms 61

 Omitting the else

 Sometimes you want one of the two alternatives in an if-else statement to do
nothing at all. In C++ this can be accomplished by omitting the else part. These
sorts of statements are referred to as if statements to distinguish them from if-else
statements. For example, the first of the following two statements is an if statement:

if (sales >= minimum)
 salary = salary + bonus;
cout << "salary = $" << salary;

 If the value of sales is greater than or equal to the value of minimum , the assignment
statement is executed and then the following cout statement is executed. On
the other hand, if the value of sales is less than minimum , then the embedded
assignment statement is not executed. Thus, the if statement causes no change (that
is, no bonus is added to the base salary), and the program proceeds directly to the
cout statement.

 Nested Statements

 As you have seen, if-else statements and if statements contain smaller statements
within them. Thus far we have used compound statements and simple statements
such as assignment statements as these smaller substatements, but there are other
possibilities. In fact, any statement at all can be used as a subpart of an if-else

statement or of other statements that have one or more statements within them.
 When nesting statements, you normally indent each level of nested substatements,

although there are some special situations (such as a multiway if-else branch) where
this rule is not followed.

 Multiway if-else Statement

 The multiway if-else statement is not really a different kind of C++ statement.
It is simply an ordinary if-else statement nested inside if-else statements, but
it is thought of as a kind of statement and is indented differently from other nested
statements so as to reflect this thinking.

 The syntax for a multiway if-else statement and a simple example are given
in the accompanying box. Note that the Boolean expressions are aligned with one
another, and their corresponding actions are also aligned with each other. This
makes it easy to see the correspondence between Boolean expressions and actions.
The Boolean expressions are evaluated in order until a true Boolean expression is
found. At that point the evaluation of Boolean expressions stops, and the action
corresponding to the first true Boolean expression is executed. The final else is
optional. If there is a final else and all the Boolean expressions are false , the final
action is executed. If there is no final else and all the Boolean expressions are false ,
then no action is taken.

if statement

indenting

multiway
if-else

62 CHAPTER 2 Flow of Control

 The switch Statement

 The switch statement is the only other kind of C++ statement that implements
multiway branches. Syntax for a switch statement and a simple example are shown in
the accompanying box.

 When a switch statement is executed, one of a number of different branches is
executed. The choice of which branch to execute is determined by a controlling
expression given in parentheses after the keyword switch . The controlling expression
for a switch statement must always return either a bool value, an enum constant
(discussed later in this chapter), one of the integer types, or a character. When the
switch statement is executed, this controlling expression is evaluated and the computer
looks at the constant values given after the various occurrences of the case identifiers.
If it finds a constant that equals the value of the controlling expression, it executes the
code for that case . You cannot have two occurrences of case with the same constant
value after them because that would create an ambiguous instruction.

switch
statement

controlling
expression

 Multiway if-else Statement

 SYNTAX

 if (Boolean_Expression_1)
 Statement_1
else if (Boolean_Expression_2)
 Statement_2

.

.

.
else if (Boolean_Expression_n)

Statement_n
else
 Statement_For_All_Other_Possibilities

 EXAMPLE

if ((temperature < -10) && (day = = SUNDAY))
 cout << "Stay home.";
else if (temperature < -10) // and day != SUNDAY
 cout << "Stay home, but call work.";
else if (temperature <= 0) // and temperature >= -10
 cout << "Dress warm.";
else // temperature > 0
 cout << "Work hard and play hard.";

The Boolean expressions are checked in order until the first true Boolean expression is
encountered, and then the corresponding statement is executed. If none of the Boolean
expressions is true, then the Statement_For_All_Other_Possibilities is executed.

www.itpub.net

Branching Mechanisms 63

 switch Statement
 SYNTAX

 switch (Controlling_Expression)
 {

case Constant_1:
 Statement_Sequence_1
 break;

case Constant_2:
 Statement_Sequence_2
 break;
 .
 .
 .

case Constant_n:
Statement_Sequence_n
break;

default:
 Default_Statement_Sequence
}

 EXAMPLE

int vehicleClass;
double toll;
cout << "Enter vehicle class: ";
cin >> vehicleClass;

switch (vehicleClass)
{

case 1:
cout << "Passenger car.";
toll = 0.50;
break;

case 2:
cout << "Bus.";
toll = 1.50;
break;

case 3:
cout << "Truck.";
toll = 2.00;
break;

default:
cout << "Unknown vehicle class!";

}

 If you forget this break,
then passenger cars will
pay $1.50.

 You need not place a break statement in
each case. If you omit a break, that case
continues until a break (or the end of the
switch statement) is reached.

64 CHAPTER 2 Flow of Control

 The switch statement ends when either a break statement is encountered or the
end of the switch statement is reached. A break statement consists of the keyword
break followed by a semicolon. When the computer executes the statements after
a case label, it continues until it reaches a break statement. When the computer
encounters a break statement, the switch statement ends. If you omit the break
statements, then after executing the code for one case , the computer will go on to
execute the code for the next case .

 Note that you can have two case labels for the same section of code, as in the
following portion of a switch statement:

case 'A':
case 'a':
 cout << "Excellent. "
 << "You need not take the final.\n";

break;

 Since the first case has no break statement (in fact, no statement at all), the effect is
the same as having two labels for one case , but C++ syntax requires one keyword case
for each label, such as 'A' and 'a' .

 If no case label has a constant that matches the value of the controlling expression,
then the statements following the default label are executed. You need not have a
default section. If there is no default section and no match is found for the value
of the controlling expression, then nothing happens when the switch statement is
executed. However, it is safest to always have a default section. If you think your
case labels list all possible outcomes, then you can put an error message in the
default section.

default

break
statement

 Self-Test Exercises

 11. What output will be produced by the following code?

int x = 2;
cout << "Start\n";
if (x <= 3)

if (x != 0)
 cout << "Hello from the second if.\n";

else
 cout << "Hello from the else.\n";
cout << "End\n";

cout << "Start again\n";
if (x > 3)

if (x != 0)
 cout << "Hello from the second if.\n";

else
 cout << "Hello from the else.\n";
cout << "End again\n";

www.itpub.net

Branching Mechanisms 65

 PITFALL: Forgetting a break in a switch Statement

 If you forget a break in a switch statement, the compiler will not issue an error
message. You will have written a syntactically correct switch statement, but it will
not do what you intended it to do. Notice the annotation in the example in the box
entitled “ switch Statement.” ■

 TIP: Use switch Statements for Menus

 The multiway if-else statement is more versatile than the switch statement,
and you can use a multiway if-else statement anywhere you can use a switch
statement. However, sometimes the switch statement is clearer. For example, the
switch statement is perfect for implementing menus. Each branch of the switch
statement can be one menu choice. ■

 Self-Test Exercises (continued)

 12. What output will be produced by the following code?

int extra = 2;
if (extra < 0)
 cout << "small";
else if (extra = = 0)
 cout << "medium";
else
 cout << "large";

 13. What would be the output in Self-Test Exercise 12 if the assignment were
changed to the following?

int extra = -37;

 14. What would be the output in Self-Test Exercise 12 if the assignment were
changed to the following?

int extra = 0;

 15. Write a multiway if-else statement that classifies the value of an int
variable n into one of the following categories and writes out an appropriate
message.

n < 0 or 0 … n … 100 or n > 100

66 CHAPTER 2 Flow of Control

 Enumeration Types

 An enumeration type is a type whose values are defined by a list of constants of type
int . An enumeration type is very much like a list of declared constants. Enumeration
types can be handy for defining a list of identifiers to use as the case labels in a switch
statement.

 When defining an enumeration type, you can use any int values and can define any
number of constants. For example, the following enumeration type defines a constant
for the length of each month:

enum MonthLength { JAN_LENGTH = 31, FEB_LENGTH = 28,
 MAR_LENGTH = 31, APR_LENGTH = 30, MAY_LENGTH = 31,
 JUN_LENGTH = 30, JUL_LENGTH = 31, AUG_LENGTH = 31,
 SEP_LENGTH = 30, OCT_LENGTH = 31, NOV_LENGTH = 30,
 DEC_LENGTH = 31 };

 As this example shows, two or more named constants in an enumeration type can
receive the same int value.

 If you do not specify any numeric values, the identifiers in an enumeration
type definition are assigned consecutive values beginning with 0. For example, the
 type-definition

enum Direction { NORTH = 0, SOUTH = 1, EAST = 2, WEST = 3 };

 is equivalent to

enum Direction { NORTH, SOUTH, EAST, WEST };

 The form that does not explicitly list the int values is normally used when you just
want a list of names and do not care about what values they have.

 Suppose you initialize an enumeration constant to some value, say

enum MyEnum { ONE = 17, TWO, THREE, FOUR = -3, FIVE };

 then ONE takes the value 17; TWO takes the next int value, 18; THREE takes the next
value, 19; FOUR takes -3; and FIVE takes the next value, -2. In short, the default for
the first enumeration constant is 0. The rest increase by 1 unless you set one or more of
the enumeration constants.

 Although the constants in an enumeration type are given as int values and can be
used as integers in many contexts, remember that an enumeration type is a separate
type and treat it as a type different from the type int . Use enumeration types as labels
and avoid doing arithmetic with variables of an enumeration type.

 The Conditional Operator

 It is possible to embed a conditional inside an expression by using a ternary operator
known as the conditional operator (also called the ternary operator or arithmetic if).
Its use is reminiscent of an older programming style, and we do not advise using it.
It is included here for the sake of completeness (and in case you disagree with our
programming style).

enumeration
type

conditional
operator

www.itpub.net

Loops 67

 The conditional operator is a notational variant on certain forms of the if-else
statement. This variant is illustrated as follows. Consider the statement

if (n1 > n2)
max = n1;

else
max = n2;

 This can be expressed using the conditional operator as follows:

max = (n1 > n2) ? n1 : n2;

 The expression on the right-hand side of the assignment statement is the conditional
operator expression :

(n1 > n2) ? n1 : n2

 The ? and : together form a ternary operator known as the conditional operator. A
conditional operator expression starts with a Boolean expression followed by a ? and
then followed by two expressions separated with a colon. If the Boolean expression is
true , then the first of the two expressions is returned; otherwise, the second of the two
expressions is returned.

conditional
operator

expression

 2.3 Loops

 Few tasks are more like the torture of Sisyphus than housework, with its

endless repetition: the clean becomes soiled, the soiled is made clean,

over and over, day after day.

 SIMONE DE BEAUVOIR

 Self-Test Exercises

 16. Given the following declaration and output statement, assume that this has
been embedded in a correct program and is run. What is the output?

enum Direction { N, S, E, W };
// ...
cout << W << " " << E << " " << S << " " << N << endl;

 17. Given the following declaration and output statement, assume that this has
been embedded in a correct program and is run. What is the output?

enum Direction { N = 5, S = 7, E = 1, W };
// ...
cout << W << " " << E << " " << S << " " << N << endl;

68 CHAPTER 2 Flow of Control

 Looping mechanisms in C++ are similar to those in other high-level languages. The
three C++ loop statements are the while statement, the do-while statement, and
the for statement. The same terminology is used with C++ as with other languages.
The code that is repeated in a loop is called the loop body . Each repetition of the loop
body is called an iteration of the loop.

 The while and do-while Statements

 The syntax for the while statement and its variant, the do-while statement, is given in
the accompanying box. In both cases, the multistatement body syntax is a special case
of the syntax for a loop with a single-statement body. The multistatement body is a
single compound statement. Examples of a while statement and a do-while statement
are given in Displays 2.4 and 2.5 .

loop body
iteration

while and
do-while
compared

 Syntax for while and do-while Statements
 A while STATEMENT WITH A SINGLE-STATEMENT BODY
 while (Boolean_Expression)
 Statement

 A while STATEMENT WITH A MULTISTATEMENT BODY
 while (Boolean_Expression)
{

Statement_1
 Statement_2

.
 .
 .
 Statement_Last
}

 A do-while STATEMENT WITH A SINGLE-STATEMENT BODY
do
 Statement
while (Boolean_Expression);

 A do-while STATEMENT WITH
A MULTISTATEMENT BODY
do
{
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
 } while (Boolean_Expression);

 Do not forget
the final
semicolon.

www.itpub.net

Loops 69

The loop body is executed
zero times

 Display 2.4 Example of a while Statement

 1 #include <iostream>
 2 using namespace std;

 3 int main()

 4 {
 5 int countDown;

 6 cout << "How many greetings do you want? ";
 7 cin >> countDown;

 8 while (countDown > 0)
 9 {
 10 cout << "Hello ";
 11 countDown = countDown - 1;
 12 }

 13 cout << endl;
 14 cout << "That's all!\n";

 15 return 0;
 16 }

Sample Dialogue 1

How many greetings do you want? 3

 Hello Hello Hello

That's all!

Sample Dialogue 2

 How many greetings do you want? 0

That's all!

 The important difference between the while and do-while loops involves when
the controlling Boolean expression is checked. With a while statement, the Boolean
expression is checked before the loop body is executed. If the Boolean expression
evaluates to false , the body is not executed at all. With a do-while statement, the
body of the loop is executed first and the Boolean expression is checked after the loop
body is executed. Thus, the do-while statement always executes the loop body at least
once. After this start-up, the while loop and the do-while loop behave the same. After
each iteration of the loop body, the Boolean expression is again checked; if it is true , the
loop is iterated again. If it has changed from true to false , the loop statement ends.

70 CHAPTER 2 Flow of Control

 The first thing that happens when a while loop is executed is that the controlling
Boolean expression is evaluated. If the Boolean expression evaluates to false at that
point, the body of the loop is never executed. It may seem pointless to execute the body
of a loop zero times, but that is sometimes the desired action. For example, a while

loop is often used to sum a list of numbers, but the list could be empty. To be more
specific, a checkbook balancing program might use a while loop to sum the values of
all the checks you have written in a month–but you might take a month’s vacation and
write no checks at all. In that case, there are zero numbers to sum and so the loop is
iterated zero times.

 Display 2.5 Example of a do-while Statement

 1 #include <iostream>
 2 using namespace std;

 3 int main()
 4 {
 5 int countDown;

 6 cout << "How many greetings do you want? ";
 7 cin >> countDown;

 8 do
 9 {
 10 cout << "Hello ";
 11 countDown = countDown - 1;
 12 } while (countDown > 0);

 13 cout << endl;
 14 cout << "That's all!\n";

 15 return 0;
 16 }

 Sample Dialogue 1

How many greetings do you want? 3

Hello Hello Hello

That's all!

 Sample Dialogue 2

How many greetings do you want? 0

Hello

That's all!

The loop body is always
executed at least once.

executing
the body

zero times

www.itpub.net

Loops 71

 Increment and Decrement Operators Revisited

 In general, we discourage the use of the increment and decrement operators in
expressions. However, many programmers like to use them in the controlling Boolean
expression of a while or do-while statement. If done with care, this can work out
satisfactorily. An example is given in Display 2.6 . Be sure to notice that in count++
< = numberOfItems , the value returned by count++ is the value of count before it is
incremented.

(continued)

 Self-Test Exercises

 18. What is the output of the following?

int count = 3;

 while (count- - > 0)
 cout << count << " ";

 19. What is the output of the following?

int count = 3;

 while (- -count > 0)
 cout << count << " ";

 20. What is the output of the following?

 int n = 1;
 do

 cout << n << " ";

 while (n++ <= 3);

 21. What is the output of the following?

 int n = 1;

 do

 cout << n << " ";

 while (++n <= 3);

 22. What is the output produced by the following? (x is of type int .)

 int x = 10;

 while (x > 0)

 {

 cout << x << endl;

 x = x - 3;

 }

 23. What output would be produced in the previous exercise if the > sign were
replaced with < ?

72 CHAPTER 2 Flow of Control

 The Comma Operator

 The comma operator is a way of evaluating a list of expressions and returning the
value of the last expression. It is sometimes handy to use in a for loop, as indicated
in our discussion of the for loop in the next subsection. We do not advise using it in
other contexts, but it is legal to use it in any expression.

 The comma operator is illustrated by the following assignment statement:

result = (first = 2, second = first + 1);

 The comma operator is the comma shown in the center of the previous statement. The
comma expression is the expression on the right-hand side of the assignment operator.
The comma operator has two expressions as operands. In this case the two operands are

first = 2 and second = first + 1

 The first expression is evaluated, and then the second expression is evaluated. As you
may recall from Chapter 1 , the assignment statement, when used as an expression,
returns the new value of the variable on the left side of the assignment operator. So,
this comma expression returns the final value of the variable second , which means that
the variable result is set equal to 3 .

 Since only the value of the second expression is returned, the first expression is
evaluated solely for its side effects. In the previous example, the side effect of the first
expression is to change the value of the variable first .

 You may have a longer list of expressions connected with commas, but you should
only do so when the order of evaluation is not important. If the order of evaluation is
important, you should use parentheses. For example,

result = ((first = 2, second = first + 1), third = second + 1);

comma
operator

comma
expression

 Self-Test Exercises (continued)

 24. What is the output produced by the following? (x is of type int .)

 int x = 10;
 do
 {

 cout << x << endl;

 x = x - 3;

 } while (x > 0);

 25. What is the output produced by the following? (x is of type int .)

 int x = -42;
 do
 {

 cout << x << endl;

 x = x - 3;

 } while (x > 0);

 26. What is the most important difference between a while statement and a
do-while statement?

www.itpub.net

Loops 73

 sets the value of result equal to 4 . However, the value that the following gives
to result is unpredictable, because it does not guarantee that the expressions are
evaluated in order:

result = (first = 2, second = first + 1, third = second + 1);

 For example, third = second + 1 might be evaluated before second = first + 1 . 1

 Display 2.6 The Increment Operator in an Expression

 1 #include <iostream>

 2 using namespace std;

 3 int main()
 4 {

 5 int numberOfItems, count,
 6 caloriesForItem, totalCalories;

 7 cout << "How many items did you eat today? ";
 8 cin >> numberOfItems;
 9 totalCalories = 0;
 10 count = 1;
 11 cout << "Enter the number of calories in each of the\n"
 12 << numberOfItems << " items eaten:\n";

 13 while (count++ <= numberOfItems)
 14 {
 15 cin >> caloriesForItem;
 16 totalCalories = totalCalories
 17 + caloriesForItem;
 18 }

 19 cout << "Total calories eaten today = "
 20 << totalCalories << endl;
 21 return 0;
 22 }

 Sample Dialogue

How many items did you eat today? 7

 Enter the number of calories in each of the

7 items eaten:

300 60 1200 600 150 1 120

Total calories eaten today = 2431

1 The C++ standard does specify that the expressions joined by commas should be evaluated left to
right. However, our experience has been that not all compilers conform to the standard in this regard.

74 CHAPTER 2 Flow of Control

 The for Statement

 The third and final loop statement in C++ is the for statement . The for statement
is most commonly used to step through some integer variable in equal increments. As
we will see in Chapter 5 , the for statement is often used to step through an array.
The for statement is, however, a completely general looping mechanism that can do
anything that a while loop can do.

 For example, the following for statement sums the integers 1 through 10 :

sum = 0;
int n;
for (n = 1; n <= 10; n++)
 sum = sum + n;

 A for statement begins with the keyword for followed by three things in parentheses
that tell the computer what to do with the controlling variable. The beginning of a for
statement looks like the following:

for (Initialization_Action; Boolean_Expression; Update_Action)

 The first expression tells how the variable, variables, or other things are initialized; the
second gives a Boolean expression that is used to check for when the loop should end;
and the last expression tells how the loop control variable is updated after each iteration
of the loop body.

 The three expressions at the start of a for statement are separated by two—and only
two—semicolons. Do not succumb to the temptation to place a semicolon after the
third expression. (The technical explanation is that these three things are expressions,
not statements, and so do not require a semicolon at the end.)

 A for statement often uses a single int variable to control loop iteration and loop
ending. However, the three expressions at the start of a for statement may be any C++
expressions; therefore, they may involve more (or even fewer) than one variable, and
the variables may be of any type.

 Using the comma operator, you can add multiple actions to either the first or the
last (but normally not the second) of the three items in parentheses. For example,
you can move the initialization of the variable sum inside the for loop to obtain the
following, which is equivalent to the for statement code we showed earlier:

for (sum = 0, n = 1; n <= 10; n++)
 sum = sum + n;

 Although we do not advise doing so because it is not as easy to read, you can move
the entire body of the for loop into the third item in parentheses. The previous for
statement is equivalent to the following:

for (sum = 0, n = 1; n <= 10; sum = sum + n, n++);

for statement

www.itpub.net

Loops 75

 Display 2.7 shows the syntax of a for statement and also describes the action of
the for statement by showing how it translates into an equivalent while statement.
Notice that in a for statement, as in the corresponding while statement, the stopping
condition is tested before the first loop iteration. Thus, it is possible to have a for loop
whose body is executed zero times.

 Display 2.7 for Statement

for Statement Syntax

 for (Initialization_Action; Boolean_Expression; Update_Action)
Body_Statement

 EXAMPLE

 for (number = 100; number >= 0; number- -)
 cout << number
 << " bottles of beer on the shelf.\n";

 EQUIVALENT while LOOP SYNTAX

Initialization_Action;
while (Boolean_Expression)
 {
 Body_Statement
 Update_Action;
}

 EQUIVALENT EXAMPLE

number = 100;
while (number >= 0)
{

cout << number
 << " bottles of beer on the shelf.\n";

 number- -;
}

 Sample Dialogue

 100 bottles of beer on the shelf.

99 bottles of beer on the shelf.

 .

 .

 .

0 bottles of beer on the shelf.

76 CHAPTER 2 Flow of Control

 The body of a for statement may be, and commonly is, a compound statement, as
in the following example:

for (number = 100; number >= 0; number- -)
{
 cout << number
 << " bottles of beer on the shelf.\n";

if (number > 0)
 cout << "Take one down and pass it around.\n";
}

 The first and last expressions in parentheses at the start of a for statement may be any
C++ expression and thus may involve any number of variables and may be of any type.

 In a for statement, a variable may be declared at the same time as it is initialized.
For example,

for (int n = 1; n < 10; n++)
 cout << n << endl;

 Compilers may vary in how they handle such declarations within a for statement.
This is discussed in Chapter 3 in the subsection entitled “Variables Declared in a for
Loop.” It might be wise to avoid such declarations within a for statement until you
 reach Chapter 3 , but we mention it here for reference value.

 for Statement
 SYNTAX

 for (Initialization_Action; Boolean_Expression; Update_Action)
 Body_Statement

 EXAMPLE

 for (sum = 0, n = 1; n <= 10; n++)
 sum = sum + n;

See Display 2.7 for an explanation of the action of a for statement.

 TIP: Repeat-N-Times Loops

 A for statement can be used to produce a loop that repeats the loop body a
predetermined number of times. For example, the following is a loop body that
repeats its loop body three times:

for (int count = 1; count <= 3; count++)
 cout << "Hip, Hip, Hurray\n";

 The body of a for statement need not make any reference to a loop control variable,
such as the variable count . ■

www.itpub.net

Loops 77

empty
statement

 PITFALL: Extra Semicolon in a for Statement

 You normally do not place a semicolon after the parentheses at the beginning of a for
loop. To see what can happen, consider the following for loop:

for (int count = 1; count <= 10; count++);
 cout << "Hello\n";

 If you did not notice the extra semicolon, you might expect this for loop to write
Hello to the screen ten times. If you do notice the semicolon, you might expect the
compiler to issue an error message. Neither of those things happens. If you embed
this for loop in a complete program, the compiler will not complain. If you run the
program, only one Hello will be output instead of ten Hellos . What is happening?
To answer that question, we need a little background.

 One way to create a statement in C++ is to put a semicolon after something. If
you put a semicolon after x++, you change the expression

x++

 into the statement

x++;

 If you place a semicolon after nothing, you still create a statement. Thus, the
semicolon by itself is a statement, which is called the empty statement or the null
statement . The empty statement performs no action, but it still is a statement.
Therefore, the following is a complete and legitimate for loop, whose body is the
empty statement:

for (int count = 1; count <= 10; count++);

 This for loop is indeed iterated ten times, but since the body is the empty statement,
nothing happens when the body is iterated. This loop does nothing, and it does
nothing ten times!

 This same sort of problem can arise with a while loop. Be careful not to place
a semicolon after the closing parenthesis that encloses the Boolean expression at the
start of a while loop. A do-while loop has just the opposite problem. You must
remember always to end a do-while loop with a semicolon. ■

 PITFALL: Infinite Loops

 A while loop, do-while loop, or for loop does not terminate as long as the
controlling Boolean expression is true. This Boolean expression normally contains a
variable that will be changed by the loop body, and usually the value of this variable
is changed in a way that eventually makes the Boolean expression false and therefore

(continued)

78 CHAPTER 2 Flow of Control

infinite loop

PITFALL: (continued)

terminates the loop. However, if you make a mistake and write your program so that
the Boolean expression is always true, then the loop will run forever. A loop that runs
forever is called an infinite loop .

 Unfortunately, examples of infinite loops are not hard to come by. First let us
describe a loop that does terminate. The following C++ code will write out the
positive even numbers less than 12 . That is, it will output the numbers 2 , 4 , 6 , 8, and
10 , one per line, and then the loop will end.

x = 2;
while (x != 12)
{
 cout << x << endl;
 x = x + 2;
}

 The value of x is increased by 2 on each loop iteration until it reaches 12 . At
that point, the Boolean expression after the word while is no longer true, so the
loop ends.

 Now suppose you want to write out the odd numbers less than 12, rather than
the even numbers. You might mistakenly think that all you need do is change the
initializing statement to

x = 1;

 But this mistake will create an infinite loop. Because the value of x goes from 11 to
13 , the value of x is never equal to 12 ; thus, the loop will never terminate.

 This sort of problem is common when loops are terminated by checking a
numeric quantity using = = or != . When dealing with numbers, it is always safer to
test for passing a value. For example, the following will work fine as the first line of
our while loop:

while (x < 12)

 With this change, x can be initialized to any number and the loop will still terminate.
 A program that is in an infinite loop will run forever unless some external force

stops it. Since you can now write programs that contain an infinite loop, it is a good
idea to learn how to force a program to terminate. The method for forcing a program
to stop varies from system to system. The keystrokes Control-C will terminate a
program on many systems. (To type Control-C, hold down the Control key while
pressing the C key.)

 In simple programs, an infinite loop is almost always an error. However, some
programs are intentionally written to run forever (in principle), such as the main
outer loop in an airline reservation program, which just keeps asking for more
reservations until you shut down the computer (or otherwise terminate the program
in an atypical way). ■

www.itpub.net

Loops 79

(continued)

 Self-Test Exercises

 27. What is the output of the following (when embedded in a complete program)?

for (int count = 1; count < 5; count+ +)
 cout << (2 * count) << " ";

 28. What is the output of the following (when embedded in a complete program)?

for (int n = 10; n > 0; n = n - 2)
 {
 cout << "Hello ";
 cout << n << endl;
 }

 29. What is the output of the following (when embedded in a complete program)?

for (double sample = 2; sample > 0; sample = sample - 0.5)
 cout << sample << " ";

 30 . Rewrite the following loops as for loops.

a. int i = 1;

while(i <= 10)

 {

if (i < 5 && i != 2)

 cout << 'X';

 i++;

 }

b. int i = 1;

while(i <<= 10)
 {

 cout << 'X';

 i = i + 3;

 }

c. long n = 100;

do

 {

 cout 6 < 'X';

 n = n + 100;

 } while (n < 1000);

 31. What is the output of this loop? Identify the connection between the value of n
and the value of the variable log .

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2)

log++;
cout << n << " " << log << endl;

80 CHAPTER 2 Flow of Control

 The break and continue Statements

 In previous subsections, we have described the basic flow of control for the while ,
do-while , and for loops. This is how the loops should normally be used and is the
way they are usually used. However, you can alter the flow of control in two ways,
which in rare cases can be a useful and safe technique. The two ways of altering the
flow of control are to insert a break or continue statement. The break statement
ends the loop. The continue statement ends the current iteration of the loop body.
The break statement can be used with any of the C++ loop statements.

Self-Test Exercises (continued)

 32. What is the output of this loop? Comment on the code. (This is not the same
as the previous exercise.)

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2);
 log++;
cout << n << " " << log << endl;

 33. What is the output of this loop? Comment on the code. (This is not the same
as either of the two previous exercises.)

int n = 1024;
int log = 0;
for (int i = 0; i < n; i = i * 2);
 log++;
cout << n << " " << log << endl;

 34. For each of the following situations, tell which type of loop (while, do-while ,
or for) would work best.

 a. Summing a series, such as 1/2 + 1/3 + 1/4 + 1/5 + … + 1/10.

 b. Reading in the list of exam scores for one student.

 c. Reading in the number of days of sick leave taken by employees in
a department.

 d. Testing a function to see how it performs for different values of
its arguments.

 35. What is the output produced by the following? (x is of type int .)

int x = 10;
while (x > 0)
{
 cout << x << endl;

x = x + 3;
}

www.itpub.net

Loops 81

 We described the break statement when we discussed the switch statement. The
break statement consists of the keyword break followed by a semicolon. When
executed, the break statement ends the nearest enclosing switch or loop statement.
 Display 2.8 contains an example of a break statement that ends a loop when
inappropriate input is entered.

 Display 2.8 A break Statement in a Loop

 1 #include <iostream>
 2 using namespace std;

 3 int main()
 4 {
 5 int number, sum = 0, count = 0;
 6 cout << "Enter 4 negative numbers:\n";

 7 while (++count <= 4)
 8 {
 9 cin >> number;

 10 if (number >= 0)
 11 {
 12 cout << "ERROR: positive number"
 13 << " or zero was entered as the\n"
 14 << count << "th number! Input ends "
 15 << "with the " << count << "th number.\n"
 16 << count << "th number was not added in.\n";
 17 break;
 18 }

 19 sum = sum + number;
 20 }

 21 cout << sum << " is the sum of the first "
 22 << (count - 1) << " numbers.\n";

 23 return 0;
 24 }

 Sample Dialogue

 Enter 4 negative numbers:

-1 -2 -3 4

ERROR: positive number or zero was entered as the

4th number! Input ends with the 4th number.

4th number was not added in

-6 is the sum of the first 3 numbers.

82 CHAPTER 2 Flow of Control

 The continue statement consists of the keyword continue followed by a semi-
colon. When executed, the continue statement ends the current loop body iteration
of the nearest enclosing loop statement. Display 2.9 contains an example of a loop that
contains a continue statement.

 Display 2.9 A continue Statement in a Loop

 1 #include <iostream>
 2 using namespace std;

 3 int main()
 4 {
 5 int number, sum = 0, count = 0;
 6 cout << "Enter 4 negative numbers, ONE PER LINE:\n";

 7 while (count < 4)
 8 {
 9 cin >> number;

 10 if (number >= 0)
 11 {
 12 cout << "ERROR: positive number (or zero)!\n"
 13 << "Reenter that number and continue:\n";
 14 continue;
 15 }
 16 sum = sum + number;
 17 count++;
 18 }

 19 cout << sum << " is the sum of the "
 20 << count << " numbers.\n";
 21 return 0;
 22 }

 Sample Dialogue

 Enter 4 negative numbers, ONE PER LINE:

1
ERROR: positive number (or zero)!
Reenter that number and continue:
-1
-2
3
ERROR: positive number!
Reenter that number and continue:
-3
-4
-10 is the sum of the 4 numbers.

continue
statement

www.itpub.net

Introduction to File Input 83

 One point that you should note when using the continue statement in a for loop
is that the continue statement transfers control to the update expression. So, any loop
control variable will be updated immediately after the continue statement is executed.

 Note that a break statement completely ends the loop. In contrast, a continue
statement merely ends one loop iteration; the next iteration (if any) continues the loop.
You will find it instructive to compare the details of the programs in Displays 2.8 and
 2.9 . Pay particular attention to the change in the controlling Boolean expression.

 Note that you never absolutely need a break or continue statement. The programs
in Displays 2.8 and 2.9 can be rewritten so that neither uses either a break or
continue statement. The continue statement can be particularly tricky and can make
your code hard to read. It may be best to avoid the continue statement completely or
at least use it only on rare occasions.

 Nested Loops

 It is perfectly legal to nest one loop statement inside another loop statement. When
doing so, remember that any break or continue statement applies to the innermost
loop (or switch) statement containing the break or continue statement. It is best to
avoid nested loops by placing the inner loop inside a function definition and placing
a function invocation inside the outer loop. We describe how to write your own
functions in Chapter 3 .

 Nested Loop
Example

VideoNote

 2.4 Introduction to File Input

 You shall see them on a beautiful quarto page, where a neat rivulet of

text shall meander through a meadow of margin.

 RICHARD BRINSLEY SHERIDAN , The School for Scandal

 By now you should be familiar with using cin to read data from the keyboard. cin is an
example of something called an input stream . We can also connect an input stream to a
file on the disk. Once this is set up we can read from the file in almost exactly the same
way we read from cin . Details about reading from and writing to files are not discussed
 until Chapter 12 and require an understanding of programming concepts we have not

 Self-Test Exercises

 36. What does a break statement do? Where is it legal to put a break statement?

 37. Predict the output of the following nested loops:

int n, m;
for (n = 1; n <= 10; n++)

for (m = 10; m >= 1; m- -)
 cout << n << " times " << m
 << " = " << n * m << endl;

input stream

84 CHAPTER 2 Flow of Control

 yet covered . However, we can provide just enough here so that your programs can read
from text files. This will allow you to work on problems with real-world data that would
otherwise be too much work to type into the program every time it is run.

 Reading From a Text File Using ifstream

 A text file is a file stored in the text format. You can create them with programs like
Notepad in Windows, TextEdit on a Mac, or vi/nano/emacs on a UNIX machine.
Most word processors and many other programs will also save files in the text format.
To read from a text file we need to include the fstream library and create an ifstream
object which is placed in the std namespace. Thus, your program would contain

#include <fstream>
using namespace std;

 You can then declare an input stream just as you would declare any other variable.

ifstream inputStream;

 Next you must connect the inputStream variable to a text file on the disk.

inputStream.open("filename.txt");

 You can specify a pathname (a directory or folder) when giving the file name. The
details of how to specify a pathname vary a little from system to system, so consult with
a local guru for the details (or do a little trial-and-error programming). In our examples
we will use a simple file name, which assumes that the file is in the same directory
(folder) as the one in which your program is running.

 Once you have declared an input stream variable and connected it to a file using
the open function, your program can take input from the file using the extraction
operator, >>, the same way as cin .

 For example, you can use inputStream >> intVar to read an integer from the
file, inputStream >> s trVar to read a string (up to a whitespace character) from the
file, etc. C++ begins reading from the beginning of the file and proceeds toward the
end as data is read. When the program is done with the file it should be closed with
inputStream.close() which will release any resources that have been allocated in
association with the file.

 A complete example is shown in Displays 2.10 and 2.11 . Display 2.10 shows the
contents of a text file named player.txt . This file can be created by any program
that saves in the plain text format. As an example, let us say that the file contains
information about the last player to play a game. The first line of the file contains the
high score of the player, 100510, and the second line contains the name of the player,
Gordon Freeman. The program in Display 2.11 reads in this information and displays
it. The values are simply read in using the stream extraction operator, >> .

 Display 2.10 Sample Text File, player.txt , to Store a Player’s High Score and Name

 100510
 Gordon Freeman

www.itpub.net

Introduction to File Input 85

 Often you will want to know if the program has read everything in a file. One way
to do this is to note that the stream extraction operator returns true if the read was
successful and false if it was not. So if we attempt to read past the end of the file then
>> will return false and we can ignore the result. This may look a bit strange because
on one line we are both performing a read action and checking a Boolean result.
 Display 2.12 uses a while loop to read every line of data from the player.txt file as
a string and outputs it.

 Display 2.11 Program to Read the Text File in Display 2.10

 1 #include <iostream>
 2 #include <fstream>
 3 #include <string>

 4 using namespace std;
 5 int main()
 6 {
 7 string firstName, lastName;
 8 int score;
 9 fstream inputStream;

 10 inputStream.open("player.txt");

 11 inputStream >> score;
 12 inputStream >> firstName >> lastName;

 13 cout << "Name: " << firstName << " "
 14 << lastName << endl;
 15 cout << "Score: " << score << endl;
 16 inputStream.close();

 17 return 0;
 18 }

 Sample Dialogue

Name: Gordon Freeman

Score: 100510

 Display 2.12 Using a Loop to Read the Text File in Display 2.10 (part 1 of 2)

 1 #include <iostream>
 2 #include <fstream>
 3 #include <string>

 4 using namespace std;
 5 int main()

(continued)

86 CHAPTER 2 Flow of Control

 6 {
 7 string text;
 8 fstream inputStream;
 9
 10 inputStream.open("player.txt");

 11 while (inputStream >> text)
 12 {
 13 cout << text << endl;
 14 }
 15 inputStream.close();

 18 return 0;
 19 }

 Sample Dialogue

100510

Gordon

Freeman

Display 2.12 Using a Loop to Read the Text File in Display 2.10 (part 2 of 2)

Evaluates to false
when there is no data left
to read from the file

 Self-Test Exercises

 38. The following code is supposed to output every word in the fi le and only every
word in the fi le, but it does not quite work. What is wrong?

bool moreToRead = true;
while (moreToRead)
{
 string text;
 moreToRead = inputStream >> text;
 cout << text << endl;
}

 39. Consider a fi le of high scores. The fi rst line is an integer that stores the number
of records in the fi le. The records alternate between the name of the player (fi rst
name only) and the player’s score. Here is a sample fi le named scores.txt
consisting of three entries:

3
Gordon
500
Mario
550
Illidan
385

www.itpub.net

Answers to Self-Test Exercises 87

 Write code that reads the fi le and outputs the player’s name and score on one
line, e.g.,

Gordon, 500
Mario, 550
Illidan, 385

 40. Modify your solution to Self-Test Exercise 39 to output only the name and
score of the player with the highest score.

 Chapter Summary

• Boolean expressions are evaluated similar to the way arithmetic expressions are evaluated.

• The C++ branching statements are the if-else statement and the switch statement .

• A switch statement is a multiway branching statement. You can also form mul-
tiway branching statements by nesting if-else statements to form a multiway
if-else statement.

• A switch statement is a good way to implement a menu for the user of your program.

• The C++ loop statements are the while , do-while , and for statements .

• A do-while statement always iterates its loop body at least one time. Both a while
statement and a for statement might iterate their loop body zero times.

• A for loop can be used to obtain the equivalent of the instruction “repeat the loop
body n times.”

• A loop can be ended early with a break statement . A single iteration of a loop body
may be ended early with a continue statement. It is best to use break statements
sparingly. It is best to completely avoid using continue statements, although some
programmers do use them on rare occasions.

• An input stream can be used to read from a file in a manner similar to using cin to
read from the keyboard.

 Answers to Self-Test Exercises

 1. a. true.
 b. true . Note that expressions a and b mean exactly the same thing. Because

the operators = = and < have higher precedence than && , you do not need to
include the parentheses. The parentheses do, however, make it easier to read.
Most people find the expression in a easier to read than the expression in b,
even though they mean the same thing.

 c. true.

Self-Test Exercises (continued)

 d. true.
 e. false . Since the value of the first subexpression, (count = = 1) , is false , you

know that the entire expression is false without bothering to evaluate the
second subexpression. Thus, it does not matter what the values of x and y are.
This is short-circuit evaluation .

 f. true . Since the value of the first subexpression, (count < 10) , is true , you
know that the entire expression is true without bothering to evaluate the sec-
ond subexpression. Thus, it does not matter what the values of x and y are.
This is short-circuit evaluation .

 g. false . Notice that the expression in g includes the expression in f as a subex-
pression. This subexpression is evaluated using short-circuit evaluation as we
described for f. The entire expression in g is equivalent to
!((true || (x < y)) && true)

 which in turn is equivalent to !(true && true) , and that is equivalent to
!(true) , which is equivalent to the final value of false .

 h. This expression produces an error when it is evaluated because the first subex-
pression, ((limit/count) > 7) , involves a division by zero.

 i. true . Since the value of the first subexpression, (limit < 20) , is true , you
know that the entire expression is true without bothering to evaluate the sec-
ond subexpression. Thus, the second subexpression,

 ((limit/count) > 7)

 is never evaluated, so the fact that it involves a division by zero is never noticed
by the computer. This is short-circuit evaluation .

 j. This expression produces an error when it is evaluated because the first subex-
pression, ((limit/count) > 7) , involves a division by zero.

 k. false. Since the value of the first subexpression, (limit < 0) , is false , you
know that the entire expression is false without bothering to evaluate the
second subexpression. Thus, the second subexpression,

 ((limit/count) > 7)

 is never evaluated, so the fact that it involves a division by zero is never noticed
by the computer. This is short-circuit evaluation .

 1. If you think this expression is nonsense, you are correct. The expression has
no intuitive meaning, but C++ converts the int values to bool and then
evaluates the && and ! operations. Thus, C++ will evaluate this mess. Recall
that in C++, any nonzero integer converts to true and 0 converts to false ,
so C++ will evaluate

 (5 && 7) + (!6)

 as follows. In the expression (5 && 7) , the 5 and 7 convert to true ; true &&

true evaluates to true , which C++ converts to 1 . In the expression (!6) the
6 is converted to true, so !(true) evaluates to false , which C++ converts to
0. Thus, the entire expression evaluates to 1 + 0 , which is 1 . The final value is
thus 1. C++ will convert the number 1 to true , but the answer has little intui-
tive meaning as true ; it is perhaps better to just say the answer is 1 . There is no
need to become proficient at evaluating these nonsense expressions, but doing
a few will help you to understand why the compiler does not give you an error

88 CHAPTER 2 Flow of Control

www.itpub.net

Answers to Self-Test Exercises 89

message when you make the mistake of mixing numeric and Boolean operators
in a single expression.

 2. The expression 2 < x < 3 is legal. However, it does not mean
(2 <58.164 pt x) && (x < 3)

 as many would wish. It means (2 < x) < 3 . Since (2 < x) is a Boolean expres-
sion, its value is either true or false and is thus converted to either 0 or 1 , either
of which is less than 3 . So, 2 < x < 3 is always true. The result is true regardless
of the value of x .

 3. (x < -1) || (x > 2)

 4. (x > 1) && (x < 3)

 5. No. In the Boolean expression, (j > 0) is false (j was just assigned -1). The
&& uses short-circuit evaluation, which does not evaluate the second expression if
the truth value can be determined from the first expression. The first expression is
false , so the second does not matter.

 6. if (score > 100)

 cout << "High";
else
 cout << "Low";

 You may want to add \n to the end of the previously quoted strings, depending on
the other details of the program.

 7. if (savings > = expenses)
{
 savings = savings - expenses;
 expenses = 0;
 cout << "Solvent";
}
else
{
 cout << "Bankrupt";
}

 You may want to add \n to the end of the previously quoted strings, depending on
the other details of the program.

 8. if ((exam >= 60) && (programsDone >= 10))
 cout << "Passed";
else
 cout << "Failed";

 You may want to add \n to the end of the previously quoted strings, depending on
the other details of the program.

 9. if ((temperature >= 100) || (pressure >= 200))

 cout << "Warning";

 else

 cout << "OK";

 You may want to add \n to the end of the previously quoted strings, depending on
the other details of the program.

 10. All nonzero integers are converted to true ; 0 is converted to false .
 a. 0 is false
 b. 1 is true
 c. -1 is true

 11. Start
 Hello from the second if.

 End
 Start again

 End again

 12. large

 13. small

 14. medium

 15. Both of the following are correct:
if (n < 0)
 cout << n << " is less than zero.\n";
else if ((0 <= n) && (n <= 100))
 cout << n << " is between 0 and 100 (inclusive).\n";
else if (n >100)
 cout << n << " is larger than 100.\n";

 and
if (n < 0)
 cout << n << " is less than zero.\n";
else if (n <= 100)
 cout << n << " is between 0 and 100 (inclusive).\n";
else
 cout << n << " is larger than 100.\n";

 16. 3 2 1 0

 17. 2 1 7 5

 18. 2 1 0

 19. 2 1

 20. 1 2 3 4

 21. 1 2 3

 22. 10
 7

 4

 1

23. There would be no output; the loop is iterated zero times.

 24. 10
 7

 4

 1

 25. -42

90 CHAPTER 2 Flow of Control

www.itpub.net

Answers to Self-Test Exercises 91

 26. With a do-while statement, the loop body is always executed at least once. With
a while statement, there can be conditions under which the loop body is not
 executed at all.

 27. 2 4 6 8

 28. Hello 10
 Hello 8

 Hello 6

 Hello 4

 Hello 2

 29. 2.000000 1.500000 1.000000 0.500000

 30. a. for (int i = 1; i <= 10; i++)

 if (i < 5 && i != 2)

 cout << 'X';

 b. for (int i = 1; i <= 10; i = i + 3)

 cout << 'X';

 c. cout << 'X' // necessary to keep output the same. Note

 // also the change in initialization of n

 for (long n = 200; n < 1000; n = n + 100)

 cout << 'X';

 31. The output is 1024 10 . The second number is the base 2 log of the first number.
(If the first number is not a power of 2, then only an approximation to the base 2
log is produced.)

 32. The output is 1024 1 . The semicolon after the first line of the for loop is probably
a pitfall error.

 33. This is an infinite loop. Consider the update expression, i = i * 2 . It cannot
change i because its initial value is 0 , so it leaves i at its initial value, 0 . It gives no
output because of the semicolon after the first line of the for loop.

 34. a. A for loop
 b. and c. Both require a while loop because the input list might be empty.
 d. A do-while loop can be used because at least one test will be performed.

 35. This is an infinite loop. The first few lines of output are as follows:
 10

 13

 16

 19

 21

 36. A break statement is used to exit a loop (a while , do-while , or for statement) or
to terminate a switch statement. A break statement is not legal anywhere else in a
C++ program. Note that if the loops are nested, a break statement only terminates
one level of the loop.

 37. The output is too long to reproduce here. The pattern is as follows:
 1 times 10 = 10

 1 times 9 = 9

 .

 .

 .

 1 times 1 = 1

 2 times 10 = 20
 2 times 9 = 18

 .

 .

 .

 2 times 1 = 2

 3 times 10 = 30

 .

 .

 .

 38. The variable moreToRead is not set to false until we attempt to read past the last
item in the file. This means that we will output an extra newline on the last loop
iteration. We can address this by outputting the value read first and then reading
the next string (and possibly end of file) at the end of the loop iteration. This also
handles the case where the file is empty.

 string text;

 bool moreToRead = inputStream >> text;

 while (moreToRead)

 {

 cout << text << endl;

 moreToRead = inputStream >> text;

 }

 39. The following code reads the first line and then loops that many times.
 fstream inputStream;

 inputStream.open("player.txt");

 int numScores;

 inputStream >> numScores;

 for (int i = 0; i < numScores; i++)

 {

 string name;

 int score;

 inputStream >> name;

 inputStream >> score;

 cout << name << ", " << score << endl;

 }

 inputStream.close();

92 CHAPTER 2 Flow of Control

www.itpub.net

Programming Projects 93

 40. This solution remembers the highest score and name seen so far and outputs it after
the loop is over.

 fstream inputStream;

 inputStream.open("player.txt");

 int numScores;

 int highScore = -1;

 string highName = "";

 inputStream >> numScores;

 for (int i = 0; i < numScores; i++)

 {
 string name;

 int score;

 inputStream >> name;

 inputStream >> score;

 if (score > highScore)

 {

 highScore = score;

 highName = name;

 }

 }

 inputStream.close();

 cout << highName << " has the high score of "

 << highScore << endl;

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. It is difficult to make a budget that spans several years, because prices are not
stable. If your company needs 200 pencils per year, you cannot simply use this
year’s price as the cost of pencils two years from now. Because of inflation the
cost is likely to be higher than it is today. Write a program to gauge the expected
cost of an item in a specified number of years. The program asks for the cost of
the item, the number of years from now that the item will be purchased, and the
rate of inflation. The program then outputs the estimated cost of the item after
the specified period. Have the user enter the inflation rate as a percentage, such
as 5.6 (percent). Your program should then convert the percentage to a decimal
fraction, such as 0.056, and should use a loop to estimate the price adjusted for
inflation. (Hint: Use a loop.)

www.myprogramminglab.com

 2. You have just purchased a stereo system that cost $1,000 on the following credit
plan: no down payment, an interest rate of 18% per year (1.5% per month), and
monthly payments of $50. The monthly payment of $50 is used to pay the inter-
est, and whatever is left is used to pay part of the remaining debt. Hence, the first
month you pay 1.5% of $1,000 in interest. That is $15 in interest. The remaining
$35 is deducted from your debt, which leaves you with a debt of $965.00. The
next month you pay interest of 1.5% of $965.00, which is $14.48. Hence, you can
deduct $35.52 (which is $50 - $14.48) from the amount you owe.

 Write a program that will tell you how many months it will take you to pay off
the loan, as well as the total amount of interest paid over the life of the loan. Use a
loop to calculate the amount of interest and the size of the debt after each month.
(Your final program need not output the monthly amount of interest paid and
remaining debt, but you may want to write a preliminary version of the program
that does output these values.) Use a variable to count the number of loop itera-
tions and hence the number of months until the debt is zero. You may want to use
other variables as well. The last payment may be less than $50 if the debt is small,
but do not forget the interest. If you owe $50, then your monthly payment of $50
will not pay off your debt, although it will come close. One month's interest on
$50 is only 75 cents.

 3. Suppose you can buy a chocolate bar from the vending machine for $1 each. Inside
every chocolate bar is a coupon. You can redeem seven coupons for one chocolate
bar from the machine. You would like to know how many chocolate bars you can
eat, including those redeemed via coupon, if you have n dollars.

 For example, if you have 20 dollars then you can initially buy 20 chocolate bars.
This gives you 20 coupons. You can redeem 14 coupons for two additional choco-
late bars. These two additional chocolate bars give you two more coupons, so you
now have a total of eight coupons. This gives you enough to redeem for one final
chocolate bar. As a result you now have 23 chocolate bars and two leftover coupons.

 Write a program that inputs the number of dollars and outputs how many choco-
late bars you can collect after spending all your money and redeeming as many
coupons as possible. Also output the number of leftover coupons. The easiest way
to solve this problem is to use a loop.

 4. Write a program that finds and prints all of the prime numbers between 3 and 100.
A prime number is a number that can only be divided by one and itself (i.e., 3, 5,
7, 11, 13, 17, …).

 One way to solve this problem is to use a doubly-nested loop. The outer loop can
iterate from 3 to 100, while the inner loop checks to see whether the counter value
for the outer loop is prime. One way to decide whether the number n is prime is
to loop from 2 to n - 1 ; if any of these numbers evenly divides n , then n cannot be
prime. If none of the values from 2 to n - 1 evenly divide n , then n must be prime.
(Note that there are several easy ways to make this algorithm more efficient.)

94 CHAPTER 2 Flow of Control

www.itpub.net

Programming Projects 95

 5. In cryptarithmetic puzzles, mathematical equations are written using letters. Each
letter can be a digit from 0 to 9, but no two letters can be the same. Here is a
sample problem:

 SEND + MORE = MONEY

 A solution to the puzzle is S = 9, R = 8, O = 0, M = 1, Y = 2, E = 5, N = 6, D = 7

 Write a program that fi nds solutions to the following cryptarithmetic puzzle:

 TOO + TOO + TOO + TOO = GOOD

 The simplest technique is to use a nested loop for each unique letter (in this case T,
O, G, D). The loops would systematically assign the digits from 0–9 to each letter.
For example, it might first try T = 0, O = 0, G = 0, D = 0, then T = 0, O = 0, G =0,
D = 1, then T = 0, O = 0, G = 0, D = 2, etc. up to T = 9, O = 9, G = 9, D = 9.
In the loop body, test that each variable is unique and that the equation is satisfied.
Output the values for the letters that satisfy the equation.

 6. Buoyancy is the ability of an object to float. Archimedes’ Principle states that the
buoyant force is equal to the weight of the fluid that is displaced by the submerged
object. The buoyant force can be computed by

 Fb = V * g

 where Fb is the buoyant force, V is the volume of the submerged object, and g is
the specific weight of the fluid. If Fb is greater than or equal to the weight of the
object, then it will float, otherwise it will sink.

 Write a program that inputs the weight (in pounds) and radius (in feet) of a sphere
and outputs whether the sphere will sink or float in water. Use g = 62.4 lb/ft 3 as
the specific weight of water. The volume of a sphere is computed by (4/3)pr3 .

 7. Write a program that calculates the total grade for N classroom exercises as a per-
centage. The user should input the value for N followed by each of the N scores
and totals. Calculate the overall percentage (sum of the total points earned divided
by the total points possible) and output it as a percentage. Sample input and output
are shown as follows:

 How many exercises to input? 3

 Score received for exercise 1: 10

 Total points possible for exercise 1: 10

 Score received for exercise 2: 7

 Total points possible for exercise 2: 12

 Score received for exercise 3: 5

 Total points possible for exercise 3: 8

 Your total is 22 out of 30, or 73.33%.

Solution to
Programming
Project 2.5

VideoNote

 8. Write a program that finds the temperature, as an integer, that is the same in
both Celsius and Fahrenheit. The formula to convert from Celsius to Fahrenheit
is as follows:

 Fahrenheit =
9
5

 Celsius + 32

 Your program should create two integer variables for the temperature in Celsius
and Fahrenheit. Initialize the temperature to 100 degrees Celsius. In a loop, decre-
ment the Celsius value and compute the corresponding temperature in Fahrenheit
until the two values are the same.

 9. (This is an extension of an exercise from Chapter 1 .) The Babylonian algorithm to
compute the square root of a positive number n is as follows:

 1. Make a guess at the answer (you can pick n/2 as your initial guess).

 2. Compute r = n / guess .

 3. Set guess= (guess + r) / 2.

 4. Go back to step 2 for as many iterations as necessary. The more steps 2 and 3 are
repeated, the closer guess will become to the square root of n.

 Write a program that inputs a double for n, iterates through the Babylonian
algorithm until the guess is within 1% of the previous guess, and outputs the
answer as a double to two decimal places. Your answer should be accurate even for
large values of n.

 10. Create a text fi le that contains the text “I hate C++ and hate programming!” Write
a program that reads in the text from the fi le and outputs each word to the console
but replaces any occurrence of “hate” with “love.” Your program should work with
any line of text that contains the word “hate,” not just the example given in this
problem.

 11. (This is an extension of an exercise from Chapter 1 .) A simple rule to estimate your
ideal body weight is to allow 110 pounds for the first 5 feet of height and 5 pounds
for each additional inch. Create the following text in a text file. It contains the
names and heights in feet and inches of Tom Atto (6'3"), Eaton Wright (5'5"),
and Cary Oki (5'11"):

 Tom Atto

 6

 3

 Eaton Wright

 5

 5

 Cary Oki

 5

 11

 Write a program that reads the data in the file and outputs the full name and ideal
body weight for each person. Use a loop to read the names from the file. Your
program should also handle an arbitrary number of entries in the file instead of
handling only three entries.

 Solution to
Programming
Project 2.9

VideoNote

Solution to
Programming
Project 2.10

VideoNote

96 CHAPTER 2 Flow of Control

www.itpub.net

Programming Projects 97

 12. This problem is based on a “Nifty Assignment” by Steve Wolfman (http://nifty.
stanford.edu/2006/wolfman-pretid). Consider lists of numbers from real-life data
sources, for example, a list containing the number of students enrolled in differ-
ent course sections, the number of comments posted for different Facebook status
updates, the number of books in different library holdings, the number of votes per
precinct, etc. It might seem like the leading digit of each number in the list should
be 1–9 with an equally likely probability. However, Benford’s Law states that the
leading digit is 1 about 30% of the time and drops with larger digits. The leading
digit is 9 only about 5% of the time.

 Write a program that tests Benford’s Law. Collect a list of at least one hundred
numbers from some real-life data source and enter them into a text file. Your pro-
gram should loop through the list of numbers and count how many times 1 is the
first digit, 2 is the first digit, etc. For each digit, output the percentage it appears
as the first digit.

 If you read a number into the string variable named strNum then you can access
the first digit as a char by using strNum[0] . This is described in more detail in
 Chapter 9 .

http://nifty.stanford.edu/2006/wolfman-pretid
http://nifty.stanford.edu/2006/wolfman-pretid

This page intentionally left blank

www.itpub.net

 3

Chapter Summary 134 Answers to Self-Test Exercises 134 Programming Projects 138

 Function Basics

 3.3 SCOPE RULES 125
 Local Variables 125
 Procedural Abstraction 127
 Global Constants and Global Variables 128
 Blocks 131
 Nested Scopes 132
 Tip: Use Function Calls in Branching and

Loop Statements 132
 Variables Declared in a for Loop 133

 3.1 PREDEFINED FUNCTIONS 100
 Predefined Functions That Return a Value 100
 Predefined void Functions 105
 A Random Number Generator 107

 3.2 PROGRAMMER-DEFINED
FUNCTIONS 111

 Defining Functions That Return a Value 112
 Alternate Form for Function Declarations 114
 Pitfall: Arguments in the Wrong Order 115
 Pitfall: Use of the Terms Parameter and

 Argument 115
 Functions Calling Functions 115
 Example: A Rounding Function 115
 Functions That Return a Boolean Value 118
 Defining void Functions 119
 return Statements in void Functions 121
 Preconditions and Postconditions 121
 main Is a Function 123
 Recursive Functions 123

 Good things come in small packages.

 Common saying

 Introduction
 If you have programmed in some other language, then the contents of this chapter
will be familiar to you. You should still scan this chapter to see the C++ syntax and
terminology for the basics of functions. Chapter 4 contains the material on functions
that might be different in C++ than in other languages.

 A program can be thought of as consisting of subparts such as obtaining the
input data, calculating the output data, and displaying the output data. C++, like
most programming languages, has facilities to name and code each of these subparts
separately. In C++ these subparts are called functions . Most programming languages
have functions or something similar to functions, although they are not always called
by that name in other languages. The terms procedure , subprogram , and method , which
you may have heard before, mean essentially the same thing as function . In C++ a
function may return a value (produce a value) or may perform some action without
returning a value, but whether the subpart returns a value or not, it is still called a
function in C++. This chapter presents the basic details about C++ functions. Before
telling you how to write your own functions, we will first tell you how to use some
predefined C++ functions.

 3.1 Predefined Functions

 Do not reinvent the wheel.

 Common saying

 C++ comes with libraries of predefined functions that you can use in your programs.
There are two kinds of functions in C++: functions that return (produce) a value
and functions that do not return a value. Functions that do not return a value are
called void functions . We first discuss functions that return a value and then discuss
void functions.

 Predefined Functions That Return a Value

 We will use the sqrt function to illustrate how you use a predefined function that
returns a value. The sqrt function calculates the square root of a number. (The square
root of a number is that number which, when multiplied by itself, will produce the

 3 Function Basics

void function

www.itpub.net

Predefi ned Functions 101

number you started out with. For example, the square root of 9 is 3 because 3 2 is equal
to 9.) The function sqrt starts with a number, such as 9.0, and computes its square
root, in this case 3.0. The value the function starts out with is called its argument . The
value it computes is called the value returned . Some functions may have more than
one argument, but no function has more than one value returned.

 The syntax for using functions in your program is simple. To set a variable named
theRoot equal to the square root of 9.0 , you can use the following assignment statement:

 theRoot = sqrt(9.0);

 The expression sqrt(9.0) is known as a function call or function invocation .
An argument in a function call can be a constant, such as 9.0 , a variable, or a more
complicated expression. A function call is an expression that can be used like any other
expression. For example, the value returned by sqrt is of type double ; therefore, the
following is legal (although perhaps stingy):

 bonus = sqrt(sales)/10;

sales and bonus are variables that would normally be of type double . The function
call sqrt(sales) is a single item, just as if it were enclosed in parentheses. Thus, the
previous assignment statement is equivalent to

 bonus = (sqrt(sales))/10;

 You can use a function call wherever it is legal to use an expression of the type specified
for the value returned by the function.

 Display 3.1 contains a complete program that uses the predefined function sqrt .
The program computes the size of the largest square doghouse that can be built for
the amount of money the user is willing to spend. The program asks the user for an
amount of money and then determines how many square feet of floor space can be
purchased for that amount. That calculation yields an area in square feet for the floor
of the doghouse. The function sqrt yields the length of one side of the doghouse floor.

 The cmath library contains the definition of the function sqrt and a number
of other mathematical functions. If your program uses a predefined function from
some library, then it must contain an include directive that names that library. For
example, the program in Display 3.1 uses the sqrt function and so it contains

 #include <cmath>

 This particular program has two include directives. It does not matter in what order
you give these two include directives. include directives were discussed in Chapter 1 .

 Definitions for predefined functions normally place these functions in the std
namespace and so also require the following using directive, as illustrated in Display 3.1 :

 using namespace std;

argument

value returned

function
call or function

invocation

#include
directive

102 CHAPTER 3 Function Basics

 Display 3.1 A Predefi ned Function That Returns a Value

 1 //Computes the size of a doghouse that can be purchased
 2 //given the user's budget.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;

6 int main()
7 {
8 const double COST_PER_SQ_FT = 10.50;
9 double budget, area, lengthSide;

10 cout << "Enter the amount budgeted for your doghouse $";
11 cin >> budget;

12 area = budget / COST_PER_SQ_FT;
13 lengthSide = sqrt(area);

14 cout.setf(ios::fixed);
15 cout.setf(ios::showpoint);
16 cout.precision(2);
17 cout << "For a price of $" << budget << endl
18 << "I can build you a luxurious square doghouse\n"
19 << "that is " << lengthSide
20 << " feet on each side.\n";

21 return 0;
22 }

 Sample Dialogue

 Enter the amount budgeted for your doghouse $25.00

 For a price of $25.00

 I can build you a luxurious square doghouse

 that is 1.54 feet on each side.

 Usually, all you need to do to use a library is to place an include directive and
a using directive for that library in the file with your program. If things work with
just these directives, you need not worry about doing anything else. However, for
some libraries on some systems you may need to give additional instructions to the
compiler or explicitly run a linker program to link in the library. The details vary from
one system to another; you will have to check your manual or ask a local expert to see
exactly what is necessary.

 A few predefi ned functions are described in Display 3.2 . More predefi ned functions
are described in Appendix 4 . Notice that the absolute value functions abs and labs are

#include may
not be enough

abs and labs

www.itpub.net

Predefi ned Functions 103

 in the library with header file cstdlib, so any program that uses either of these
functions must contain the following directive:

 #include <cstdlib>

 Also notice that there are three absolute value functions. If you want to produce the
absolute value of a number of type int , use abs; if you want to produce the absolute
value of a number of type long , use labs ; and if you want to produce the absolute
value of a number of type double , use fabs . To complicate things even more, abs and
labs are in the library with header file cstdlib , whereas fabs is in the library with
header file cmath. fabs is an abbreviation for floating-point absolute value . Recall that
numbers with a fraction after the decimal point, such as numbers of type double , are
often called floating-point numbers .

 Another example of a predefined function is pow, which is in the library with
header file cmath . The function pow can be used to do exponentiation in C++. For
example, if you want to set a variable r esult equal to xy , you can use the following:

 result = pow(x, y);

 Hence, the following three lines of program code will output the number 9.0 to the
screen, because (3.0) 2.0 is 9.0:

 double result, x = 3.0, y = 2.0;
 result = pow(x, y);
 cout << result;

fabs

pow

 Functions That Return a Value
For a function that returns a value, a function call is an expression consisting of the
function name followed by arguments enclosed in parentheses. If there is more than one
argument, the arguments are separated by commas. If the function call returns a value,
then the function call is an expression that can be used like any other expression of the type
specified for the value returned by the function.

 SYNTAX

Function_Name(Argument_List)

where the Argument_List is a comma-separated list of arguments:

 Argument_1, Argument_2,. . ., Argument_Last

 EXAMPLES

 side = sqrt(area);
 cout << "2.5 to the power 3.0 is "
 << pow(2.5, 3.0);

104 CHAPTER 3 Function Basics

 Display 3.2 Some Predefi ned Functions

All these predefined functions require using namespace std; as well as an include directive .

 NAME DESCRIPTION
 TYPE OF
ARGUMENTS

 TYPE OF
VALUE
RETURNED EXAMPLE VALUE

 LIBRARY
HEADER

sqrt Square root double double sqrt(4.0) 2.0 cmath

pow Powers double double pow(2.0,3.0) 8.0 cmath

abs Absolute
value for
 int

int int abs(—7)
abs(7)

7
7

cstdlib

labs Absolute
value for
 long

long long labs(—70000)
labs(70000)

70000
70000

cstdlib

fabs Absolute
value for
 double

double double fabs(—7.5)
fabs(7.5)

7.5
7.5

cmath

ceil Ceiling
(round up)

double double ceil(3.2)
ceil(3.9)

4.0
4.0

cmath

floor Floor
(round down)

double double floor(3.2)
floor(3.9)

3.0
3.0

cmath

exit End program int void exit(1); None cstdlib

rand Random
number

None int rand() Varies cstdlib

srand Set seed
for rand

unsigned
int

void srand(42); None cstdlib

 Notice that the previous call to pow returns 9.0 , not 9 . The function pow always
returns a value of type double , not of type int . Also notice that the function pow
requires two arguments. A function can have any number of arguments. Moreover,
every argument position has a specified type, and the argument used in a function call
should be of that type. In many cases, if you use an argument of the wrong type, some
automatic type conversion will be done for you by C++. However, the results may not
be what you intended. When you call a function, you should use arguments of the type
specified for that function. One exception to this caution is the automatic conversion
of arguments from type int to type double . In many situations, including calls to the
function pow , you can safely use an argument of type int (or other integer type) when
an argument of type double (or other floating-point type) is specified.

arguments
have

a type

www.itpub.net

Predefi ned Functions 105

 Many implementations of pow have a restriction on what arguments can be used.
In these implementations, if the first argument to pow is negative, then the second
argument must be a whole number. It might be easiest and safest to use pow only when
the first argument is nonnegative.

 Predefined void Functions

 A void function performs some action, but does not return a value. Since it
performs an action, a void function invocation is a statement. The function call
for a void function is written similar to a function call for a function that returns a
value, except that it is terminated with a semicolon and is used as a statement rather
than as an expression. Predefined void functions are handled in the same way as
predefined functions that return a value. Thus, to use a predefined void function,
your program must have an include directive that gives the name of the library
that defines the function.

 For example, the function exit is defined in the library cstdlib , and so a program
that uses that function must contain the following at (or near) the start of the file:

 #include <cstdlib>
 using namespace std;

 The following is a sample invocation (sample call) of the function exit :

 exit(1);

 void Functions
A void function performs some action, but does not return a value. For a void function,
a function call is a statement consisting of the function name followed by arguments
enclosed in parentheses and then terminated with a semicolon. If there is more than
one argument, the arguments are separated by commas. For a void function, a function
invocation (function call) is a statement that can be used like any other C++ statement.

 SYNTAX

Function_Name(Argument_List);

where the Argument_List is a comma-separated list of arguments:

 Argument_1, Argument_2, . . . , Argument_Last

 EXAMPLE

 exit(1);

exit

restrictions
on pow

106 CHAPTER 3 Function Basics

 The exit Function
The exit function is a predefined void function that takes one argument of type int.
Thus, an invocation of the exit function is a statement written as follows:

 exit(Integer_Value);

When the exit function is invoked (that is, when the previous statement is executed), the
program ends immediately. Any Integer_Value may be used, but by convention, 1 is
used for a call to exit that is caused by an error, and 0 is used in other cases.

The exit function definition is in the library cstdlib and it places the exit function in
the std namespace. Therefore, any program that uses the exit function must contain the
following two directives:

 #include <cstdlib>
 using namespace std;

 An invocation of the exit function ends the program immediately. Display 3.3
contains a toy program that demonstrates the exit function.

 Note that the exit function has one argument, which is of type int . The argument
is given to the operating system. As far as your C++ program is concerned, you can use
any int value as the argument, but by convention, 1 is used for a call to exit that is
caused by an error, and 0 is used in other cases.

 Display 3.3 A Function Call for a Predefi ned void Function

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4 int main()
5 {
6 cout << "Hello Out There!\n";
7 exit(1);

8 cout << "This statement is pointless,\n"
9 << "because it will never be executed.\n"
10 << "This is just a toy program to illustrate exit.\n";

11 return 0;
12 }

 Sample Dialogue

 Hello Out There!

This is just a toy example. It
would produce the same
output if you omitted
these lines.

www.itpub.net

Predefi ned Functions 107

 A void function can have any number of arguments. The details on arguments
for void functions are the same as they were for functions that return a value. In
particular, if you use an argument of the wrong type, then, in many cases, some
automatic type conversion will be done for you by C++. However, the results may not
be what you intended.

 A Random Number Generator

 A random number generator is a function that returns a “randomly chosen” number. It
is unlike the functions we have seen so far in that the value returned is not determined
by the arguments (of which there are usually none) but rather by some global
conditions. Since you can think of the value returned as being a random number, you
can use a random number generator to simulate random events, such as the result of
throwing dice or flipping a coin. In addition to simulating games of chance, random
number generators can be used to simulate things that strictly speaking may not be
random but that appear to us to be random, such as the amount of time between the
arrival of cars at a toll booth.

 Self-Test Exercises

 1. Determine the value of each of the following arithmetic expressions.

 sqrt(16.0) sqrt(16) pow(2.0, 3.0)

 pow(2, 3) pow(2.0, 3) pow(1.1, 2)

 abs(3) abs(—3) abs(0)

 fabs(—3.0) fabs(—3.5) fabs(3.5)

 ceil(5.1) ceil(5.8) floor(5.1)

 floor(5.8) pow(3.0, 2)/2.0 pow(3.0, 2)/2

 7/abs(—2) (7 + sqrt(4.0))/3.0 sqrt(pow(3, 2))

 2. Convert each of the following mathematical expressions to a C++ arithmetic
expression.

 a. 2x + y b. x y + 7 c. 2area + fudge

 d.
2time + tide

nobody
 e.

-b { 2b2 - 4ac
2a

 f. | x — y |

 3 . Write a complete C++ program to compute and output the square roots of the
whole numbers 1 to 10.

 4 . What is the function of the int argument to the void function exit ?

Generating
Random
Numbers

VideoNote

108 CHAPTER 3 Function Basics

 The C++ library with header file <cstdlib> contains a random number function
named rand . This function has no arguments. When your program invokes rand ,
the function returns an integer in the range 0 to RAND_MAX , inclusive. (The number
generated might be equal to 0 or RAND_MAX .) RAND_MAX is a defined integer constant
whose definition is also in the library with header file <cstdlib> . The exact value
of RAND_MAX is system-dependent but will always be at least 32767 (the maximum
two-byte positive integer). For example, the following outputs a list of ten “random”
numbers in the range 0 to RAND_MAX :

 int i;
 for (i = 0; i < 10; i++)
 cout << rand() << endl;

 You are more likely to want a random number in some smaller range, such as the
range 0 to 10. To ensure that the value is in the range 0 to 10 (including the end
points), you can use

 rand() % 11

 This is called scaling . The following outputs ten “random” integers in the range
0 to 10 (inclusive):

 int i;
 for (i = 0; i < 10; i++)
 cout << (rand() % 11) << endl;

 Random number generators, such as the function rand , do not generate truly
random numbers. (That’s the reason for all the quotes around “random.”) A sequence
of calls to the function rand (or almost any random number generator) will produce
a sequence of numbers (the values returned by rand) that appear to be random.
However, if you could return the computer to the state it was in when the sequence of
calls to rand began, you would get the same sequence of “random numbers.” Numbers
that appear to be random but really are not, such as a sequence of numbers generated
by calls to rand , are called pseudorandom numbers .

 A sequence of pseudorandom numbers is usually determined by one number known
as the seed . If you start the random number generator with the same seed, over and
over, then each time it will produce the same (random-looking) sequence of numbers.
You can use the function srand to set the seed for the function rand . The void
function srand takes one (positive) integer argument, which is the seed. For example,
the following will output two identical sequences of ten pseudorandom numbers:

 int i;
 srand(99);
 for (i = 0; i < 10; i++)
 cout << (rand() % 11) << endl ;
 srand(99);
 for (i = 0; i < 10; i++)
 cout << (rand() % 11) << endl ;

rand

RAND_MAX

scaling

pseudorandom
number

seed

srand

www.itpub.net

Predefi ned Functions 109

 There is nothing special about the number 99 , other than the fact that we used the
same number for both calls to srand .

 Note that the sequence of pseudorandom numbers produced for a given seed might
be system-dependent. If rerun on a different system with the same seed, the sequence
of pseudorandom numbers might be different on that system. However, as long as
you are on the same system using the same implementation of C++, the same seed will
produce the same sequence of pseudorandom numbers.

 Pseudorandom Numbers

The function rand takes no arguments and returns a pseudorandom integer in the range
0 to RAND_MAX (inclusive). The void function srand takes one argument, which is the
seed for the random number generator rand. The argument to srand is of type unsigned
int, so the argument must be nonnegative. The functions rand and srand, as well as the
defined constant RAND_MAX, are defined in the library cstdlib, so programs that use them
must contain the following directives:

 #include <cstdlib>
 using namespace std;

 These pseudorandom numbers are close enough to true random numbers for
most applications. In fact, they are often preferable to true random numbers. A
pseudorandom number generator has one big advantage over a true random number
generator: The sequence of numbers it produces is repeatable. If run twice with the
same seed value, it will produce the same sequence of numbers. This can be very handy
for a number of purposes. When an error is discovered and fixed, the program can be
rerun with the same sequence of pseudorandom numbers as those that exposed the
error. Similarly, a particularly interesting run of the program can be repeated, provided
a pseudorandom number generator is used. With a true random number generator
every run of the program is likely to be different.

 Display 3.4 shows a program that uses the random number generator rand to
“predict” the weather. In this case the prediction is random, but some people think
that is about as good as weather prediction gets. (Weather prediction can actually be
very accurate, but this program is just a game to illustrate pseudorandom numbers.)

 Note that in Display 3.4 , the seed value used for the argument of srand is the
month times the day. That way if the program is rerun and the same date is entered,
the same prediction will be made. (Of course, this program is still pretty simple. The
prediction for the day after the 14 th may or may not be the same as the 15 th , but this
program will do as a simple example.)

 Probabilities are usually expressed as a floating-point number in the range 0.0 to 1.0.
Suppose you want a random probability instead of a random integer. This can be
produced by another form of scaling. The following generates a pseudorandom
floating-point value between 0.0 and 1.0 :

 (RAND_MAX - rand())/ static_cast < double >(RAND_MAX)

floating-point
random

numbers

110 CHAPTER 3 Function Basics

 Display 3.4 A Function Using a Random Number Generator (part 1 of 2)

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4 int main()
5 {
6 int month, day;
7 cout << "Welcome to your friendly weather program.\n"
8 << "Enter today's date as two integers for the month " <<

 "and the day:\n";
9 cin >> month;
10 cin >> day;
11 srand(month * day);
12 int prediction;
13 char ans;
14 cout << "Weather for today:\n";
15 do
16 {
17 prediction = rand() % 3;
18 switch (prediction)
19 {
20 case 0:
21 cout << "The day will be sunny!!\n";
22 break;
23 case 1:
24 cout << "The day will be cloudy.\n";
25 break;
26 case 2:
27 cout << "The day will be stormy!\n";
28 break;
29 default :
30 cout << "Weather program is not " <<

 "functioning properly.\n";
31 }
32 cout << "Want the weather for the next day?(y/n): ";
33 cin >> ans;
34 } while (ans == 'y' || ans == 'Y');
35 cout << "That's it from your 24-hour weather program.\n";
36 return 0;
37 }

www.itpub.net

Programmer-Defi ned Functions 111

 Sample Dialogue

 Welcome to your friendly weather program.

 Enter today's date as two integers for the month and the day:

2 14

 Weather for today:

 The day will be cloudy.

 Want the weather for the next day?(y/n): y

 The day will be cloudy.

 Want the weather for the next day?(y/n): y

 The day will be stormy!

 Want the weather for the next day?(y/n): y

 The day will be stormy!

 Want the weather for the next day?(y/n): y

 The day will be sunny!!

 Want the weather for the next day?(y/n): n

 That's it from your 24-hour weather program.

Display 3.4 A Function Using a Random Number Generator (part 2 of 2)

 The type cast is made so that we get floating-point division rather than integer division.

 3.2 Programmer-Defined Functions

 A custom-tailored suit always fits better than one off the rack.

 MY UNCLE, THE TAILOR

 The previous section told you how to use predefined functions. This section tells you
how to define your own functions.

 Self-Test Exercises

 5. Give an expression to produce a pseudorandom integer number in the range
5 to 10 (inclusive).

 6. Write a complete program that asks the user for a seed and then outputs a list
of ten random numbers based on that seed. The numbers should be fl oating-
point numbers in the range 0.0 to 1.0 (inclusive).

112 CHAPTER 3 Function Basics

 Defining Functions That Return a Value

 You can define your own functions, either in the same file as the main part of your
program or in a separate file so that the functions can be used by several different
programs. The definition is the same in either case, but for now we will assume that
the function definition will be in the same file as the main part of your program. This
subsection discusses only functions that return a value. A later subsection tells you how
to define void functions.

 Display 3.5 contains a sample function definition in a complete program that
demonstrates a call to the function. The function is called totalCost and takes
two arguments—the price for one item and the number of items for a purchase.
The function returns the total cost, including sales tax, for that many items at the
specified price. The function is called in the same way a predefined function is called.
The definition of the function, which the programmer must write, is a bit more
complicated.

 The description of the function is given in two parts. The first part is called the
function declaration or function prototype . The following is the function declaration
(function prototype) for the function defined in Display 3.5 :

 double totalCost(int numberParameter, double priceParameter);

 The first word in a function declaration specifies the type of the value returned by
the function. Thus, for the function totalCost , the type of the value returned is
double . Next, the function declaration tells you the name of the function; in this
case, totalCost . The function declaration tells you (and the compiler) everything
you need to know in order to write and use a call to the function. It tells you how
many arguments the function needs and what type the arguments should be; in this
case, the function totalCost takes two arguments, the first one of type int and the
second one of type double . The identifiers numberParameter and priceParameter
are called formal parameters , or parameters for short. A formal parameter is used as a
kind of blank, or placeholder, to stand in for the argument. When you write a function
declaration, you do not know what the arguments will be, so you use the formal
parameters in place of the arguments. Names of formal parameters can be any valid
identifiers. Notice that a function declaration ends with a semicolon.

 Although the function declaration tells you all you need to know to write a function
call, it does not tell you what value will be returned. The value returned is determined
by the function definition. In Display 3.5 the function definition is in lines 24 to 30 of
the program. A function definition describes how the function computes the value it
returns. A function definition consists of a function header followed by a function body .
The function header is written similar to the function declaration, except that the
header does not have a semicolon at the end. The value returned is determined by the
statements in the function body.

 The function body follows the function header and completes the function
definition. The function body consists of declarations and executable statements
enclosed within a pair of braces. Thus, the function body is just like the body of
the main part of a program. When the function is called, the argument values are
plugged in for the formal parameters, and then the statements in the body are executed.

function
declaration
or function

prototype

type for value
returned

formal
parameter

function
definition

function
header

function body

www.itpub.net

Programmer-Defi ned Functions 113

Function declaration;
also called the function
prototype

Function call

Function
head

Function
body

Function
definition

 Display 3.5 A Function Using a Random Number Generator

 1 #include <iostream>
 2 using namespace std;

 3 double totalCost(int numberParameter, double priceParameter);
 4 //Computes the total cost, including 5% sales tax ,
 5 //on numberParameter items at a cost of priceParameter each .

 6 int main()
 7 {
 8 double price, bill;
 9 int number;

 10 cout << "Enter the number of items purchased: ";
 11 cin >> number;
 12 cout << "Enter the price per item $";
 13 cin >> price;

 14 bill = totalCost(number, price);

 15 cout.setf(ios::fixed);
 16 cout.setf(ios::showpoint);
 17 cout.precision(2);
 18 cout << number << " items at "
 19 << "$" << price << " each.\n"
 20 << "Final bill, including tax, is $" << bill
 21 << endl;

 22 return 0;
 23 }

 24 double totalCost(int numberParameter, double priceParameter)
 25 {
 26 const double TAXRATE = 0.05; //5% sales tax
 27 double subtotal;

 28 subtotal = priceParameter * numberParameter;
 29 return (subtotal + subtotal*TAXRATE);
 30 }

 Sample Dialogue

 Enter the number of items purchased: 2

 Enter the price per item: $ 10.10

 2 items at $10.10 each.

 Final bill, including tax, is $21.21

114 CHAPTER 3 Function Basics

The value returned by the function is determined when the function executes a return
statement. (The details of this “plugging in” will be discussed in Chapter 4 .)

 A return statement consists of the keyword return followed by an expression. The
function definition in Display 3.5 contains the following return statement:

 return (subtotal + subtotal * TAXRATE);

 When this return statement is executed, the value of the following expression is returned
as the value of the function call:

 (subtotal + subtotal * TAXRATE)

 The parentheses are not needed. The program will run the same if the parentheses
are omitted. However, with longer expressions, the parentheses make the return

statement easier to read. For consistency, some programmers advocate using these
parentheses even with simple expressions. In the function definition in Display 3.5
there are no statements after the return statement, but if there were, they would not
be executed. When a return statement is executed, the function call ends.

 Note that the function body can contain any C++ statements and that the statements
will be executed when the function is called. Thus, a function that returns a value may
do any other action as well as return a value. In most cases, however, the main purpose
of a function that returns a value is to return that value.

 Either the complete function definition or the function declaration (function
prototype) must appear in the code before the function is called. The most typical
arrangement is for the function declaration and the main part of the program to appear
in one or more files, with the function declaration before the main part of the program,
and for the function definition to appear in another file. We have not yet discussed
dividing a program across more than one file, and so we will place the function
definitions after the main part of the program. If the full function definition is placed
before the main part of the program, the function declaration can be omitted.

 Alternate Form for Function Declarations

 You are not required to list formal parameter names in a function declaration (function
prototype). The following two function declarations are equivalent:

 double totalCost(int numberParameter, double priceParameter);

 and

 double totalCost(int , double);

 We will usually use the first form so that we can refer to the formal parameters in the
comment that accompanies the function declaration. However, you will often see the
second form in manuals.

 This alternate form applies only to function declarations. A function definition must
always list the formal parameter names .

return
statement

www.itpub.net

Programmer-Defi ned Functions 115

 PITFALL: Arguments in the Wrong Order

 When a function is called, the computer substitutes the first argument for the first
formal parameter, the second argument for the second formal parameter, and so
forth. Although the computer checks the type of each argument, it does not check for
reasonableness. If you confuse the order of the arguments, the program will not do
what you want it to do. If there is a type violation due to an argument of the wrong
type, then you will get an error message. If there is no type violation, your program
will probably run normally but produce an incorrect value for the value returned by
the function. ■

 PITFALL: Use of the Terms Parameter and Argument

 The use of the terms formal parameter and argument that we follow in this book
is consistent with common usage, but people also often use the terms parameter
and argument interchangeably. When you see the terms parameter and argument ,
you must determine their exact meaning from context. Many people use the term
parameter for both what we call formal parameters and what we call arguments . Other
people use the term argument both for what we call formal parameters and what we
call arguments . Do not expect consistency in how people use these two terms. (In
this book we sometimes use the term parameter to mean formal parameter , but this is
more of an abbreviation than a true inconsistency.) ■

 Functions Calling Functions

 A function body may contain a call to another function. The situation for these sorts
of function calls is the same as if the function call had occurred in the main part of the
program; the only restriction is that the function declaration (or function definition)
must appear before the function is used. If you set up your programs as we have been
doing, this will happen automatically, since all function declarations come before the
main part of the program and all function definitions come after the main part of the
program. Although you may include a function call within the definition of another
function, you cannot place the definition of one function within the body of another
function definition.

 EXAMPLE: A Rounding Function

 The table of predefined functions (Display 3.2) does not include any function for
rounding a number. The functions ceil and floor are almost, but not quite,
rounding functions. The function ceil always returns the next-highest whole
number (or its argument if it happens to be a whole number). So, ceil(2.1) returns
3.0 , not 2.0 .

(continued)

116 CHAPTER 3 Function Basics

 Display 3.6 The Function round (part 1 of 2)

 1 #include <iostream>
 2 #include <cmath>
 3 using namespace std;

 4 int round(double number);
 5 //Assumes number >= 0 .
 6 //Returns number rounded to the nearest integer .
 7 int main()
 8 {
 9 double doubleValue;
 10 char ans;

Testing program for
the function round

 The function floor always returns the nearest whole number less than (or equal
to) the argument. So, floor(2.9) returns 2.0 , not 3.0 . Fortunately, it is easy to
define a function that does true rounding. The function is defined in Display 3.6 . The
function round rounds its argument to the nearest integer. For example, round(2.3)
returns 2 , and round(2.6) returns 3 .

 To see that round works correctly, let’s look at some examples. Consider
round(2.4) . The value returned is the following (converted to an int value),

 floor(2.4 + 0.5)

 which is floor(2.9) , or 2.0 . In fact, for any number that is greater than or equal
to 2.0 and strictly less than 2.5 , that number plus 0.5 will be less than 3.0 , and so
floor applied to that number plus 0.5 will return 2.0 . Thus, round applied to any
number that is greater than or equal to 2.0 and strictly less than 2.5 will return 2 . (Since
the function declaration for round specifies that the type for the value returned is
int , we have type cast the computed value to the type int .)

 Now consider numbers greater than or equal to 2.5 ; for example, 2.6 . The value
returned by the call round(2.6) is the following (converted to an int value),

 floor(2.6 + 0.5)

 which is floor(3.1) , or 3.0 . In fact, for any number that is greater than 2.5 and less
than or equal to 3.0 , that number plus 0.5 will be greater than 3.0 . Thus, round called
with any number that is greater than 2.5 and less than or equal to 3.0 will return 3 .

 Thus, round works correctly for all arguments between 2.0 and 3.0 . Clearly, there
is nothing special about arguments between 2.0 and 3.0 . A similar argument applies
to all nonnegative numbers. So, round works correctly for all nonnegative arguments.

EXAMPLE: (continued)

www.itpub.net

Programmer-Defi ned Functions 117

Display 3.6 The Function round (part 2 of 2)

 11 do
 12 {
 13 cout << "Enter a double value: ";
 14 cin >> doubleValue;
 15 cout << "Rounded that number is " << round(doubleValue) <<

endl;
 16 cout << "Again? (y/n): ";
 17 cin >> ans;
 18 } while (ans == 'y' || ans == 'Y');
 19 cout << "End of testing.\n";

 20 return 0;
 21 }
 22 //Uses cmath:
 23 int round(double number)
 24 {
 25 return static_cast < int >(floor(number + 0.5));
 26 }

 Sample Dialogue

 Enter a double value: 9.6

 Rounded, that number is 10

 Again? (y/n): y

 Enter a double value: 2.49

 Rounded, that number is 2

 Again? (y/n): n

 End of testing.

(continued)

 Self-Test Exercises

 7. What is the output produced by the following program?

 #include <iostream>
 using namespace std;
 char mystery(int firstParameter, int secondParameter);
 int main()
 {
 cout << mystery(10, 9) << "ow\n";
 return 0;
 }

118 CHAPTER 3 Function Basics

 char mystery(int firstParameter, int secondParameter)
 {
 if (firstParameter >= secondParameter)
 return 'W';
 else
 return 'H';
 }

 8. Write a function declaration (function prototype) and a function defi nition for
a function that takes three arguments, all of type int , and that returns the sum
of its three arguments.

 9. Write a function declaration and a function defi nition for a function that takes
one argument of type double . The function returns the character value ' P ' if its
argument is positive and returns ' N ' if its argument is zero or negative.

 10. Can a function defi nition appear inside the body of another function defi nition?

 11. List the similarities and differences between how you invoke (call) a predefi ned
(that is, library) function and a user-defi ned function.

Self-Test Exercises (continued)

 Functions That Return a Boolean Value

 The returned type for a function can be the type bool . A call to such a function returns
one of the values true or false and can be used anywhere that a Boolean expression
is allowed. For example, it can be used in a Boolean expression to control an if-else

statement or to control a loop statement. This can often make a program easier to read.
By means of a function declaration, you can associate a complex Boolean expression
with a meaningful name. For example, the statement

 if (((rate > = 10) && (rate < 20)) || (rate == 0))
 {
 ...
 }

 can be made to read

 if (appropriate(rate))
 {
 ...
 }

 provided that the following function has been defined:

 bool appropriate(int rate)
 {
 return (((rate >= 10) && (rate < 20)) || (rate == 0));
 }

www.itpub.net

Programmer-Defi ned Functions 119

 12 . Write a function defi nition for a function called inOrder that takes three
arguments of type int . The function returns true if the three arguments are in
ascending order; otherwise, it returns false . For example, inOrder(1, 2, 3) and
inOrder(1, 2, 2) both return true , whereas inOrder(1, 3, 2) returns false .

 13 . Write a function defi nition for a function called even that takes one argument
of type int and returns a bool value. The function returns true if its one
argument is an even number; otherwise, it returns false .

 14. Write a function defi nition for a function isDigit that takes one argument of
type char and returns a bool value. The function returns true if the argument
is a decimal digit; otherwise, it returns false .

Self-Test Exercises

 void
function

definition

 void
function call

 Defining void Functions

 In C++ a void function is defined in a way similar to that of functions that return
a value. For example, the following is a void function that outputs the result of a
calculation that converts a temperature expressed in degrees Fahrenheit to a temperature
expressed in degrees Celsius. The actual calculation would be done elsewhere in the
program. This void function implements only the subtask for outputting the results of
the calculation.

 void showResults(double fDegrees, double cDegrees)
 {
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(1);
 cout << fDegrees
 << " degrees Fahrenheit is equivalent to\n"
 << cDegrees << " degrees Celsius.\n";
 }

 As the previous function definition illustrates, there are only two differences between
a function definition for a void function and for a function that returns a value. One
difference is that we use the keyword void where we would normally specify the type
of the value to be returned. This tells the compiler that this function will not return
any value. The name void is used as a way of saying “no value is returned by this
function.” The second difference is that a void function definition does not require
a return statement. The function execution ends when the last statement in the
function body is executed.

 A void function call is an executable statement. For example, the previous function
showResults might be called as follows:

 showResults(32.5, 0.3);

120 CHAPTER 3 Function Basics

 If the previous statement were executed in a program, it would cause the following to
appear on the screen:

 32.5 degrees Fahrenheit is equivalent to
 0.3 degrees Celsius.

 Notice that the function call ends with a semicolon, which tells the compiler that the
function call is an executable statement.

 When a void function is called, the arguments are substituted for the formal
parameters, and the statements in the function body are executed. For example, a call to
the void function showResults , which we gave earlier in this section, will cause some
output to be written to the screen. One way to think of a call to a void function is to
imagine that the body of the function definition is copied into the program in place of the
function call. When the function is called, the arguments are substituted for the formal
parameters, and then it is just as if the body of the function were lines in the program.
(Chapter 4 describes the process of substituting arguments for formal parameters in
detail. Until then, we will use only simple examples that should be clear enough without
a formal description of the substitution process.)

functions with
no arguments

 Function Declaration (Function Prototype)

A function declaration (function prototype) tells you all you need to know to write a call to
the function. A function declaration (or the full function definition) must appear in your code
prior to a call to the function. Function declarations are normally placed before the main part
of your program.

 SYNTAX

 Type_Returned_Or_void FunctionName (Parameter_List);

where the Parameter_List is a comma-separated list of parameters:

 Type_1 Formal_Parameter_1, Type_2 Formal_Parameter_2,...
 Type_Last Formal_Parameter_Last

 EXAMPLES

 double totalWeight(int number, double weightOfOne);
 //Returns the total weight of number items that
//each weigh weightOfOne.

 void showResults(double fDegrees, double cDegrees);
 //Displays a message saying fDegrees Fahrenheit
//is equivalent to cDegrees Celsius.

Do not forget
this semicolon.

 It is perfectly legal, and sometimes useful, to have a function with no arguments.
In that case there simply are no formal parameters listed in the function declaration
and no arguments are used when the function is called. For example, the void

www.itpub.net

Programmer-Defi ned Functions 121

function initializeScreen , defined next, simply sends a newline command to
the screen:

 void initializeScreen()
 {
 cout << endl;
 }

 If your program includes the following call to this function as its first executable
statement, then the output from the previously run program will be separated from the
output for your program:

 initializeScreen();

 Be sure to notice that even when there are no parameters to a function, you still must
include the parentheses in the function declaration and in a call to the function.

 Placement of the function declaration (function prototype) and the function definition
is the same for void functions as what we described for functions that return a value.

return Statements in void Functions

 Both void functions and functions that return a value can have return statements. In the
case of a function that returns a value, the return statement specifies the value returned.
In the case of a void function, the return statement does not include any expression for a
value returned. A return statement in a void function simply ends the function call. Every
function that returns a value must end by executing a return statement. However, a void
function need not contain a return statement. If it does not contain a return statement,
it will end after executing the code in the function body. It is as if there were an implicit
return statement just before the final closing brace, }, at the end of the function body.

 The fact that there is an implicit return statement before the final closing brace
in a function body does not mean that you never need a return statement in a void
function. For example, the function definition in Display 3.7 might be used as part of a
restaurant-management program. That function outputs instructions for dividing a given
amount of ice cream among the people at a table. If there are no people at the table (that
is, if number equals 0), then the return statement within the if statement terminates the
function call and avoids a division by zero. If number is not 0 , then the function call ends
when the last cout statement is executed at the end of the function body.

 Preconditions and Postconditions

 One good way to write a function declaration comment is to break it down into two
kinds of information called the precondition and the postcondition . The precondition
states what is assumed to be true when the function is called. The function should not
be used and cannot be expected to perform correctly unless the precondition holds. The
postcondition describes the effect of the function call; that is, the postcondition tells what
will be true after the function is executed in a situation in which the precondition holds.
For a function that returns a value, the postcondition will describe the value returned
by the function. For a function that changes the value of some argument variables, the
postcondition will describe all the changes made to the values of the arguments.

void functions
and return
statements

precondition

postcondition

122 CHAPTER 3 Function Basics

 Display 3.7 Use of return in a void Function

 1 #include <iostream>
 2 using namespace std;

 3 void iceCreamDivision(int number, double totalWeight);
 4 //Outputs instructions for dividing totalWeight ounces of ice cream
 5 //among number customers. If number is 0, only an error
 //message is output .

 6 int main()
 7 {
 8 int number;
 9 double totalWeight;

 10 cout << "Enter the number of customers: ";
 11 cin >> number;
 12 cout << "Enter weight of ice cream to divide (in ounces): ";
 13 cin >> totalWeight;

 14 iceCreamDivision(number, totalWeight);

 15 return 0;
 16 }

 17 void iceCreamDivision(int number, double totalWeight)
 18 {
 19 double portion;

 20 if (number = = 0)
 21 {
 22 cout << "Cannot divide among zero customers.\n";
 23 return ;
 24 }
 25 portion = totalWeight/number;
 26 cout << "Each one receives "
 27 << portion << " ounces of ice cream." << endl;
 28 }

 Sample Dialogue

 Enter the number of customers: 0

 Enter weight of ice cream to divide (in ounces): 12

 Cannot divide among zero customers.

If number is 0, then the
function execution ends here.

www.itpub.net

Programmer-Defi ned Functions 123

 For example, the following is a function declaration with precondition and
postcondition:

 void showInterest(double balance, double rate);
 //Precondition: balance is a nonnegative savings account balance.
 //rate is the interest rate expressed as a percentage, such as 5
//for 5%.
 //Postcondition: The amount of interest on the given balance
 //at the given rate is shown on the screen.

 You do not need to know the definition of the function showInterest in order to use
this function. All that you need to know in order to use this function is given by the
precondition and postcondition.

 When the only postcondition is a description of the value returned, programmers
usually omit the word Postcondition , as in the following example:

 double celsius(double fahrenheit);
 //Precondition: fahrenheit is a temperature in degrees
//Fahrenheit.
 //Returns the equivalent temperature expressed in degrees
//Celsius.

 Some programmers choose not to use the words precondition and postcondition in
their function comments. However, whether you use the words or not, you should
always think in terms of precondition and postcondition when designing a function
and when deciding what to include in the function comment.

 main Is a Function
 As we already noted, the main part of a program is actually the definition of a function
called main . When the program is run, the function main is automatically called; it,
in turn, may call other functions. Although it may seem that the return statement
in the main part of a program should be optional, practically speaking it is not. The
C++ standard says that you can omit the return 0 statement in the main part of the
program, but many compilers still require it and almost all compilers allow you to
include it. For the sake of portability, you should include a return 0 statement in the
main function. You should consider the main part of a program to be a function that
returns a value of type int and thus requires a return statement. Treating the main
part of your program as a function that returns an integer may sound strange, but that
is the tradition which many compilers enforce.

 Although some compilers may allow you to get away with it, you should not include
a call to main in your code. Only the system should call main , which it does when you
run your program.

 Recursive Functions
 C++ does allow you to define recursive functions. Recursive functions are covered in
 Chapter 13 . If you do not know what recursive functions are, there is no need to be
concerned until you reach that chapter. If you want to read about recursive functions
early, you can read Sections 13.1 and 13.2 of Chapter 13 after you complete Chapter 4 .
Note that the main function should not be called recursively.

124 CHAPTER 3 Function Basics

 Self-Test Exercises

 15. What is the output of the following program?

 #include <iostream>
 using namespace std;
 void friendly();
 void shy(int audienceCount);
 int main()
 {
 friendly();
 shy(6);
 cout << "One more time:\n";
 shy(2);
 friendly();
 cout << "End of program.\n";
 return 0;
 }
 void friendly()
 {
 cout << "Hello\n";
 }
 void shy(int audienceCount)
 {
 if (audienceCount < 5)
 return ;
 cout << "Goodbye\n";
 }

 16. Suppose you omitted the return statement in the function defi nition for
iceCreamDivision in Display 3.7 . What effect would it have on the program?
Would the program compile? Would it run? Would the program behave
any differently?

 17. Write a defi nition for a void function that has three arguments of type int and
that outputs to the screen the product of these three arguments. Put the defi nition
in a complete program that reads in three numbers and then calls this function.

 18. Does your compiler allow void main() and int main() ? What warnings
are issued if you have int main() and do not supply a return 0; statement?
To fi nd out, write several small test programs and perhaps ask your instructor
or a local guru.

 19. Give a precondition and a postcondition for the predefi ned function sqrt ,
which returns the square root of its argument.

www.itpub.net

Scope Rules 125

 3.3 Scope Rules

 Let the end be legitimate, let it be within the scope of the

constitution, . . .

 JOHN MARSHALL, Chief Justice U.S. Supreme Court,

McCulloch v. Maryland (1819)

 Functions should be self-contained units that do not interfere with other functions—
or any other code for that matter. To achieve this you often need to give the function
variables of its own that are distinct from any other variables that are declared outside
the function definition and that may have the same names as the variables that belong
to the function. These variables that are declared in a function definition are called
local variables and are the topic of this section.

 Local Variables

 Look back at the program in Display 3.1 . It includes a call to the predefined function
sqrt . We did not need to know anything about the details of the function definition for
sqrt in order to use this function. In particular, we did not need to know what variables
were declared in the definition of sqrt . A function that you define is no different. Variable
declarations within a function definition are the same as if they were variable declarations
in a predefined function or in another program. If you declare a variable in a function
definition and then declare another variable of the same name in the main function of the
program (or in the body of some other function definition), then these two variables are
two different variables, even though they have the same name. Let’s look at an example.

 The program in Display 3.8 has two variables named averagePea ; one is declared
and used in the function definition for the function estimateOfTotal , and the other
is declared and used in the main function of the program. The variable averagePea in
the function definition for estimateOfTotal and the variable averagePea in the main
function are two different variables. It is the same as if the function estimateOfTotal

were a predefined function. The two variables named averagePea will not interfere
with each other any more than two variables in two completely different programs
would. When the variable averagePea is given a value in the function call to
estimateOfTotal , this does not change the value of the variable in the main function
that is also named averagePea .

 Variables that are declared within the body of a function definition are said to be
local to that function or to have that function as their scope . If a variable is local to some
function, we sometimes simply call it a local variable , without specifying the function.

 Another example of local variables can be seen in Display 3.5 . The definition of the
function totalCost in that program begins as follows:

 double totalCost(int numberParameter, double priceParameter)
 {
 const double TAXRATE = 0.05; //5% sales tax
 double subtotal;

 local
variable

 scope

Scope

Walkthrough

VideoNote

126 CHAPTER 3 Function Basics

 Display 3.8 Local Variables (part 1 of 2)

 1 //Computes the average yield on an experimental pea growing patch .
 2 #include <iostream>
 3 using namespace std;

 4 double estimateOfTotal(int minPeas, int maxPeas, int podCount);
 5 //Returns an estimate of the total number of peas harvested .
 6 //The formal parameter podCount is the number of pods .
 7 //The formal parameters minPeas and maxPeas are the minimum
 8 //and maximum number of peas in a pod .

 9 int main()
 10 {
 11 int maxCount, minCount, podCount;
 12 double averagePea , yield;

 13 cout << "Enter minimum and maximum number of peas in a pod: ";
 14 cin >> minCount >> maxCount;
 15 cout << "Enter the number of pods: ";
 16 cin >> podCount;
 17 cout << "Enter the weight of an average pea (in ounces): ";
 18 cin >> averagePea ;

 19 yield =
 20 estimateOfTotal(minCount, maxCount, podCount) * averagePea;

 21 cout.setf(ios::fixed);
 22 cout.setf(ios::showpoint);
 23 cout.precision(3);
 24 cout << "Min number of peas per pod = " << minCount << endl
 25 << "Max number of peas per pod = " << maxCount << endl
 26 << "Pod count = " << podCount << endl
 27 << "Average pea weight = "
 28 << averagePea << " ounces" << endl
 29 << "Estimated average yield = " << yield << " ounces"
 30 << endl;

 31 return 0;
 32 }
 33
 34 double estimateOfTotal(int minPeas, int maxPeas, int podCount)
 35 {
 36 double averagePea;

 37 averagePea = (maxPeas + minPeas)/2.0;
 38 return (podCount * averagePea);
 39 }

This variable named
 averagePea is local to the
 main function.

This variable named
 averagePea is local to
the function estimateOfTotal .

www.itpub.net

Scope Rules 127

 Local Variables

Variables that are declared within the body of a function definition are said to be local to
that function or to have that function as their scope. If a variable is local to a function, then
you can have another variable (or other kind of item) with the same name that is declared
in another function definition; these will be two different variables, even though they have
the same name. (In particular, this is true even if one of the functions is the main function.)

 The variable subtotal is local to the function totalCost . The named constant
TAXRATE is also local to the function totalCost . (A named constant is in fact nothing
but a variable that is initialized to a value and that cannot have that value changed.)

 Sample Dialogue

 Enter minimum and maximum number of peas in a pod: 4 6

 Enter the number of pods: 10

 Enter the weight of an average pea (in ounces): 0.5

 Min number of peas per pod = 4

 Max number of peas per pod = 6

 Pod count = 10

 Average pea weight = 0.500 ounces

 Estimated average yield = 25.000 ounces

Display 3.8 Local Variables (part 2 of 2)

 Procedural Abstraction

 A person who uses a program should not need to know the details of how the program
is coded. Imagine how miserable your life would be if you had to know and remember
the code for the compiler you use. A program has a job to do, such as compiling your
program or checking the spelling of words in your paper. You need to know what the
program’s job is so that you can use the program, but you do not (or at least should
not) need to know how the program does its job. A function is like a small program
and should be used in a similar way. A programmer who uses a function in a program
needs to know what the function does (such as calculate a square root or convert a
temperature from degrees Fahrenheit to degrees Celsius), but should not need to know
how the function accomplishes its task. This is often referred to as treating the function
like a black box .

 Calling something a black box is a figure of speech intended to convey the image of
a physical device that you know how to use but whose method of operation is a mystery
because it is enclosed in a black box that you cannot see inside of (and cannot pry open).

black box

128 CHAPTER 3 Function Basics

If a function is well designed, the programmer can use the function as if it were a
black box. All the programmer needs to know is that if he or she puts appropriate
arguments into the black box, then it will take some appropriate action. Designing a
function so that it can be used as a black box is sometimes called information hiding
to emphasize the fact that the programmer acts as if the body of the function were
hidden from view.

 Writing and using functions as if they were black boxes is also called procedural
abstraction . When programming in C++ it might make more sense to call it functional
abstraction . However, procedure is a more general term than function and computer
scientists use it for all “function-like” sets of instructions, and so they prefer the
 term procedural abstraction . The term abstraction is intended to convey the idea that
when you use a function as a black box, you are abstracting away the details of the code
contained in the function body. You can call this technique the black box principle or
the principle of procedural abstraction or information hiding . The three terms mean the
same thing. Whatever you call this principle, the important point is that you should
use it when designing and writing your function definitions.

 information
hiding

 procedural
abstraction

 Procedural Abstraction

When applied to a function definition, the principle of procedural abstraction means that
your function should be written so that it can be used like a black box . This means that the
programmer who uses the function should not need to look at the body of the function
definition to see how the function works. The function declaration and the accompanying
comment should be all the programmer needs to know in order to use the function. To
ensure that your function definitions have this important property, you should strictly adhere
to the following rules:

 HOW TO WRITE A BLACK-BOX FUNCTION DEFINITION
 ■ The function declaration comment should tell the programmer any and all conditions

that are required of the arguments to the function and should describe the result of a
function invocation.

 ■ All variables used in the function body should be declared in the function body.
(The formal parameters do not need to be declared, because they are listed in the
 function heading.)

 Global Constants and Global Variables

 As we noted in Chapter 1 , you can and should name constant values using the const
modifier. For example, in Display 3.5 we used the const modifier to give a name to
the rate of sales tax with the following declaration:

 const double TAXRATE = 0.05; //5% sales tax

www.itpub.net

Scope Rules 129

 If this declaration is inside the definition of a function, as in Display 3.5 , then the name
TAXRATE is local to the function definition, which means that outside the definition of
the function that contains the declaration, you can use the name TAXRATE for another
named constant, or variable, or anything else.

 On the other hand, if this declaration were to appear at the beginning of your
program, outside the body of all the functions (and outside the body of the main part
of your program), then the named constant is said to be a global named constant
and the named constant can be used in any function definition that follows the
constant declaration.

 Display 3.9 shows a program with an example of a global named constant. The
program asks for a radius and then computes both the area of a circle and the volume
of a sphere with that radius, using the following formulas:

 area = π × (radius) 2
 volume = (4/3) × π × (radius) 3

 Both formulas include the constant π, which is approximately equal to 3.14159. The
symbol π is the Greek letter called “pi.” The program thus uses the following global
named constant,

 const double PI = 3.14159;

 which appears outside the definition of any function (including outside the definition
of main).

 The compiler allows you wide latitude in where you place the declarations for
your global named constants. To aid readability, however, you should place all your
include directives together, all your global named constant declarations together in
another group, and all your function declarations (function prototypes) together. We
will follow standard practice and place all our global named constant declarations after
our include and using directives and before our function declarations.

 Placing all named constant declarations at the start of your program can aid
readability even if the named constant is used by only one function. If the named
constant might need to be changed in a future version of your program, it will be easier
to find if it is at the beginning of your program. For example, placing the constant
declaration for the sales tax rate at the beginning of an accounting program will make it
easy to revise the program should the tax rate change.

 It is possible to declare ordinary variables, without the const modifier, as global
variables , which are accessible to all function definitions in the file. This is done
similar to the way it is done for global named constants, except that the modifier const
is not used in the variable declaration. However, there is seldom any need to use such
global variables. Moreover, global variables can make a program harder to understand
and maintain, so we urge you to avoid using them.

global
named

constant

global variable

130 CHAPTER 3 Function Basics

 Display 3.9 A Global Named Constant (part 1 of 2)

 1 //Computes the area of a circle and the volume of a sphere.
 2 //Uses the same radius for both calculations .
3 #include <iostream>
4 #include <cmath>
5 using namespace std;

6 const double PI = 3.14159;

7 double area(double radius);
 8 //Returns the area of a circle with the specified radius.

9 double volume(double radius);
10 //Returns the volume of a sphere with the specified radius .

11 int main()
12 {
13 double radiusOfBoth, areaOfCircle, volumeOfSphere;

14 cout << "Enter a radius to use for both a circle\n"
15 << "and a sphere (in inches): ";
16 cin >> radiusOfBoth;

17 areaOfCircle = area(radiusOfBoth);
18 volumeOfSphere = volume(radiusOfBoth);

19 cout << "Radius = " << radiusOfBoth << " inches\n"
20 << "Area of circle = " << areaOfCircle
21 << " square inches\n"
22 << "Volume of sphere = " << volumeOfSphere
23 << " cubic inches\n";

24 return 0;
25 }
26
27 double area(double radius)
28 {
29 return (PI * pow(radius, 2));
30 }

31 double volume(double radius)
32 {
33 return ((4.0/3.0) * PI * pow(radius, 3));
34 }

www.itpub.net

Scope Rules 131

 Blocks

 A variable declared inside a compound statement (that is, inside a pair of braces) is
local to the compound statement. The name of the variable can be used for something
else, such as the name of a different variable, outside the compound statement.

 A compound statement with declarations is usually called a block . Actually, block
and compound statement are two terms for the same thing. However, when we focus on
variables declared within a compound statement, we normally use the term block rather
than compound statement and we say that the variables declared within the block are
local to the block .

 Sample Dialogue

 Enter a radius to use for both a circle

 and a sphere (in inches): 2

 Radius = 2 inches

 Area of circle = 12.5664 square inches

 Volume of sphere = 33.5103 cubic inches

Display 3.9 A Global Named Constant (part 2 of 2)

block

 Self-Test Exercises

 20. If you use a variable in a function defi nition, where should you declare the
variable? In the function defi nition? In the main function? Any place that
is convenient?

 21. Suppose a function named function1 has a variable named sam declared
within the defi nition of function1 , and a function named function2 also
has a variable named sam declared within the defi nition of function2 . Will
the program compile (assuming everything else is correct)? If the program will
compile, will it run (assuming that everything else is correct)? If it runs, will it
generate an error message when run (assuming everything else is correct)? If it
runs and does not produce an error message when run, will it give the correct
output (assuming everything else is correct)?

 22. What is the purpose of the comment that accompanies a function declaration?

 23. What is the principle of procedural abstraction as applied to function
defi nitions?

 24. What does it mean when we say the programmer who uses a function should
be able to treat the function like a black box? (This question is very closely
related to the previous question.)

132 CHAPTER 3 Function Basics

 If a variable is declared in a block, then the definition applies from the location of
the declaration to the end of the block. This is usually expressed by saying that the scope
of the declaration is from the location of the declaration to the end of the block. So if
a variable is declared at the start of a block, its scope is the entire block. If the variable
is declared part way through the block, the declaration does not take effect until the
program reaches the location of the declaration (see Self-Test Exercise 25).

 Notice that the body of a function definition is a block. Thus, a variable that is local
to a function is the same thing as a variable that is local to the body of the function
definition (which is a block).

 Blocks

A block is some C++ code enclosed in braces. The variables declared in a block are local to
the block, and so the variable names can be used outside the block for something else (such
as being reused as the names for different variables).

 Nested Scopes

 Suppose you have one block nested inside another block, and suppose that one
identifier is declared as a variable in each of these two blocks. These are two different
variables with the same name. One variable exists only within the inner block and
cannot be accessed outside that inner block. The other variable exists only in the
outer block and cannot be accessed in the inner block. The two variables are distinct,
so changes made to one of these variables will have no effect on the other of these
two variables.

 Scope Rule for Nested Blocks

If an identifier is declared as a variable in each of two blocks, one within the other, then
these are two different variables with the same name. One variable exists only within the
inner block and cannot be accessed outside of the inner block. The other variable exists
only in the outer block and cannot be accessed in the inner block. The two variables are
distinct, so changes made to one of these variables will have no effect on the other of
these two variables.

 TIP: Use Function Calls in Branching and Loop Statements

 The switch statement and the if-else statement allow you to place several different
statements in each branch. However, doing so can make the switch statement or
if-else statement difficult to read. Rather than placing a compound statement in a
branching statement, it is usually preferable to convert the compound statement to a

(continued)

www.itpub.net

Scope Rules 133

function definition and place a function call in the branch. Similarly, if a loop body is
large, it is preferable to convert the compound statement to a function definition and
make the loop body a function call. ■

 Variables Declared in a for Loop

 A variable may be declared in the heading of a for statement so that the variable is
both declared and initialized at the start of the for statement. For example,

 for (int n = 1; n <= 10; n++)
 sum = sum + n;

 The ANSI/ISO C++ standard requires that a C++ compiler that claims compliance
with the standard treat any declaration in a for loop initializer as if it were local to
the body of the loop. Earlier C++ compilers did not do this. You should determine
how your compiler treats variables declared in a for loop initializer. If portability is
critical to your application, you should not write code that depends on this behavior.
Eventually, all widely used C++ compilers will likely comply with this rule, but
compilers presently available may or may not comply.

 Self-Test Exercise

 25. Though we urge you not to program using this style, we are providing an
exercise that uses nested blocks to help you understand the scope rules. State
the output that this code fragment would produce if embedded in an otherwise
complete, correct program.

 {
 int x = 1;
 cout << x << endl;
 {
 cout << x << endl;
 int x = 2;
 cout << x << endl;
 {
 cout << x << endl;
 int x = 3;
 cout << x << endl;
 }
 cout << x << endl;
 }
 cout << x << endl;
 }

TIP: (continued)

 Chapter Summary

• There are two kinds of functions in C++: functions that return a value and void
functions.

• A function should be defined so that it can be used as a black box. The programmer
who uses the function should not need to know any details about how the function
is coded. All the programmer should need to know is the function declaration and
the accompanying comment that describes the value returned. This rule is sometimes
called the principle of procedural abstraction.

• A good way to write a function declaration comment is to use a precondition and a
postcondition. The precondition states what is assumed to be true when the func-
tion is called. The postcondition describes the effect of the function call; that is, the
postcondition tells what will be true after the function is executed in a situation in
which the precondition holds.

• A variable that is declared in a function definition is said to be local to the function.

• A formal parameter is a kind of placeholder that is filled in with a function argument
when the function is called. The details on this “filling in” process are covered in
 Chapter 4 .

 Answers to Self-Test Exercises

 1. 4.0 4.0 8.0

 8.0 8.0 1.21

 3 3 0

 3.0 3.5 3.5

 6.0 6.0 5.0

 5.0 4.5 4.5

 3 3.0 3.0

 2. a. sqrt(x + y)

 b. pow(x, y + 7)
 c. sqrt(area + fudge)

 d. sqrt(time+tide)/nobody
 e. (—b ± sqrt(b*b — 4*a*c))/(2*a)

 f. abs(x — y) or labs(x — y) or fabs(x — y)

 3. #include <iostream>

 #include <cmath>

 using namespace std;

 int main()

 {

 int i;

134 CHAPTER 3 Function Basics

www.itpub.net

Answers to Self-Test Exercises 135

 for (i = 1; i <= 10; i++)

 cout << "The square root of " << i

 << " is " << sqrt(i) << endl;

 return 0;

 }

 4. The argument is given to the operating system. As far as your C++ program is
concerned, you can use any int value as the argument. By convention, however,
1 is used for a call to exit that is caused by an error, and 0 is used in other cases.

 5. (5 + (rand() % 6))

 6. #include <iostream>

 #include <cstdlib>

 using namespace std;

 int main()

 {

 cout << "Enter a nonnegative integer to use as the\n"

 << "seed for the random number generator: ";

 unsigned int seed;

 cin >> seed;

 srand(seed);

 cout << "Here are ten random probabilities:\n";

 int i;

 for (i = 0; i < 10; i++)

 cout << ((RAND_MAX - rand())/ static_cast < double >(RAND_MAX))

 << endl;

 return 0;

 }

 7. Wow

 8. The function declaration is

 int sum(int n1, int n2, int n3);

 //Returns the sum of n1, n2, and n3.

 The function definition is

 int sum(int n1, int n2, int n3)

 {

 return (n1 + n2 + n3);

 }

 9. The function declaration is

 char positiveTest(double number);

 //Returns 'P' if number is positive.

 //Returns 'N' if number is negative or zero.

 The function definition is

 char positiveTest(double number)

 {

 if (number > 0)

 return 'P';

 else

 return 'N';

 }

 10. No, a function definition cannot appear inside the body of another function definition.

 11. Predefined functions and user-defined functions are invoked (called) in the
same way.

 12. bool inOrder(int n1, int n2, int n3)

 {

 return ((n1 <= n2) && (n2 <= n3));

 }

 13. bool even(int n)

 {

 return ((n % 2) == 0);

 }

 14. bool isDigit(char ch)

 {

 return ('0' <= ch) && (ch <= '9');

 }

 15. Hello

 Goodbye

 One more time:

 Hello

 End of program.

 16. If you omitted the return statement in the function definition for iceCreamDivision
in Display 3.7 , the program would compile and run. However, if you input zero
for the number of customers, then the program would produce a run-time error
because of a division by zero.

 17. #include <iostream>

 using namespace std;

 void productOut(int n1, int n2, int n3);

 int main()

 {

 int num1, num2, num3;

 cout << "Enter three integers: ";

 cin >> num1 >> num2 >> num3;

 productOut(num1, num2, num3);

 return 0;

 }

136 CHAPTER 3 Function Basics

www.itpub.net

Answers to Self-Test Exercises 137

 void productOut(int n1, int n2, int n3)

 {

 cout << "The product of the three numbers "

 << n1 << ", " << n2 << ", and "

 << n3 << " is " << (n1*n2*n3) << endl;

 }

 18. These answers are system-dependent.

 19. double sqrt(double n);

 //Precondition: n >= 0.

 //Returns the square root of n.

 You can rewrite the second comment line as follows if you prefer, but the previous
version is the usual form used for a function that returns a value:

 //Postcondition: Returns the square root of n.

 20. If you use a variable in a function definition, you should declare the variable in the
body of the function definition.

 21. Everything will be fine. The program will compile (assuming everything else is cor-
rect). The program will run (assuming that everything else is correct). The program
will not generate an error message when run (assuming everything else is correct).
The program will give the correct output (assuming everything else is correct).

 22. The comment explains what action the function takes, including any value returned,
and gives any other information that you need to know in order to use the function.

 23. The principle of procedural abstraction says that a function should be written so
that it can be used like a black box. This means that the programmer who uses
the function need not look at the body of the function definition to see how the
function works. The function declaration and accompanying comment should be
all the programmer needs in order to use the function.

 24. When we say that the programmer who uses a function should be able to treat the
function like a black box, we mean the programmer should not need to look at
the body of the function definition to see how the function works. The function
declaration and accompanying comment should be all the programmer needs in
order to use the function.

 25. It helps to slightly change the code fragment to understand to which declaration
each usage resolves. The code has three different variables named x . In the follow-
ing we have renamed these three variables x1 , x2 , and x3 . The output is given in
the comments.

 {

 int x1 = 1; // output in this column

 cout << x1 << endl; // 1<new line>

 {

 cout << x1 << endl; // 1<new line>

 int x2 = 2;

 cout << x2 << endl; // 2<new line>

 {

 cout << x2 << endl; // 2<new line>

 int x3 = 3;

 cout << x3 << endl; // 3<new line>

 }

 cout << x2 << endl; // 2<new line>

 }

 cout << x1 << endl; // 1 <new line>

 }

 Programming Projects
 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. A liter is 0.264179 gallons. Write a program that will read in the number of liters
of gasoline consumed by the user’s car and the number of miles traveled by the
car and will then output the number of miles per gallon the car delivered. Your
program should allow the user to repeat this calculation as often as the user wishes.
Define a function to compute the number of miles per gallon. Your program
should use a globally defined constant for the number of liters per gallon.

 2. Write a program to gauge the rate of inflation for the past year. The program asks
for the price of an item (such as a hot dog or a one-carat diamond) both one year
ago and today. It estimates the inflation rate as the difference in price divided by
the year-ago price. Your program should allow the user to repeat this calculation
as often as the user wishes. Define a function to compute the rate of inflation. The
inflation rate should be a value of type double giving the rate as a percentage, for
example 5.3 for 5.3%.

 3. Enhance your program from the previous exercise by having it also print out the
estimated price of the item in one and in two years from the time of the calculation.
The increase in cost over one year is estimated as the inflation rate times the price
at the start of the year. Define a second function to determine the estimated cost
of an item in a specified number of years, given the current price of the item and
the inflation rate as arguments.

 4. The gravitational attractive force between two bodies with masses m1 and m2 sepa-
rated by a distance d is given by the following formula,

 F =
Gm1m2

d2

 where G is the universal gravitational constant:

G = 6.673 * 10 -8 cm 3>(g • sec 2)

 Write a function definition that takes arguments for the masses of two bodies
and the distance between them and returns the gravitational force between them.

138 CHAPTER 3 Function Basics

www.itpub.net

www.myprogramminglab.com

Programming Projects 139

Since you will use the previous formula, the gravitational force will be in dynes.
One dyne equals a

 g • cm/sec 2

 You should use a globally defined constant for the universal gravitational constant.
Embed your function definition in a complete program that computes the gravita-
tional force between two objects given suitable inputs. Your program should allow
the user to repeat this calculation as often as the user wishes.

 5. Write a program that asks for the user’s height, weight, and age, and then computes
clothing sizes according to the following formulas.

 • Hat size = weight in pounds divided by height in inches and all that multiplied
by 2.9.

 • Jacket size (chest in inches) = height times weight divided by 288 and then
adjusted by adding one-eighth of an inch for each 10 years over age 30. (Note
that the adjustment only takes place after a full 10 years. So, there is no adjust-
ment for ages 30 through 39, but one-eighth of an inch is added for age 40.)

 • Waist in inches = weight divided by 5.7 and then adjusted by adding one-tenth
of an inch for each 2 years over age 28. (Note that the adjustment only takes
place after a full 2 years. So, there is no adjustment for age 29, but one-tenth
of an inch is added for age 30.)

 Use functions for each calculation. Your program should allow the user to repeat
this calculation as often as he or she wishes.

 6. Write a function that computes the average and standard deviation of four scores.
The standard deviation is defined to be the square root of the average of the four
values: (s i - a) 2 , where a is the average of the four scores s 1 , s 2 , s 3 , and s4 . The func-
tion will have six parameters and will call two other functions. Embed the function
in a program that allows you to test the function again and again until you tell the
program you are finished.

 7. In cold weather, meteorologists report an index called the wind chill factor , which
takes into account the wind speed and the temperature. The index provides a
measure of the chilling effect of wind at a given air temperature. Wind chill may
be approximated by the following formula,

 w = 33 -
1102v - v + 10 .52 133 - t2

23 .1

 where

 v = wind speed in m/sec

 t = temperature in degrees Celsius: t 6= 10

 W = wind chill index (in degrees Celsius)

 Write a function that returns the wind chill index. Your code should ensure that
the restriction on the temperature is not violated. Look up some weather reports
in back issues of a newspaper in your library and compare the wind chill index you
calculate with the result reported in the newspaper.

 8 . Write a program that outputs all 99 stanzas of the “Ninety-Nine Bottles of Beer
on the Wall” song. Your program should print the number of bottles in English,
not as a number:

 Ninety-nine bottles of beer on the wall,

 Ninety-nine bottles of beer,

 Take one down, pass it around,

 Ninety-eight bottles of beer on the wall.

 …

 One bottle of beer on the wall,

 One bottle of beer,

 Take one down, pass it around,

 Zero bottles of beer on the wall.

 Your program should not use ninety-nine different output statements!

 9. In the game of craps, a “Pass Line” bet proceeds as follows. The first roll of the two,
six-sided dice in a craps round is called the “come out roll.” The bet immediately
wins when the come out roll is 7 or 11, and loses when the come out roll is 2, 3,
or 12. If 4, 5, 6, 8, 9, or 10 is rolled on the come out roll, that number becomes
“the point.” The player keeps rolling the dice until either 7 or the point is rolled.
If the point is rolled first, then the player wins the bet. If the player rolls a 7 first,
then the player loses.

 Write a program that plays craps using those rules so that it simulates a game without
human input. Instead of asking for a wager, the program should calculate whether
the player would win or lose. Create a function that simulates rolling the two dice
and returns the sum. Add a loop so that the program plays 10,000 games. Add
counters that count how many times the player wins, and how many times the
player loses. At the end of the 10,000 games, compute the probability of winning,
as Wins / (Wins + Losses), and output this value. Over the long run, who is going
to win more games of craps, you or the house?

 10. One way to estimate the height of a child is to use the following formula, which
uses the height of the parents:

 Hmale_child = ((Hmother 13>12) + Hfather)>2

 Hfemale_child = ((Hfather 12>13) + Hmother)>2

 All heights are in inches. Write a function that takes as input parameters the gen-
der of the child, height of the mother in inches, and height of the father in inches,
and outputs the estimated height of the child in inches. Embed your function in a
program that allows you to test the function over and over again until telling the
program to exit. The user should be able to input the heights in feet and inches,
and the program should output the estimated height of the child in feet and inches.
Use the integer data type to store the heights.

140 CHAPTER 3 Function Basics

Solution to
Programming
Project 3.9

VideoNote

www.itpub.net

Programming Projects 141

 11. The game of Pig is a simple two player dice game in which the first player to
reach 100 or more points wins. Players take turns. On each turn a player rolls a
six-sided die:

 • If the player rolls a 2–6 then he or she can either

 — ROLL AGAIN or

 — HOLD. At this point the sum of all rolls made this turn is added to the
player’s total score and it becomes the other player’s turn.

 • If the player rolls a 1 then the player loses his or her turn. The player gets no
new points and it becomes the opponent’s turn.

 If a player reaches 100 or more points after holding then the player wins.

 Write a program that plays the game of Pig, where one player is a human and the
other is the computer. Allow the human to input “r” to roll again or “h” to hold.

 The computer program should play according to the following rule: Keep rolling
on the computer’s turn until it has accumulated 20 or more points, then hold. Of
course, if the computer wins or rolls a 1 then the turn ends immediately. Allow the
human to roll first.

 Write your program using at least two functions:

 int humanTurn(int humanTotalScore);

 int computerTurn(int computerTotalScore);

 These functions should perform the necessary logic to handle a single turn for
either the computer or the human. The input parameter is the total score for the
human or computer. The functions should return the turn total to be added to the
total score upon completion of the turn. For example, if the human rolls a 3 and
6 and then holds, then humanTurn should return 9. However, if the human rolls a
3 and 6 and then a 1, then the function should return 0.

 12. Write a program that inputs a date (e.g., July 4, 2008) and outputs the day of
the week that corresponds to that date. The following algorithm is from http://
en.wikipedia.org/wiki/Calculating_the_day_of_the_week. The implementation
will require several functions:

 bool isLeapYear(int year);

 This function should return true if year is a leap year and false if it is not. Here
is pseudocode to determine a leap year:

 leap_year = ((year divisible by 400) or (year divisible by 4 and year not divisible
by 100))

 int getCenturyValue(int year);

 This function should take the first two digits of the year (i.e., the century), divide
by 4, and save the remainder. Subtract the remainder from 3 and return this
value multiplied by 2. For example, the year 2008 becomes (20/4) = 5 remainder
0. 3 - 0 = 3. Return 3 * 2 = 6.

 int getYearValue(int year);

http://en.wikipedia.org/wiki/Calculating_the_day_of_the_week
http://en.wikipedia.org/wiki/Calculating_the_day_of_the_week

 This function computes a value based on the years since the beginning of the
century. First, extract the last two digits of the year. For example, 08 is extracted
for 2008. Next, factor in leap years. Divide the value from the previous step by 4
and discard the remainder. Add the two results together and return this value. For
example, from 2008 we extract 08. Then (8/4) = 2 remainder 0. Return 2 + 8 = 10.

 int getMonthValue(int month, int year);

 This function should return a value based on the following table and will require
invoking the isLeapYear function:

 MONTH RETURN VALUE

January 0 (6 if year is a leap year)

February 3 (2 if year is a leap year)

March 3

April 6

May 1

June 4

July 6

August 2

September 5

October 0

November 3

December 5

142 CHAPTER 3 Function Basics

www.itpub.net

Programming Projects 143

 Finally, to compute the day of the week, compute the sum of the date’s
day plus the values returned by getMonthValue, getYearValue , and
getCenturyValue . Divide the sum by 7 and compute the remainder. A
remainder of 0 corresponds to Sunday, 1 corresponds to Monday, etc.—up to
6—which corres ponds to Saturday. For example, the date July 4, 2008 should
be computed as (day of month) + (getMonthValue) + (getYearValue) +
(get CenturyValue) = 4 + 6 + 10 + 6 = 26. 26/7 = 3 remainder 5. The fifth
day of the week corresponds to Friday.

 Your program should allow the user to enter any date and output the corresponding
day of the week in English.

 13. You have four identical prizes to give away and a pool of 25 finalists. The final-
ists are assigned numbers from 1 to 25. Write a program to randomly select the
numbers of 4 finalists to receive a prize. Make sure not to pick the same number
twice. For example, picking finalists 3, 15, 22, and 14 would be valid but picking
3, 3, 31, and 17 would be invalid, because finalist number 3 is listed twice and 31
is not a valid finalist number.

 14. Programming Project 2.9 asked you to implement the Babylonian Algorithm to
compute the square root of a number.

 Put this algorithm into a function and test it by using it to calculate the square root
of several numbers. The function should return the square root as a double and
also process the number n as a double .

This page intentionally left blank

www.itpub.net

 4.2 OVERLOADING AND DEFAULT
ARGUMENTS 163

 Introduction to Overloading 163
 Pitfall: Automatic Type Conversion and

Overloading 166
 Rules for Resolving Overloading 167
 Example: Revised Pizza-Buying Program 169
 Default Arguments 171

 4.3 TESTING AND DEBUGGING
FUNCTIONS 173

 The assert Macro 173
 Stubs and Drivers 174

 4.1 PARAMETERS 146
 Call-by-Value Parameters 146
 A First Look at Call-by-Reference Parameters 148
 Call-by-Reference Mechanism in Detail 151
 Constant Reference Parameters 153
 Example: The swapValues Function 153
 Tip: Think of Actions, Not Code 154
 Mixed Parameter Lists 155
 Tip: What Kind of Parameter to Use 156
 Pitfall: Inadvertent Local Variables 158
 Tip: Choosing Formal Parameter Names 159
 Example: Buying Pizza 160

 4 Parameters and
Overloading

Chapter Summary 177 Answers to Self-Test Exercises 177 Programming Projects 179

 Just fill in the blanks.

 Common instruction

 Introduction
 This chapter discusses the details of the mechanisms used by C++ for plugging in
arguments for parameters in function calls. It also discusses overloading, which is a way
to give two (or more) different function definitions to the same function name. Finally,
it goes over some basic techniques for testing functions.

 4.1 Parameters

 You can’t put a square peg in a round hole.

 Common saying

 This section describes the details of the mechanisms used by C++ for plugging in an
argument for a formal parameter when a function is invoked. There are two basic kinds
of parameters and therefore two basic plugging-in mechanisms in C++. The two basic
kinds of parameters are call-by-value parameters and call-by-reference parameters . All the
parameters that appeared before this point in the book were call-by-value parameters.
With call-by-value parameters , only the value of the argument is plugged in. With
call-by-reference parameters , the argument is a variable and the variable itself is
plugged in; therefore, the variable’s value can be changed by the function invocation.
A call-by-reference parameter is indicated by appending the ampersand sign, & , to the
parameter type, as illustrated by the following function declarations:

void getInput(double& variableOne, int& variableTwo);

 A call-by-value parameter is indicated by not using the ampersand. The details on call-
by-value and call-by-reference parameters are given in the following subsections.

 Call-by-Value Parameters

 Call-by-value parameters are more than just blanks that are filled in with the argument
values for the function. A call-by-value parameter is actually a local variable. When
the function is invoked, the value of a call-by-value argument is computed and the
corresponding call-by-value parameter, which is a local variable, is initialized to this value.

 In most cases, you can think of a call-by-value parameter as a kind of blank, or
placeholder, that is filled in by the value of its corresponding argument in the function
invocation. However, in some cases it is handy to use a call-by-value parameter as a
local variable and change the value of the parameter within the body of the function

 4 Parameters and Overloading

call-by-value
parameter

call-by-
reference

parameter

www.itpub.net

Parameters 147

definition. For example, the program in Display 4.1 illustrates a call-by-value parameter
used as a local variable whose value is changed in the body of the function definition.
Notice the formal parameter minutesWorked in the definition of the function fee .
It is used as a variable and has its value changed by the following line, which occurs
within the function definition:

minutesWorked = hoursWorked*60 + minutesWorked;

 Display 4.1 Formal Parameter Used as a Local Variable (part 1 of 2)

 1 //Law office billing program.
 2 #include <iostream>
 3 using namespace std;

 4 const double RATE = 150.00; //Dollars per quarter hour.

 5 double fee(int hoursWorked, int minutesWorked);
 6 //Returns the charges for hoursWorked hours and
 7 //minutesWorked minutes of legal services .

 8 int main()
 9 {
 10 int hours, minutes;
 11 double bill;

 12 cout << "Welcome to the law office of\n"
 13 << "Dewey, Cheatham, and Howe.\n"
 14 << "The law office with a heart.\n"
 15 << "Enter the hours and minutes"
 16 << " of your consultation:\n";
 17 cin >> hours >> minutes;

 18 bill = fee(hours, minutes);

 19 cout.setf(ios::fixed);
 20 cout.setf(ios::showpoint);
 21 cout.precision(2);
 22 cout << "For " << hours << " hours and " << minutes
 23 << " minutes, your bill is $" << bill << endl;

 24 return 0;
 25 }
 26 double fee(int hoursWorked, int minutesWorked)
 27 {
 28 int quarterHours;

 29 minutesWorked = hoursWorked*60 + minutesWorked;
 30 quarterHours = minutesWorked/15;
 31 return (quarterHours*RATE);
 32 }

The value of minutes
is not changed by the
call to fee.

minutesWorked is a local
variable initialized to the
value of minutes.

(continued)

148 CHAPTER 4 Parameters and Overloading

 Sample Dialogue

Welcome to the law office of

Dewey, Cheatham, and Howe.

The law office with a heart.

Enter the hours and minutes of your consultation:

5 46

For 5 hours and 46 minutes, your bill is $3450.00

Display 4.1 Formal Parameter Used as a Local Variable (part 2 of 2)

 Call-by-value parameters are local variables just like the variables you declare within
the body of a function. However, you should not add a variable declaration for
the formal parameters. Listing the formal parameter minutesWorked in the function
heading also serves as the variable declaration. The following is the wrong way to start
the function definition for fee because it declares minutesWorked twice:

double fee(int hoursWorked, int minutesWorked)
{

int quarterHours;
int minutesWorked;

 . . .

 Do not do this when
minutesWorked
is a parameter!

 Self-Test Exercises

 1. Carefully describe the call-by-value parameter mechanism.

 2. The following function is supposed to take as arguments a length expressed in
feet and inches and to return the total number of inches in that many feet and
inches. For example, totalInches(1, 2) is supposed to return 14 , because
1 foot and 2 inches is the same as 14 inches. Will the following function perform
correctly? If not, why not?

double totalInches(int feet, int inches)
{

inches = 12*feet + inches;
return inches;

}

 A First Look at Call-by-Reference Parameters

 The call-by-value mechanism that we used until now is not sufficient for all tasks you
might want a function to perform. For example, one common task for a function is to
obtain an input value from the user and set the value of an argument variable to this
input value. With the call-by-value formal parameters that we have used until now,

www.itpub.net

Parameters 149

a corresponding argument in a function call can be a variable, but the function takes
only the value of the variable and does not change the variable in any way. With a call-
by-value formal parameter only the value of the argument is substituted for the formal
parameter. For an input function, you want the variable (not the value of the variable)
to be substituted for the formal parameter. The call-by-reference mechanism works in
just this way. With a call-by-reference formal parameter, the corresponding argument
in a function call must be a variable, and this argument variable is substituted for the
formal parameter. It is almost as if the argument variable were literally copied into the
body of the function definition in place of the formal parameter. After the argument is
substituted in, the code in the function body is executed and can change the value of
the argument variable.

 A call-by-reference parameter must be marked in some way so that the compiler will
know it from a call-by-value parameter. The way that you indicate a call-by-reference
parameter is to attach the ampersand sign , & , to the end of the type name in the formal
parameter list. This is done in both the function declaration (function prototype) and
the header of the function definition. For example, the following function definition
has one formal parameter, receiver , which is a call-by-reference parameter:

void getInput(double& receiver)
{

cout << "Enter input number:\n";
cin >> receiver;

}

 In a program that contains this function definition, the following function call will set
the double variable inputNumber equal to a value read from the keyboard:

getInput(inputNumber);

 C++ allows you to place the ampersand either with the type name or with the
parameter name, so you will sometimes see

void getInput(double &receiver);

 which is equivalent to

void getInput(double& receiver);

 Display 4.2 demonstrates call-by-reference parameters. The program reads in two
numbers and writes the same numbers out, but in the reverse order.

 The parameters in the functions getNumbers and swapValues are call-by-reference
parameters. The input is performed by the function call

getNumbers(firstNum, secondNum);

 The values of the variables firstNum and secondNum are set by this function call. After
that, the following function call reverses the values in the two variables firstNum and
secondNum :

swapValues(firstNum, secondNum);

ampersand, &

150 CHAPTER 4 Parameters and Overloading

 Display 4.2 Call-by-Reference Parameters

 1 //Program to demonstrate call-by-reference parameters .
 2 #include <iostream>
 3 using namespace std;

 4 void getNumbers(int& input1, int& input2);
 5 //Reads two integers from the keyboard .

 6 void swapValues(int& variable1, int& variable2);
 7 //Interchanges the values of variable1 and variable2.

 8 void showResults(int output1, int output2);
 9 //Shows the values of output1 and output2, in that order .

 10 int main()
 11 {
 12 int firstNum, secondNum;

 13 getNumbers(firstNum, secondNum);
 14 swapValues(firstNum, secondNum);
 15 showResults(firstNum, secondNum);
 16 return 0;
 17 }

 18 void getNumbers(int& input1, int& input2)
 19 {
 20 cout << "Enter two integers: ";
 21 cin >> input1
 22 >> input2;
 23 }

 24 void swapValues(int& variable1, int& variable2)
 25 {
 26 int temp;

 27 temp = variable1;
 28 variable1 = variable2;
 29 variable2 = temp;
 30 }
 31
 32 void showResults(int output1, int output2)
 33 {
 34 cout << "In reverse order the numbers are: "
 35 << output1 << " " << output2 << endl;
 36 }

 Sample Dialogue

Enter two integers: 5 6

In reverse order the numbers are: 6 5

www.itpub.net

Parameters 151

 The next few subsections describe the call-by-reference mechanism in more detail and
also explain the particular functions used in Display 4.2 .

 Call-by-Reference Parameters

 To make a formal parameter a call-by-reference parameter, append the ampersand sign,
 & , to its type name. The corresponding argument in a call to the function should then be a
variable, not a constant or other expression. When the function is called, the corresponding
variable argument (not its value) will be substituted for the formal parameter. Any change
made to the formal parameter in the function body will be made to the argument variable
when the function is called. The exact details of the substitution mechanisms are given in
the text of this chapter.

 EXAMPLE

void getData(int& firstInput, double& secondInput);

 Call-by-Reference Mechanism in Detail

 In most situations the call-by-reference mechanism works as if the name of the variable
given as the function argument were literally substituted for the call-by-reference
formal parameter. However, the process is a bit more subtle than that. In some
situations, this subtlety is important, so we need to examine more details of this call-
by-reference substitution process.

 Program variables are implemented as memory locations. Each memory location
has a unique address that is a number. The compiler assigns one memory location to
each variable. For example, when the program in Display 4.2 is compiled, the variable
firstNum might be assigned location 1010 , and the variable secondNum might be
assigned 1012 . For all practical purposes, these memory locations are the variables.

 For example, consider the following function declaration from Display 4.2 :

void getNumbers(int& input1, int& input2);

 The call-by-reference formal parameters input1 and input2 are placeholders for the
actual arguments used in a function call.

 Now consider a function call like the following from the same program:

getNumbers(firstNum, secondNum);

 When the function call is executed, the function is not given the argument names
firstNum and secondNum . Instead, it is given a list of the memory locations associated
with each name. In this example, the list consists of the locations

1010
1012

 which are the locations assigned to the argument variables firstNum and secondNum , in
that order . It is these memory locations that are associated with the formal parameters.

address

152 CHAPTER 4 Parameters and Overloading

The first memory location is associated with the first formal parameter, the second
memory location is associated with the second formal parameter, and so forth.
Diagrammatically, in this case, the correspondence is

firstNum 4 1010 4 input1
secondNum 4 1012 4 input2

 When the function statements are executed, whatever the function body says to do
to a formal parameter is actually done to the variable in the memory location associated
with that formal parameter. In this case, the instructions in the body of the function
getNumbers say that a value should be stored in the formal parameter input1 using
a cin statement, and so that value is stored in the variable in memory location 1010
(which happens to be the variable firstNum). Similarly, the instructions in the body
of the function getNumbers say that another value should then be stored in the formal
parameter input2 using a cin statement, and so that value is stored in the variable in
memory location 1012 (which happens to be the variable secondNum). Thus, whatever
the function instructs the computer to do to input1 and input2 is actually done to
the variables firstNum and secondNum.

 It may seem that there is an extra level of detail, or at least an extra level of verbiage.
If firstNum is the variable with memory location 1010 , why do we insist on saying
“the variable at memory location 1010 ” instead of simply saying “ firstNum ?” This
extra level of detail is needed if the arguments and formal parameters contain some
confusing coincidence of names. For example, the function getNumbers has formal
parameters named input1 and input2 . Suppose you want to change the program
in Display 4.2 so that it uses the function getNumbers with arguments that are also
named input1 and input2 , and suppose that you want to do something less than
obvious. Suppose you want the first number typed in to be stored in a variable named
input2 , and the second number typed in to be stored in the variable named input1 —
perhaps because the second number will be processed first or because it is the more
important number. Now, let’s suppose that the variables input1 and input2 , which
are declared in the main part of your program, have been assigned memory locations
1014 and 1016 . The function call could be as follows:

int input1, input2;
getNumbers(input2, input1);

 In this case if you say “ input1 ,” we do not know whether you mean the variable
named input1 that is declared in the main part of your program or the formal
parameter input1 . However, if the variable input1 declared in the main function of
your program is assigned memory location 1014 , the phrase “the variable at memory
location 1014 ” is unambiguous. Let’s go over the details of the substitution mechanisms
in this case.

 In this call the argument corresponding to the formal parameter input1 is the
variable input2 , and the argument corresponding to the formal parameter input2
is the variable input1 . This can be confusing to us, but it produces no problem at
all for the computer, since the computer never does actually “substitute input2 for
input1 ” or “substitute input1 for input2 .” The computer simply deals with memory
locations. The computer substitutes “the variable at memory location 1016 ” for the

 Notice the order
of the arguments.

www.itpub.net

Parameters 153

formal parameter input1 , and “the variable at memory location 1014 ” for the formal
parameter input2 .

 Constant Reference Parameters

 We place this subsection here for reference value. If you are reading this book in
order, you may as well skip this section. The topic is explained in more detail later in
the book.

 If you place a const before a call-by-reference parameter’s type, you get a call-by-
reference parameter that cannot be changed. For the types we have seen so far, this has
no advantages. However, it will turn out to be an aid to efficiency with array and class
type parameters. We will discuss these constant parameters when we discuss arrays and
when we discuss classes.

 EXAMPLE: The swapValues Function

 The function swapValues defined in Display 4.2 interchanges the values stored in
two variables. The description of the function is given by the following function
declaration and accompanying comment:

void swapValues(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2 .

 To see how the function is supposed to work, assume that the variable firstNum has
the value 5 and the variable secondNum has the value 6 and consider the following
function call:

swapValues(firstNum, secondNum);

 After this function call, the value of firstNum will be 6 and the value of secondNum
will be 5 .

 As shown in Display 4.2 , the definition of the function swapValues uses a local
variable called temp . This local variable is needed. You might be tempted to think the
function definition could be simplified to the following:

void swapValues(int& variable1, int& variable2)
{

variable1 = variable2;
variable2 = variable1;

}

 To see that this alternative definition cannot work, consider what would happen with
this definition and the function call

swapValues(firstNum, secondNum);

 This does not work!

(continued)

154 CHAPTER 4 Parameters and Overloading

 EXAMPLE: (continued)

The variables firstNum and secondNum would be substituted for the formal
parameters variable1 and variable2 so that with this incorrect function definition,
the function call would be equivalent to the following:

firstNum = secondNum;
secondNum = firstNum;

 This code does not produce the desired result. The value of firstNum is set equal
to the value of secondNum , just as it should be. But then, the value of secondNum
is set equal to the changed value of firstNum , which is now the original value of
secondNum . Thus, the value of secondNum is not changed at all. (If this is unclear,
go through the steps with specific values for the variables firstNum and secondNum .)
What the function needs to do is save the original value of firstNum so that value
is not lost. This is what the local variable temp in the correct function definition is
used for. That correct definition is the one in Display 4.2 . When that correct version
is used and the function is called with the arguments firstNum and secondNum , the
function call is equivalent to the following code, which works correctly:

temp = firstNum;
firstNum = secondNum;
secondNum = temp;

 TIP: Think of Actions, Not Code

 Although we can explain how a function call works in terms of substituting code for
the function call, that is not the way you should normally think about a function call.
You should instead think of a function call as an action. For example, consider the
function swapValues in Display 4.2 and an invocation such as

swapValues(firstNum, secondNum);

 It is easier and clearer to think of this function call as the action of swapping the
values of its two arguments. It is much less clear to think of it as the code

temp = firstNum;
firstNum = secondNum;

secondNum = temp; ■

 Self-Test Exercises

 3. What is the output of the following program?

#include <iostream>
using namespace std;

www.itpub.net

Parameters 155

 Self-Test Exercises (continued)

void figureMeOut(int& x, int y, int& z);

int main()
{

int a, b, c;
a = 10;
b = 20;
c = 30;
figureMeOut(a, b, c);
cout << a << " " << b << " " << c << endl;
return 0;

}
void figureMeOut(int& x, int y, int& z)
{

cout << x << " " << y << " " << z << endl;
x = 1;
y = 2;
z = 3;
cout << x << " " << y << " " << z << endl;

}

 4. What would be the output of the program in Display 4.2 if you omitted the
ampersands (&) from the fi rst parameter in the function declaration and function
heading of swapValues ? The ampersand is not removed from the second parameter.
Assume the user enters numbers as in the sample dialogue in Display 4.2 .

 5. Write a void function defi nition for a function called zeroBoth that has two
call-by-reference parameters, both of which are variables of type int , and sets the
values of both variables to 0 .

 6. Write a void function defi nition for a function called addTax . The function
addTax has two formal parameters: taxRate , which is the amount of sales tax
expressed as a percentage; and cost , which is the cost of an item before tax. The
function changes the value of cost so that it includes sales tax.

 Mixed Parameter Lists

 Whether a formal parameter is a call-by-value parameter or a call-by-reference parameter
is determined by whether there is an ampersand attached to its type specification. If the
ampersand is present, the formal parameter is a call-by-reference parameter. If there is
no ampersand associated with the formal parameter, it is a call-by-value parameter.

156 CHAPTER 4 Parameters and Overloading

 It is perfectly legitimate to mix call-by-value and call-by-reference formal parameters
in the same function. For example, the first and last of the formal parameters in the
following function declaration are call-by-reference formal parameters, and the middle
one is a call-by-value parameter:

void goodStuff(int& par1, int par2, double& par3);

 Call-by-reference parameters are not restricted to void functions. You can also use
them in functions that return a value. Thus, a function with a call-by-reference parameter
could both change the value of a variable given as an argument and return a value.

and
call-by-value

parameters

mixing
call-by-

reference

 Parameters and Arguments

 All the different terms that have to do with parameters and arguments can be confusing.
However, if you keep a few simple points in mind, you will be able to easily handle these terms.

 1. The formal parameters for a function are listed in the function declaration and are used in
the body of the function definition. A formal parameter (of any sort) is a kind of blank or
placeholder that is filled in with something when the function is called.

 2. An argument is something that is used to fill in a formal parameter. When you write down
a function call, the arguments are listed in parentheses after the function name. When
the function call is executed, the arguments are plugged in for the formal parameters .

 3. The terms call-by-value and call-by-reference refer to the mechanism that is used in
the plugging-in process. In the call-by-value method only the value of the argument
is used. In this call-by-value mechanism, the formal parameter is a local variable that
is initialized to the value of the corresponding argument. In the call-by-reference
mechanism the argument is a variable and the entire variable is used. In the call-
by-reference mechanism the argument variable is substituted for the formal parameter
so that any change that is made to the formal parameter is actually made to the
argument variable.

 TIP: What Kind of Parameter to Use

 Display 4.3 illustrates the differences between how the compiler treats call-by-value
and call-by-reference formal parameters. The parameters par1Value and par2Ref
are both assigned a value inside the body of the function definition. Because they are
different kinds of parameters, however, the effect is different in the two cases.

par1Value is a call-by-value parameter, so it is a local variable. When the function
is called as follows,

doStuff(n1, n2);

 the local variable par1Value is initialized to the value of n1 . That is, the local variable
par1Value is initialized to 1 and the variable n1 is then ignored by the function.
As you can see from the sample dialogue, the formal parameter par1Value (which

www.itpub.net

Parameters 157

TIP: (continued)

is a local variable) is set to 111 in the function body, and this value is output to the
screen. However, the value of the argument n1 is not changed. As shown in the
sample dialogue, n1 has retained its value of 1 .

 On the other hand, par2Ref is a call-by-reference parameter. When the function is
called, the variable argument n2 (not just its value) is substituted for the formal param-
eter par2Ref . So when the following code is executed,

par2Ref = 222;

 it is the same as if the following were executed:

n2 = 222;

 Thus, the value of the variable n2 is changed when the function body is executed, so,
as the dialogue shows, the value of n2 is changed from 2 to 222 by the function call.

 If you keep in mind the lesson of Display 4.3 , it is easy to decide which parameter
mechanism to use. If you want a function to change the value of a variable, then the
corresponding formal parameter must be a call-by-reference formal parameter and must
be marked with the ampersand sign, & . In all other cases, you can use a call-by-value
formal parameter. ■

 Display 4.3 Comparing Argument Mechanisms (part 1 of 2)

 1 //Illustrates the difference between a call-by-value
 2 //parameter and a call-by-reference parameter .
 3 #include <iostream>
 4 using namespace std;

 5 void doStuff(int par1Value, int& par2Ref);
 6 //par1Value is a call-by-value formal parameter and
 7 //par2Ref is a call-by-reference formal parameter .

 8 int main()
 9 {
 10 int n1, n2;
 11
 12 n1 = 1;
 13 n2 = 2;
 14 doStuff(n1, n2);
 15 cout << "n1 after function call = " << n1 << endl;
 16 cout << "n2 after function call = " << n2 << endl;
 17 return 0;
 18 }

 19 void doStuff(int par1Value, int& par2Ref)
 20 {
 21 par1Value = 111;

(continued)

158 CHAPTER 4 Parameters and Overloading

 22 cout << "par1Value in function call = "
 23 << par1Value << endl;
 24 par2Ref = 222;
 25 cout << "par2Ref in function call = "
 26 << par2Ref << endl;
 27 }

 Sample Dialogue

par1Value in function call = 111

par2Ref in function call = 222

n1 after function call = 1

n2 after function call = 222

Display 4.3 Comparing Argument Mechanisms (part 2 of 2)

 PITFALL: Inadvertent Local Variables

 If you want a function to change the value of a variable, the corresponding formal
parameter must be a call-by-reference parameter and therefore must have the
ampersand, & , attached to its type. If you carelessly omit the ampersand, the function
will have a call-by-value parameter where you meant to have a call-by-reference
parameter. When the program is run, you will discover that the function call does
not change the value of the corresponding argument, because a formal call-by-value
parameter is a local variable. If the parameter has its value changed in the function,
then, as with any local variable, that change has no effect outside the function body.
This is an error that can be very difficult to see because the code looks right.

 For example, the program in Display 4.4 is similar to the program in Display 4.2
 except that the ampersands were mistakenly omitted from the function swapValues .
As a result, the formal parameters variable1 and variable2 are local variables. The
argument variables firstNum and secondNum are never substituted in for variable1
and variable2 ; variable1 and variable2 are instead initialized to the values of firstNum
and secondNum . Then, the values of variable1 and variable2 are interchanged,
but the values of firstNum and secondNum are left unchanged. The omission of two
 ampersands has made the program completely wrong, yet it looks almost identical to
the correct program and will compile and run without any error messages. ■

 Display 4.4 Inadvertent Local Variable (part 1 of 2)

 1 //Program to demonstrate call-by-reference parameters .
 2 #include <iostream>
 3 using namespace std;

 4 void getNumbers(int& input1, int& input2);
 5 //Reads two integers from the keyboard .

www.itpub.net

Parameters 159

 6 void swapValues(int variable1, int variable2);
 7 //Interchanges the values of variable1 and variable2 .

 8 void showResults(int output1, int output2);
 9 //Shows the values of variable1 and variable2, in that order .

 10 int main()
 11 {
 12 int firstNum, secondNum;

 13 getNumbers(firstNum, secondNum);
 14 swapValues(firstNum, secondNum);
 15 showResults(firstNum, secondNum);
 16 return 0;
 17 }

 18 void swapValues(int variable1, int variable2)
 19 {
 20 int temp;

 21 temp = variable1;
 22 variable1 = variable2;
 23 variable2 = temp;
 24 }
 25 The definitions of getNumbers and
 26 showResults are the same as in Display 4.2 .

 Sample Dialogue

Enter two integers: 5 6

In reverse order the numbers are: 5 6

Display 4.4 Inadvertent Local Variable (part 2 of 2)

Forgot the & here

Inadvertent
local variables

Error due to
inadvertent local
variables

Forgot the & here

 TIP: Choosing Formal Parameter Names

 Functions should be self-contained modules that are designed separately from the
rest of the program. On large programming projects, different programmers may
be assigned to write different functions. The programmer should choose the most
meaningful names he or she can find for formal parameters. The arguments that will
be substituted for the formal parameters may well be variables in another function or
in the main function. These variables should also be given meaningful names, often
chosen by someone other than the programmer who writes the function definition.
This makes it likely that some or all arguments will have the same names as some of
the formal parameters. This is perfectly acceptable. No matter what names are chosen
for the variables that will be used as arguments, these names will not produce any
confusion with the names used for formal parameters. ■

160 CHAPTER 4 Parameters and Overloading

 EXAMPLE: Buying Pizza

 The large “economy” size of an item is not always a better buy than the smaller size.
This is particularly true when buying pizzas. Pizza sizes are given as the diameter of
the pizza in inches. However, the quantity of pizza is determined by the area of the
pizza, and the area is not proportional to the diameter. Most people cannot easily
estimate the difference in area between a ten-inch pizza and a twelve-inch pizza and
so cannot easily determine which size is the best buy—that is, which size has the
lowest price per square inch. Display 4.5 shows a program that a consumer can use to
determine which of two sizes of pizza is the better buy.

 Note that the functions getData and giveResults have the same parameters, but
since getData will change the values of its arguments, its parameters are call-by-reference.
On the other hand, giveResults only needs the values of its arguments, and so its
parameters are call-by-value.

 Also note that giveResults has two local variables and that its function body
includes calls to the function unitPrice . Finally, note that the function unitPrice
has both local variables and a locally defined constant.

 Self-Test Exercise

 7. What would be the output of the program in Display 4.3 if you changed the
function declaration for the function doStuff to the following and you changed
the function header to match, so that the formal parameter par2Ref were
changed to a call-by-value parameter?

void doStuff (int par1Value, int par2Ref);

 Display 4.5 Buying Pizza (part 1 of 3)

 1 //Determines which of two pizza sizes is the best buy .
 2 #include <iostream>
 3 using namespace std;

 4 void getData(int& smallDiameter, double& priceSmall,
 5 int& largeDiameter, double& priceLarge);

 6 void giveResults(int smallDiameter, double priceSmall,
 7 int largeDiameter, double priceLarge);

 8 double unitPrice(int diameter, double price);
 9 //Returns the price per square inch of a pizza .
 10 //Precondition: The diameter parameter is the diameter of the pizza
 11 //in inches. The price parameter is the price of the pizza .

www.itpub.net

Parameters 161

Display 4.5 Buying Pizza (part 2 of 3)

 12 int main()
 13 {
 14 int diameterSmall, diameterLarge;
 15 double priceSmall, priceLarge;

 16 getData(diameterSmall, priceSmall, diameterLarge, priceLarge);
 17 giveResults(diameterSmall, priceSmall, diameterLarge, priceLarge);

 18 return 0;
 19 }

 20 void getData(int& smallDiameter, double& priceSmall,
 21 int& largeDiameter, double& priceLarge)
 22 {
 23 cout << "Welcome to the Pizza Consumers Union.\n";
 24 cout << "Enter diameter of a small pizza (in inches): ";
 25 cin >> smallDiameter;
 26 cout << "Enter the price of a small pizza: $";
 27 cin >> priceSmall;
 28 cout << "Enter diameter of a large pizza (in inches): ";
 29 cin >> largeDiameter;
 30 cout << "Enter the price of a large pizza: $";
 31 cin >> priceLarge;
 32 }
 33
 34 void giveResults(int smallDiameter, double priceSmall,
 35 int largeDiameter, double priceLarge)
 36 {
 37 double unitPriceSmall, unitPriceLarge;

 38 unitPriceSmall = unitPrice(smallDiameter, priceSmall);
 39 unitPriceLarge = unitPrice(largeDiameter, priceLarge);
 40 cout.setf(ios::fixed);
 41 cout.setf(ios::showpoint);
 42 cout.precision(2);
 43 cout << "Small pizza:\n"
 44 << "Diameter = " << smallDiameter << " inches\n"
 45 << "Price = $" << priceSmall
 46 << " Per square inch = $" << unitPriceSmall << endl
 47 << "Large pizza:\n"
 48 << "Diameter = " << largeDiameter << " inches\n"
 49 << "Price = $" << priceLarge
 50 << " Per square inch = $" << unitPriceLarge << endl;
 51 if (unitPriceLarge < unitPriceSmall)
 52 cout << "The large one is the better buy.\n";

(continued)

The variables diameterSmall,
diameterLarge, priceSmall, and
priceLarge are used to carry data from
the function getData to the function
giveResults.

One function called
within another
function

162 CHAPTER 4 Parameters and Overloading

Display 4.5 Buying Pizza (part 3 of 3)

 53 else
 54 cout << "The small one is the better buy.\n";
 55 cout << "Buon Appetito!\n";
 56 }

 57 double unitPrice(int diameter, double price)
 58 {
 59 const double PI = 3.14159;
 60 double radius, area;

 61 radius = diameter/ static_cast<double>(2);
 62 area = PI * radius * radius;
 63 return (price/area);
 64 }

 Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter diameter of a small pizza (in inches): 10

Enter the price of a small pizza: $7.50

Enter diameter of a large pizza (in inches): 13

Enter the price of a large pizza: $14.75

Small pizza:

Diameter = 10 inches

Price = $7.50 Per square inch = $0.10

Large pizza:

Diameter = 13 inches

Price = $14.75 Per square inch = $0.11

The small one is the better buy.

Buon Appetito!

www.itpub.net

Overloading and Default Arguments 163

 4.2 Overloading and Default Arguments

 “…and that shows that there are three hundred and sixty-four days when you
might get un-birthday presents—”

 “Certainly,” said Alice.
 “And only one for birthday presents, you know. There’s glory for you!”
 “I don’t know what you mean by ’glory,’ ” Alice said.
 Humpty Dumpty smiled contemptuously, “Of course you don’t—till I tell

you. I mean ’there’s a nice knock-down argument for you!’ ”
 “But ’glory’ doesn’t mean ’a nice knock-down argument,’ ” Alice objected.
 “When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it

means just what I choose it to mean—neither more nor less.”
 “The question is,” said Alice, “whether you can make words mean so many

different things.”
 “The question is,” said Humpty Dumpty, “which is to be master—that’s all.”

 LEWIS CARROLL, Through the Looking-Glass

 C++ allows you to give two or more different definitions to the same function name,
which means you can reuse names that have strong intuitive appeal across a variety of
situations. For example, you could have three functions called max : one that computes
the larger of two numbers, another that computes the largest of three numbers, and
yet another that computes the largest of four numbers. Giving two (or more) function
definitions for the same function name is called overloading the function name.

 Introduction to Overloading

 Suppose you are writing a program that requires you to compute the average of two
numbers. You might use the following function definition:

double ave(double n1, double n2)
{

return ((n1 + n2)/2.0);
}

 Now suppose your program also requires a function to compute the average of three
numbers. You might define a new function called ave3 as follows:

double ave3(double n1, double n2, double n3)
{

return ((n1 + n2 + n3)/3.0);
}

 This will work, and in many programming languages you have no choice but to do
something like this. However, C++ overloading allows for a more elegant solution. In

overloading

164 CHAPTER 4 Parameters and Overloading

C++ you can simply use the same function name ave for both functions. In C++ you
can use the following function definition in place of the function definition ave3

double ave(double n1, double n2, double n3)
{

return ((n1 + n2 + n3) / 3.0);
}

 so that the function name ave then has two definitions. This is an example of
overloading. In this case we have overloaded the function name ave . Display 4.6
embeds these two function definitions for ave into a complete sample program. Be
sure to notice that each function definition has its own declaration (prototype).

 The compiler can tell which function definition to use by checking the number
and types of the arguments in a function call. In the program in Display 4.6 , one of the
functions called ave has two arguments and the other has three arguments. When
there are two arguments in a function call, the first definition applies. When there are
three arguments in a function call, the second definition applies.

 Overloading a Function Name

 If you have two or more function definitions for the same function name, that is called
overloading. When you overload a function name, the function definitions must have
different numbers of formal parameters or some formal parameters of different types.
When there is a function call, the compiler uses the function definition whose number of
formal parameters and types of formal parameters match the arguments in the function call.

 Whenever you give two or more definitions to the same function name, the various
function definitions must have different specifications for their arguments; that is, any
two function definitions that have the same function name must use different numbers
of formal parameters or have one or more parameters of different types (or both).
Notice that when you overload a function name, the declarations for the two different
definitions must differ in their formal parameters. You cannot overload a function name
by giving two definitions that differ only in the type of the value returned . Nor can you
overload based on any difference other than the number or types of parameters. You
cannot overload based solely on const or solely on call-by-value versus call-by-reference
parameters.1

 You already saw a kind of overloading in Chapter 1 (reviewed here) with the
division operator, / . If both operands are of type int , as in 13/2 , then the value
returned is the result of integer division, in this case, 6 . On the other hand, if one
or both operands are of type double , then the value returned is the result of regular
division; for example, 13/2.0 returns the value 6.5 . There are two definitions for the

1 Some compilers will, in fact, allow you to overload on the basis of const versus no const , but you
should not count on this. The C++ standard says it is not allowed.

determining
which

definition
applies

www.itpub.net

Overloading and Default Arguments 165

division operator, /, and the two definitions are distinguished not by having different
numbers of operands but rather by requiring operands of different types. The only
difference between overloading of / and overloading function names is that the C++
language designers have already done the overloading of / , whereas you must program
the overloading of your function names yourself. Chapter 8 discusses how to overload
operators such as + , -, and so on.

 Display 4.6 Overloading a Function Name

 1 //Illustrates overloading the function name ave .
 2 #include <iostream>
 3 using namespace std;

 4 double ave(double n1, double n2);
 5 //Returns the average of the two numbers n1 and n2 .
 6
 7 double ave(double n1, double n2, double n3);
 8 //Returns the average of the three numbers n1, n2, and n3 .

 9 int main()
 10 {
 11 cout << "The average of 2.0, 2.5, and 3.0 is "
 12 << ave(2.0, 2.5, 3.0) << endl;

 13 cout << "The average of 4.5 and 5.5 is "
 14 << ave(4.5, 5.5) << endl;

 15 return 0;
 16 }

 17 double ave(double n1, double n2)
 18 {
 19 return ((n1 + n2)/2.0);
 20 }

 21 double ave(double n1, double n2, double n3)
 22 {
 23 return ((n1 + n2 + n3)/3.0);
 24 }

 Sample Dialogue

The average of 2.0, 2.5, and 3.0 is 2.5

The average of 4.5 and 5.5 is 5.0

Two arguments

Three arguments

166 CHAPTER 4 Parameters and Overloading

 Signature

 A function’s signature is the function’s name with the sequence of types in the parameter
list, not including the const keyword and not including the ampersand, & . When you overload
a function name, the two definitions of the function name must have different signatures
using this definition of signature. (Some authorities include the const and/or ampersand as
part of the signature, but we wanted a definition that works for explaining overloading.)

 PITFALL: Automatic Type Conversion and Overloading

 Suppose that the following function definition occurs in your program and that
you have not overloaded the function name mpg (so this is the only definition of a
function called mpg).

double mpg(double miles, double gallons)
//Returns miles per gallon .
{

return (miles / gallons);
}

 If you call the function mpg with arguments of type int , then C++ will automatically
convert any argument of type int to a value of type double . Hence, the following
will output 22.5 miles per gallon to the screen:

cout << mpg(45, 2) << " miles per gallon";

 C++ converts the 45 to 45.0 and the 2 to 2.0 and then performs the division
45.0/2.0 to obtain the value returned, which is 22.5 .

 If a function requires an argument of type double and you give it an argument of
type int , C++ will automatically convert the int argument to a value of type double .
This is so useful and natural that we hardly give it a thought. However, overloading can
interfere with this automatic type conversion. Let us look at an example.

 Suppose you had (foolishly) overloaded the function name mpg so that your pro-
gram contained the following defi nition of mpg as well as the one previous:

int mpg(int goals, int misses)
//Returns the Measure of Perfect Goals
//which is computed as (goals - misses).
{

return (goals — misses);
}

 In a program that contains both of these definitions for the function name mpg , the
following will (unfortunately) output 43 miles per gallon (since 43 is 45 – 2):

cout << mpg(45, 2) << " miles per gallon";

interaction of
overloading

and type
conversion

www.itpub.net

Overloading and Default Arguments 167

 PITFALL: (continued)

When C++ sees the function call mpg(45, 2) , which has two arguments of type int ,
C++ first looks for a function definition of mpg that has two formal parameters of type
int . If it finds such a function definition, C++ uses that function definition. C++
does not convert an int argument to a value of type doubl e unless that is the only
way it can find a matching function definition.

 The mpg example illustrates one more point about overloading: You should not use
the same function name for two unrelated functions. Such careless use of function
names is certain to eventually produce confusion. ■

 Rules for Resolving Overloading

 If you use overloading to produce two definitions of the same function name with
similar (but not identical) parameter lists, then the interaction of overloading and
automatic type conversion can be confusing. The rules that the compiler uses for
resolving which of multiple overloaded definitions of a function name to apply to a
given function call are as follows:

 1. Exact match: If the number and types of arguments exactly match a definition
(without any automatic type conversion), then that is the definition used.

 Self-Test Exercises

 8. Suppose you have two function defi nitions with the following declarations:

double score(double time, double distance);
int score(double points);

 Which function defi nition would be used in the following function call and why
would it be the one used? (x is of type double .)

double finalScore = score(x);

 9. Suppose you have two function defi nitions with the following declarations:

double theAnswer(double data1, double data2);
double theAnswer(double time, int count);

 Which function defi nition would be used in the following function call and why
would it be the one used? (x and y are of type double .)

x = theAnswer(y, 6.0);

168 CHAPTER 4 Parameters and Overloading

 2. Match using automatic type conversion: If there is no exact match but there is a
match using automatic type conversion, then that match is used.

 If two matches are found at stage 1 or if no matches are found at stage 1 and two
matches are found at stage 2, then there is an ambiguous situation and an error message
will be issued.

 For example, the following overloading is dubious style, but is perfectly valid:

void f(int n, double m);
void f(double n, int m);

 However, if you also have the invocation

f(98, 99);

 then the compiler does not know which of the two int arguments to convert to a value
of type double , and an error message is generated.

 To see how confusing and dangerous the situation can be, suppose you add the
following third overloading:

void f(int n, int m);

 With this third overloading added, you no longer get an error message, since there is
now an exact match. Obviously, such confusing overloading is to be avoided.

 The previous two rules will work in almost all situations. In fact, if you need more
precise rules, you should rewrite your code to be more straightforward. However, the
exact rules are even a bit more complicated. For reference value, we give the exact rules
here. Some of the terms may not make sense until you read more of this book, but do
not be concerned. The simple two rules given previously will serve you well until you
do understand the more complete rules.

 1. Exact match as described earlier.

 2. Matches using promotion within integer types or within floating-point types,
such as short to int or float to double . (Note that bool -to- int and char -
to-int conversions are considered promotions within integer types.)

 3. Matches using other conversions of predefined types, such as int to double .

 4. Matches using conversions of user-defined types (see Chapter 8) .

 5. Matches using ellipses … (This is not covered in this book , and if you do not use
it, it will not be an issue.)

 If two matches are found at the first stage that a match is found, then there is an
ambiguous situation and an error message will be issued.

www.itpub.net

Overloading and Default Arguments 169

 EXAMPLE: Revised Pizza-Buying Program

 The Pizza Consumers Union has been very successful with the program that we wrote
for it in Display 4.5 . In fact, now everybody always buys the pizza that is the best
buy. One disreputable pizza parlor used to make money by fooling consumers into
buying the more expensive pizza, but our program has put an end to its evil practices.
However, the owners wish to continue their despicable behavior and have come up
with a new way to fool consumers. They now offer both round pizzas and rectangular
pizzas. They know that the program we wrote cannot deal with rectangular-shaped
pizzas, so they hope they can again confuse consumers. Display 4.7 is another version
of our program that compares a round pizza and a rectangular pizza. Note that the
function name unitPrice has been overloaded so that it applies to both round and
rectangular pizzas.

 Display 4.7 Revised Pizza Program (part 1 of 3)

 1 //Determines whether a round pizza or a rectangular pizza is the best
//buy.

 2 #include <iostream>
 3 using namespace std;

 4 double unitPrice(int diameter, double price);
 5 //Returns the price per square inch of a round pizza .
 6 //The formal parameter named diameter is the diameter of the pizza
 7 //in inches. The formal parameter named price is the price of the pizza .

 8 double unitPrice(int length, int width, double price);
 9 //Returns the price per square inch of a rectangular pizza
 10 //with dimensions length by width inches .
 11 //The formal parameter price is the price of the pizza .
 12 int main()
 13 {
 14 int diameter, length, width;
 15 double priceRound, unitPriceRound,
 16 priceRectangular, unitPriceRectangular;

 17 cout << "Welcome to the Pizza Consumers Union.\n";
 18 cout << "Enter the diameter in inches"
 19 << " of a round pizza: ";
 20 cin >> diameter;
 21 cout << "Enter the price of a round pizza: $";
 22 cin >> priceRound;
 23 cout << "Enter length and width in inches\n"
 24 << "of a rectangular pizza: ";
 25 cin >> length >> width;
 26 cout << "Enter the price of a rectangular pizza: $";

(continued)

170 CHAPTER 4 Parameters and Overloading

Display 4.7 Revised Pizza Program (part 2 of 3)

 27 cin >> priceRectangular;
 28 unitPriceRectangular =
 29 unitPrice(length, width, priceRectangular);
 30 unitPriceRound = unitPrice(diameter, priceRound);

 31 cout.setf(ios::fixed);
 32 cout.setf(ios::showpoint);
 33 cout.precision(2);
 34 cout << endl
 35 << "Round pizza: Diameter = "
 36 << diameter << " inches\n"
 37 << "Price = $" << priceRound

 38 << " Per square inch = $" << unitPriceRound
 39 << endl
 40 << "Rectangular pizza: Length = "
 41 << length << " inches\n"
 42 << "Rectangular pizza: Width = "
 43 << width << " inches\n"
 44 << "Price = $" << priceRectangular
 45 << " Per square inch = $" << unitPriceRectangular
 46 << endl;
 47 if (unitPriceRound < unitPriceRectangular)
 48 cout << "The round one is the better buy.\n";
 49 else
 50 cout << "The rectangular one is the better buy.\n";
 51 cout << "Buon Appetito!\n";

 52 return 0;
 53 }
 54 double unitPrice(int diameter, double price)
 55 {
 56 const double PI = 3.14159;
 57 double radius, area;
 58
 59 radius = diameter/double(2);
 60 area = PI * radius * radius;
 61 return (price/area);
 62 }
 63 double unitPrice(int length, int width, double price)
 64 {
 65 double area = length * width;
 66 return (price/area);
 67 }

www.itpub.net

Overloading and Default Arguments 171

Display 4.7 Revised Pizza Program (part 3 of 3)

 Sample Dialogue

Welcome to the Pizza Consumers Union.
Enter the diameter in inches of a round pizza: 10
Enter the price of a round pizza: $8.50
Enter length and width in inches
of a rectangular pizza: 6 4
Enter the price of a rectangular pizza: $7.55

Round pizza: Diameter = 10 inches
Price = $8.50 Per square inch = $0.11
Rectangular pizza: Length = 6 inches
Rectangular pizza: Width = 4 inches
Price = $7.55 Per square inch = $0.31
The round one is the better buy.
Buon Appetito!

 Default Arguments

 You can specify a default argument for one or more call-by-value parameters in a
function. If the corresponding argument is omitted, then it is replaced by the default
argument. For example, the function volume in Display 4.8 computes the volume of a
box from its length, width, and height. If no height is given, the height is assumed to
be 1 . If neither a width nor a height is given, they are both assumed to be 1 .

 Note that in Display 4.8 the default arguments are given in the function declaration
but not in the function definition. A default argument is given the first time the
function is declared (or defined, if that occurs first). Subsequent declarations or
a following definition should not give the default arguments again because some
compilers will consider this an error even if the arguments given are consistent with the
ones given previously.

 You may have more than one default argument, but all the default argument
positions must be in the rightmost positions. Thus, for the function volume in Display 4.8 ,
we could have given default arguments for the last one, last two, or all three parameters,
but any other combinations of default arguments are not allowed.

 If you have more than one default argument, then when the function is invoked,
you must omit arguments starting from the right. For example, note that in Display 4.8
there are two default arguments. When only one argument is omitted, it is assumed to
be the last argument. There is no way to omit the second argument in an invocation of
volume without also omitting the third argument.

 Default arguments are of limited value, but sometimes they can be used to reflect
your way of thinking about arguments. Default arguments can only be used with
call-by-value parameters. They do not make sense for call-by-reference parameters.
Anything you can do with default arguments can be done using overloading, although
the default argument version will probably be shorter than the overloading version.

default
argument

172 CHAPTER 4 Parameters and Overloading

 Self-Test Exercise

 10. This question has to do with the programming example entitled “Revised
Pizza-Buying Program.” Suppose the evil pizza parlor that is always trying
to fool customers introduces a square pizza. Can you overload the function
unitPrice so that it can compute the price per square inch of a square pizza as
well as the price per square inch of a round pizza? Why or why not?

 Display 4.8 Default Arguments

 1
 2 #include <iostream>
 3 using namespace std;

 4 void showVolume(int length, int width = 1, int height = 1);
 5 //Returns the volume of a box .
 6 //If no height is given, the height is assumed to be 1 .
 7 //If neither height nor width is given, both are assumed to be 1 .

 8 int main()
 9 {
 10 showVolume(4, 6, 2);
 11 showVolume(4, 6);
 12 showVolume(4);

 13 return 0;
 14 }

 15 void showVolume(int length, int width, int height)
 16 {
 17 cout << "Volume of a box with \n"
 18 << "Length = " << length << ", Width = " << width << endl
 19 << "and Height = " << height
 20 << " is " << length*width*height << endl;
 21 }

 Sample Dialogue

Volume of a box with
Length = 4, Width = 6
and Height = 2 is 48
Volume of a box with
Length = 4, Width = 6
and Height = 1 is 24
Volume of a box with
Length = 4, Width = 1
and Height = 1 is 4

Default arguments

A default argument should
not be given a second time.

www.itpub.net

Testing and Debugging Functions 173

 4.3 Testing and Debugging Functions

 I beheld the wretch—the miserable monster whom I had created.

 MARY WOLLSTONECRAFT SHELLEY, Frankenstein

 This section reviews some general guidelines for testing programs and functions.

 The assert Macro

 An assertion is a statement that is either true or false. Assertions are used to document
and check the correctness of programs. Preconditions and postconditions , which we
discussed in Chapter 3 , are examples of assertions. When expressed precisely and in the
syntax of C++, an assertion is simply a Boolean expression. If you convert an assertion
to a Boolean expression, then the predefined macro assert can be used to check
whether or not your code satisfies the assertion. (A macro is very similar to an inline
function and is used just like a function is used.)

 The assert macro is used like a void function that takes one call-by-value parameter
of type bool . Since an assertion is just a Boolean expression, this means that the
argument to assert is an assertion. When the assert macro is invoked, its assertion
argument is evaluated. If it evaluates to true , then nothing happens. If the argument
evaluates to false , then the program ends and an error message is issued. Thus, calls to
the assert macro are a compact way to include error checks within your program.

 For example, the following function declaration is taken from Programming Project 4.3:

void computeCoin(int coinValue, int& number, int& amountLeft);
//Precondition: 0 < coinValue < 100; 0 <= amountLeft < 100.
//Postcondition: number has been set equal to the maximum number
//of coins of denomination coinValue cents that can be obtained
//from amountLeft cents. amountLeft has been decreased by the
//value of the coins, that is, decreased by number*coinValue .

 You can check that the precondition holds for a function invocation, as shown by the
following example:

assert((0 < currentCoin) && (currentCoin < 100)
&& (0 <= currentAmountLeft) && (currentAmountLeft < 100));

computeCoin(currentCoin, number, currentAmountLeft);

 If the precondition is not satisfied, your program will end and an error message will be
output.

 The assert macro is defined in the library cassert , so any program that uses the
assert macro must contain the following:

#include <cassert>

assertion

macro

Using an
Integrated
Debugger

VideoNote

174 CHAPTER 4 Parameters and Overloading

 One advantage of using assert is that you can turn assert invocations off. You
can use assert invocations in your program to debug your program, and then turn
them off so that users do not get error messages that they might not understand.
Doing so reduces the overhead performed by your program. To turn off all the
#define NDEBUG assertions in your program, add #define NDEBUG before the include
directive, as follows:

#define NDEBUG
#include <cassert>

 Thus, if you insert #define NDEBUG in your program after it is fully debugged, all
assert invocations in your program will be turned off. If you later change your
program and need to debug it again, you can turn the assert invocations back on by
deleting the #define NDEBUG line (or commenting it out).

 Not all comment assertions can easily be translated into C++ Boolean expressions.
Preconditions are more likely to translate easily than postconditions are. Thus, the
assert macro is not a cure-all for debugging your functions, but it can be very useful.

 Stubs and Drivers

 Each function should be designed, coded, and tested as a separate unit from the rest of
the program. When you treat each function as a separate unit, you transform one big
task into a series of smaller, more manageable tasks. But how do you test a function
outside the program for which it is intended? One way is to write a special program
to do the testing. For example, Display 4.9 shows a program to test the function
unitPrice that was used in the program in Display 4.5 . Programs like this one are
called driver programs . These driver programs are temporary tools and can be quite
minimal. They need not have fancy input routines. They need not perform all the
calculations the final program will perform. All they need do is obtain reasonable
values for the function arguments in as simple a way as possible—typically from the
user—then execute the function and show the result. A loop, as in the program shown
in Display 4.9 , will allow you to retest the function on different arguments without
having to rerun the program.

 If you test each function separately, you will find most of the mistakes in your
program. Moreover, you will find out which functions contain the mistakes. If you
were to test only the entire program, you would probably find out if there were a
mistake, but you may have no idea where the mistake is. Even worse, you may think
you know where the mistake is, but be wrong.

 Once you have fully tested a function, you can use it in the driver program for some
other function. Each function should be tested in a program in which it is the only
untested function. However, it is fine to use a fully tested function when testing some
other function. If a bug is found, you know the bug is in the untested function.

 It is sometimes impossible or inconvenient to test a function without using some
other function that has not yet been written or has not yet been tested. In this
case, you can use a simplified version of the missing or untested function. These
simplified functions are called stubs . These stubs will not necessarily perform the
correct calculation, but they will deliver values that suffice for testing, and they are

turning off
assert

#define
NDEBUG

driver program

stub

www.itpub.net

Testing and Debugging Functions 175

simple enough that you can have confidence in their performance. For example, the
following is a possible stub for the function unitPrice :

//A stub. The final function definition must still be written .
double unitPrice(int diameter, double price)
{

return (9.99);//Not correct but good enough for a stub.
}

 Display 4.9 Driver Program (part 1 of 2)

 1
 2 //Driver program for the function unitPrice .
 3 #include <iostream>
 4 using namespace std;

 5 double unitPrice(int diameter, double price);
 6 //Returns the price per square inch of a pizza .
 7 //Precondition: The diameter parameter is the diameter of the pizza
 8 //in inches. The price parameter is the price of the pizza .

 9 int main()
 10 {
 11 double diameter, price;
 12 char ans;

 13 do
 14 {
 15 cout << "Enter diameter and price:\n";
 16 cin >> diameter >> price;
 17 cout << "unit Price is $"
 18 << unitPrice(diameter, price) << endl;

 19 cout << "Test again? (y/n)";
 20 cin >> ans;
 21 cout << endl;
 22 } while (ans == 'y' || ans == 'Y');

 23 return 0;
 24 }
 25
 26 double unitPrice(int diameter, double price)
 27 {
 28 const double PI = 3.14159;
 29 double radius, area;

 30 radius = diameter/ static_cast<double>(2);
 31 area = PI * radius * radius;
 32 return (price/area);
 33 } (continued)

176 CHAPTER 4 Parameters and Overloading

 Using a program outline with stubs allows you to test and then flesh out the basic
program outline, rather than write a completely new program to test each function.
For this reason, a program outline with stubs is usually the most efficient method of
testing. A common approach is to use driver programs to test some basic functions,
such as input and output, and then use a program with stubs to test the remaining
functions. The stubs are replaced by functions one at a time: One stub is replaced
by a complete function and tested; once that function is fully tested, another stub is
replaced by a full function definition, and so forth, until the final program is produced.

 Sample Dialogue

Enter diameter and price:
13 14.75
Unit price is: $0.111126
Test again? (y/n): y

Enter diameter and price:
2 3.15
Unit price is: $1.00268
Test again? (y/n): n

Display 4.9 Driver Program (part 2 of 2)

 The Fundamental Rule for Testing Functions
 Every function should be tested in a program in which every other function in that program
has already been fully tested and debugged.

 Self-Test Exercises

 11. What is the fundamental rule for testing functions? Why is this a good way to
test functions?

 12. What is a driver program?

 13. What is a stub?

 14. Write a stub for the function whose declaration is given next. Do not write a whole
program, only the stub that would go in a program. (Hint: It will be very short.)

double rainProb(double pressure, double humidity, double temp);
//Precondition: pressure is the barometric pressure in inches
//of mercury, humidity is the relative humidity as a
//percentage, and temp is the temperature in degrees
//Fahrenheit. Returns the probability of rain, which is a
//number between 0 and 1. 0 means no chance of rain. 1 means
//rain is 100% certain.

www.itpub.net

 Chapter Summary

• A formal parameter is a kind of placeholder that is filled in with a function argu-
ment when the function is called. In C++, there are two methods of performing this
substitution, call by value and call by reference, and so there are two basic kinds of
parameters: call-by-value parameters and call-by-reference parameters.

• A call-by-value formal parameter is a local variable that is initialized to the value of
its corresponding argument when the function is called. Occasionally, it is useful to
use a formal call-by-value parameter as a local variable.

• In the call-by-reference substitution mechanism, the argument should be a variable,
and the entire variable is substituted for the corresponding argument.

• The way to indicate a call-by-reference parameter in a function definition is to attach
the ampersand sign, & , to the type of the formal parameter. (A call-by-value parameter
is indicated by the absence of an ampersand.)

• An argument corresponding to a call-by-value parameter cannot be changed by a
function call. An argument corresponding to a call-by-reference parameter can be
changed by a function call. If you want a function to change the value of a variable,
then you must use a call-by-reference parameter.

• You can give multiple definitions to the same function name, provided that the
 different functions with the same name have different numbers of parameters or
some parameter position with differing types, or both. This is called overloading the
function name.

• You can specify a default argument for one or more call-by-value parameters in a
function. Default arguments are always in the rightmost argument positions.

• The assert macro can be used to help debug your program by checking whether or
not assertions hold.

• Every function should be tested in a program in which every other function in that
program has already been fully tested and debugged.

 Answers to Self-Test Exercises

 1. A call-by-value parameter is a local variable. When the function is invoked, the
value of a call-by-value argument is computed and the corresponding call-by-value
parameter (which is a local variable) is initialized to this value.

 2. The function will work fine. That is the entire answer, but here is some additional
information: The formal parameter inches is a call-by-value parameter and, as
discussed in the text, is therefore a local variable. Thus, the value of the argument
will not be changed.

Answers to Self-Test Exercises 177

 3. 10 20 30
 1 2 3

1 20 3

 4. Enter two integers: 5 10

 In reverse order the numbers are: 5 5

 5. void zeroBoth(int& n1, int& n2)

{

 n1 = 0;

 n2 = 0;

}

 6. void addTax(double taxRate, double& cost)

 {

 cost = cost + (taxRate/100.0)*cost;

 }

 The division by 100 is to convert a percentage to a fraction. For example, 10% is
10/100.0, or one-tenth of the cost.

 7. par1Value in function call = 111
 par2Ref in function call = 222

 n1 after function call = 1

 n2 after function call = 2

 8. The one with one parameter would be used because the function call has only one
parameter.

 9. The first one would be used because it is an exact match, namely, two parameters
of type double .

 10. This cannot be done (at least not in any nice way). The natural ways to represent
a square and a round pizza are the same. Each is naturally represented as one num-
ber, which is the radius for a round pizza and the length of a side for a square pizza.
In either case the function unitPrice would need to have one formal parameter
of type double for the price and one formal parameter of type int for the size
(either radius or side). Thus, the two function declarations would have the same
number and types of formal parameters. (Specifically, they would both have one
formal parameter of type double and one formal parameter of type int .) Thus, the
compiler would not be able to decide which definition to use. You can still defeat
this evil pizza parlor’s strategy by defining two functions, but they will need to have
different names.

 11. The fundamental rule for testing functions is that every function should be
tested in a program in which every other function in that program has already
been fully tested and debugged. This is a good way to test a function because if
you follow this rule, then when you find a bug, you will know which function
contains the bug.

 12. A driver program is a program written for the sole purpose of testing a function.

 13. A stub is a simplified version of a function that is used in place of the function so
that other functions can be tested.

178 CHAPTER 4 Parameters and Overloading

Different

www.itpub.net

Programming Projects 179

 14. //THIS IS JUST A STUB.
 double rainProb(double pressure,

 double humidity, double temp)

 {

 return 0.25; //Not correct,

 //but good enough for some testing.

 }

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a program that converts from 24-hour notation to 12-hour notation. For
example, it should convert 14:25 to 2:25 P.M. The input is given as two integers.
There should be at least three functions: one for input, one to do the conversion,
and one for output. Record the A.M./P.M. information as a value of type char ,
'A' for A.M. and 'P' for P.M. Thus, the function for doing the conversions will
have a call-by-reference formal parameter of type char to record whether it is A.M.
or P.M. (The function will have other parameters as well.) Include a loop that lets
the user repeat this computation for new input values again and again until the user
says he or she wants to end the program.

 2. The area of an arbitrary triangle can be computed using the formula

Area = 2s1s - a2 1s - b2 1s - c2

 where a, b, and c are the lengths of the sides, and s is the semiperimeter.

s = 1a + b + c2 >2

 Write a void function that uses five parameters: three value parameters that pro-
vide the lengths of the edges, and two reference parameters that compute the area
and perimeter (not the semiperimeter). Make your function robust. Note that not
all combinations of a, b, and c produce a triangle. Your function should produce
correct results for legal data and reasonable results for illegal combinations.

 3. Write a program that tells what coins to give out for any amount of change from
1 cent to 99 cents. For example, if the amount is 86 cents, the output would be
something like the following:

 86 cents can be given as
 3 quarter(s) 1 dime(s) and 1 penny(pennies)

 Use coin denominations of 25 cents (quarters), 10 cents (dimes), and 1 cent (pen-
nies). Do not use nickel and half-dollar coins. Your program will use the following
function (among others):

void computeCoin(int coinValue, int& number, int& amountLeft);

 //Precondition: 0 < coinValue < 100; 0 <= amountLeft < 100.

 //Postcondition: number has been set equal to the maximum number

 //of coins of denomination coinValue cents that can be obtained

www.myprogramminglab.com

 //from amountLeft cents. amountLeft has been decreased by the

 //value of the coins, that is, decreased by number*coinValue .

 For example, suppose the value of the variable amountLeft is 86 . Then, after the
following call, the value of number will be 3 and the value of amountLeft will be 11
(because if you take three quarters from 86 cents, that leaves 11 cents):

 computeCoins(25, number, amountLeft);

 Include a loop that lets the user repeat this computation for new input values until
the user says he or she wants to end the program. (Hint: Use integer division and
the % operator to implement this function.)

 4. Write a program that will read in a length in feet and inches and output the equiva-
lent length in meters and centimeters. Use at least three functions: one for input,
one or more for calculating, and one for output. Include a loop that lets the user
repeat this computation for new input values until the user says he or she wants to
end the program. There are 0.3048 meters in a foot, 100 centimeters in a meter,
and 12 inches in a foot.

 5. Write a program like that of the previous exercise that converts from meters and
centimeters into feet and inches. Use functions for the subtasks.

 6. (You should do the previous two programming projects before doing this one.)
Write a program that combines the functions in the previous two programming
projects. The program asks the user if he or she wants to convert from feet and
inches to meters and centimeters or from meters and centimeters to feet and inches.
The program then performs the desired conversion. Have the user respond by typ-
ing the integer 1 for one type of conversion and 2 for the other conversion. The
program reads the user’s answer and then executes an if-else statement. Each
branch of the if-else statement will be a function call. The two functions called
in the if-else statement will have function definitions that are very similar to
the programs for the previous two programming projects. Thus, they will be fairly
complicated function definitions that call other functions. Include a loop that lets
the user repeat this computation for new input values until the user says he or she
wants to end the program.

 7. Write a program that will read in a weight in pounds and ounces and will output
the equivalent weight in kilograms and grams. Use at least three functions: one for
input, one or more for calculating, and one for output. Include a loop that lets
the user repeat this computation for new input values until the user says he or she
wants to end the program. There are 2.2046 pounds in a kilogram, 1000 grams in
a kilogram, and 16 ounces in a pound.

 8. Write a program like that of the previous exercise that converts from kilograms and
grams into pounds and ounces. Use functions for the subtasks.

 9. (You should do the previous two programming projects before doing this one.)
Write a program that combines the functions of the previous two programming
projects. The program asks the user if he or she wants to convert from pounds
and ounces to kilograms and grams or from kilograms and grams to pounds and
ounces. The program then performs the desired conversion. Have the user respond
by typing the integer 1 for one type of conversion and 2 for the other. The program

180 CHAPTER 4 Parameters and Overloading

Solution to
Programming
Project 4.4

VideoNote

www.itpub.net

Programming Projects 181

reads the user’s answer and then executes an if-else statement. Each branch of
the if-else statement will be a function call. The two functions called in the
if-else statement will have function definitions that are very similar to the programs
for the previous two programming projects. Thus, they will be fairly complicated
function definitions that call other functions in their function bodies. Include a
loop that lets the user repeat this computation for new input values until the user
says he or she wants to end the program.

 10. (You should do Programming Projects 4.6 and 4.9 before doing this program-
ming project.) Write a program that combines the functions of Programming
Projects 4.6 and 4.9. The program asks the user if he or she wants to convert
lengths or weights. If the user chooses lengths, then the program asks the user if
he or she wants to convert from feet and inches to meters and centimeters or from
meters and centimeters to feet and inches. If the user chooses weights, a similar
question about pounds, ounces, kilograms, and grams is asked. The program then
performs the desired conversion. Have the user respond by typing the integer 1 for
one type of conversion and 2 for the other. The program reads the user’s answer
and then executes an if-else statement. Each branch of the if-else statement
will be a function call. The two functions called in the if-else statement will
have function definitions that are very similar to the programs for Programming
Projects 4.6 and 4.9. Thus, these functions will be fairly complicated func-
tion definitions that call other functions; however, they will be very easy to
write by adapting the programs you wrote for Programming Projects 4.6 and
4.9. Notice that your program will have if-else statements embedded inside of
if-else statements, but only in an indirect way. The outer if-else statement
will include two function calls, as its two branches. These two function calls will
each in turn include an if-else statement, but you need not think about that.
They are just function calls and the details are in a black box that you create when
you define these functions. If you try to create a four-way branch, you are probably
on the wrong track. You should only need to think about two-way branches (even
though the entire program does ultimately branch into four cases). Include a loop
that lets the user repeat this computation for new input values until the user says
he or she wants to end the program.

 11. You are a contestant on a game show and have won a shot at the grand prize.
Before you are three doors. $1,000,000 in cash has randomly been placed behind
one door. Behind the other two doors are the consolation prizes of dishwasher
 detergent. The game show host asks you to select a door, and you randomly pick
one. However, before revealing the prize behind your door, the game show host
reveals one of the other doors that contains a consolation prize. At this point, the
game show host asks if you would like to stick with your original choice or to
switch to the remaining door.

 Write a function to simulate the game show problem. Your function should randomly
select locations for the prizes, select a door at random chosen by the contestant,
and then determine whether the contestant would win or lose by sticking with

Solution to
Programming
Project 4.11

VideoNote

the original choice or switching to the remaining door. You may wish to create
 additional functions invoked by this function.

 Next, modify your program so that it simulates playing 10,000 games. Count the
number of times the contestant wins when switching versus staying. If you are
the contestant, what choice should you make to optimize your chances of winning
the cash, or does it not matter?

 12. In the land of Puzzlevania, Aaron, Bob, and Charlie had an argument over which
one of them was the greatest puzzle-solver of all time. To end the argument once
and for all, they agreed on a duel to the death. Aaron was a poor shot and only hit
his target with a probability of 1/3. Bob was a bit better and hit his target with a
probability of 1/2. Charlie was an expert marksman and never missed. A hit means
a kill and the person hit drops out of the duel.

 To compensate for the inequities in their marksmanship skills, the three decided
that they would fire in turns, starting with Aaron, followed by Bob, and then by
Charlie. The cycle would repeat until there was one man standing. That man
would be remembered for all time as the Greatest Puzzle-Solver of All Time.

 An obvious and reasonable strategy is for each man to shoot at the most accurate
shooter still alive, on the grounds that this shooter is the deadliest and has the best
chance of hitting back.

 Write a program to simulate the duel using this strategy. Your program should use
random numbers and the probabilities given in the problem to determine whether
a shooter hits his target. You will likely want to create multiple subroutines and
functions to complete the problem. Once you can simulate a duel, add a loop to
your program that simulates 10,000 duels. Count the number of times that each
contestant wins and print the probability of winning for each contestant (e.g., for
Aaron your program might output “Aaron won 3595/10,000 duels or 35.95%”).

 An alternate strategy is for Aaron to intentionally miss on his first shot. Modify the
program to accommodate this new strategy and output the probability of winning
for each contestant. What strategy is better for Aaron, to intentionally miss on the
first shot or to try and hit the best shooter?

 13. You would like to know how fast you can run in miles per hour. Your treadmill
will tell you your speed in terms of a pace (minutes and seconds per mile, such as
“5:30 mile”) or in terms of kilometers per hour (kph).

 Write an overloaded function called convertToMPH . The first definition should
take as input two integers that represent the pace in minutes and seconds per mile
and return the speed in mph as a double. The second definition should take as
input one double that represents the speed in kph and return the speed in mph as
a double. One mile is approximately 1.61 kilometers. Write a driver program to
test your function.

 14. Your time machine is capable of going forward in time up to 24 hours. The machine
is configured to jump ahead in minutes. To enter the proper number of minutes
into your machine, you would like a program that can take a start time and an
end time and calculate the difference in minutes between them. The end time will

182 CHAPTER 4 Parameters and Overloading

www.itpub.net

Programming Projects 183

always be within 24 hours of the start time. Use military notation for both the start
and end times (e.g., 0000 for midnight and 2359 for one minute before midnight).

 Write a function that takes as input a start time and an end time represented as an
int , using military notation. The function should return the difference in minutes
as an integer. Write a driver program that calls your subroutine with times entered
by the user.

 Hint: Be careful of time intervals that start before midnight and end the following day.

 15. Write a function named convertToLowestTerms that inputs two integer param-
eters by reference named numerator and denominator . The function should treat
these variables as a fraction and reduce them to lowest terms. For example, if
numerator is 20 and denominator is 60, then the function should change the
variables to 1 and 3, respectively. This will require finding the greatest common
divisor for the numerator and denominator then dividing both variables by that
number. If the denominator is zero, the function should return false , otherwise the
function should return true . Write a test program that uses convertToLowestTerms
to reduce and output several fractions.

 16. Consider a text file named scores.txt that contains player scores for a game. A
possible sample is shown here where Ronaldo’s best score is 10400, Didier’s best
score is 9800, etc.

 Ronaldo

 10400

 Didier

 9800

 Pele

 12300

 Kaka

 8400

 Cristiano

 8000

 Write a function named getHighScore that takes a string reference parameter and
an integer reference parameter. The function should scan through the file and set
the reference parameters to the name of the player with the highest score and the
corresponding score.

 17. Write a function named sort that takes three integer parameters by reference. The
function should rearrange the parameter values so that the first parameter gets set
to the smallest value, the second parameter gets set to the second smallest value,
and the third parameter gets set to the largest value. For example, given the vari-
able assignments a = 30; b = 10; c = 20; then the function call sort(a,b,c)
should result in a = 10, b = 20, and c = 30. Note that the array construct covered
in Chapter 5 will give you a way to solve this problem for an arbitrary number of
items instead of only for three items.

This page intentionally left blank

www.itpub.net

 5.3 PROGRAMMING WITH ARRAYS 207
 Partially Filled Arrays 207
 Tip: Do Not Skimp on Formal Parameters 208
 Example: Searching an Array 211
 Example: Sorting an Array 213

 5.4 MULTIDIMENSIONAL ARRAYS 218
 Multidimensional Array Basics 218
 Multidimensional Array Parameters 219
 Example: Two-Dimensional Grading Program 220

 5.1 INTRODUCTION TO ARRAYS 186
 Declaring and Referencing Arrays 186
 Tip: Use for Loops with Arrays 189
 Pitfall: Array Indexes Always Start with Zero 189
 Tip: Use a Defined Constant for the Size of

an Array 189
 Arrays in Memory 190
 Pitfall: Array Index out of Range 192
 Initializing Arrays 192

 5.2 ARRAYS IN FUNCTIONS 195
 Indexed Variables as Function Arguments 195
 Entire Arrays as Function Arguments 196
 The const Parameter Modifier 200
 Pitfall: Inconsistent Use of const Parameters 201
 Functions That Return an Array 202
 Example: Production Graph 202

 5 Arrays

Chapter Summary 225 Answers to Self-Test Exercises 226 Programming Projects 230

 It is a capital mistake to theorize before one has data.

 SIR ARTHUR CONAN DOYLE, Scandal in Bohemia (Sherlock Holmes)

 Introduction
 An array is used to process a collection of data all of which is of the same type, such
as a list of temperatures or a list of names. This chapter introduces the basics of
defining and using arrays in C++ and presents many of the basic techniques used when
designing algorithms and programs that use arrays.

 You may skip this chapter and read Chapter 6 and most of Chapter 7 , which cover
classes, before reading this chapter. The only material in those chapters that uses
material from this chapter is Section 7.3 , which introduces vectors.

 5.1 Introduction to Arrays

 Suppose we wish to write a program that reads in five test scores and performs some
manipulations on these scores. For instance, the program might compute the highest
test score and then output the amount by which each score falls short of the highest.
The highest score is not known until all five scores are read in. Hence, all five scores
must be retained in storage so that after the highest score is computed each score can
be compared with it. To retain the five scores, we will need something equivalent to
five variables of type int . We could use five individual variables of type int , but five
variables are hard to keep track of, and we may later want to change our program
to handle 100 scores; certainly, 100 variables are impractical. An array is the perfect
solution. An array behaves like a list of variables with a uniform naming mechanism
that can be declared in a single line of simple code. For example, the names for the five
individual variables we need might be score[0] , score[1] , score[2] , score[3] ,
and score[4] . The part that does not change, in this case score , is the name of the
array. The part that can change is the integer in the square brackets, [] .

 Declaring and Referencing Arrays

 In C++, an array consisting of five variables of type int can be declared as follows:

 int score[5];

 This declaration is like declaring the following five variables to all be of type int :

 score[0], score[1], score[2], score[3], score[4]

 5 Arrays

array

www.itpub.net

 Introduction to Arrays 187

 These individual variables that together make up the array are referred to in a variety of
different ways. We will call them indexed variables , though they are also sometimes
called subscripted variables or elements of the array. The number in square brackets
is called an index or a subscript . In C++, indexes are numbered starting with 0, not
starting with 1 or any other number except 0 . The number of indexed variables in an
array is called the declared size of the array, or sometimes simply the size of the array.
When an array is declared, the size of the array is given in square brackets after the
array name. The indexed variables are then numbered (also using square brackets),
starting with 0 and ending with the integer that is one less than the size of the array.

 In our example, the indexed variables were of type int , but an array can have
indexed variables of any type. For example, to declare an array with indexed variables
of type double , simply use the type name double instead of int in the declaration of
the array. All the indexed variables for one array, however, are of the same type. This
type is called the base type of the array. Thus, in our example of the array score , the
base type is int .

 You can declare arrays and regular variables together. For example, the following
declares the two int variables next and max in addition to the array score :

 int next, score[5], max;

 An indexed variable such as score[3] can be used anyplace that an ordinary
variable of type int can be used.

 Do not confuse the two ways to use the square brackets, [] , with an array name.
When used in a declaration, such as

 int score[5];

 the number enclosed in the square brackets specifies how many indexed variables
the array has. When used anywhere else, the number enclosed in the square brackets
tells which indexed variable is meant. For example, score[0] through score[4] are
indexed variables of the array previously declared.

 The index inside the square brackets need not be given as an integer constant. You
can use any expression in the square brackets as long as the expression evaluates to one
of the integers ranging from 0 through the integer one less than the size of the array.
For example, the following will set the value of score[3] equal to 99 :

 int n = 2;
 score[n + 1] = 99;

 Although they may look different, score[n + 1] and score[3] are the same indexed
variable in the previous code, because n + 1 evaluates to 3 .

 The identity of an indexed variable, such as score[i] , is determined by the value of
its index, which in this instance is i . Thus, you can write programs that say things like
“do such and such to the ith indexed variable,” where the value of i is computed by the
program. For example, the program in Display 5.1 reads in scores and processes them
in the way described at the start of this chapter.

indexed
variable,

subscripted
variable,

or element

index or
subscript

declared size

base type

Array
Walkthrough

VideoNote

188 CHAPTER 5 Arrays

 Display 5.1 Program Using an Array

1 //Reads in five scores and shows how much each

2 //score differs from the highest score.

3 #include <iostream>

4 using namespace std;

5 int main()

6 {

7 int i, score[5], max;

8 cout << "Enter 5 scores:\n";

9 cin >> score[0];

10 max = score[0];

11 for (i = 1; i < 5; i++)

12 {

13 cin >> score[i];

14 if (score[i] > max)

15 max = score[i];
16 //max is the largest of the values score[0],..., score[i] .

17 }

18 cout << "The highest score is " << max << endl

19 << "The scores and their\n"

20 << "differences from the highest are:\n";

21 for (i = 0; i < 5; i++)

22 cout << score[i] << " off by "

23 << (max – score[i]) << endl;

24 return 0;

25 }

 Sample Dialogue

 Enter 5 scores:
5 9 2 10 6
 The highest score is 10
 The scores and their
 differences from the highest are:
 5 off by 5
 9 off by 1
 2 off by 8
 10 off by 0
 6 off by 4

www.itpub.net

 Introduction to Arrays 189

 TIP: Use for Loops with Arrays

 The second for loop in Display 5.1 illustrates a common way to step through
an array:

 for (i = 0; i < 5; i++)
 cout << score[i] << " off by "
 << (max – score[i]) << endl;

 The for statement is ideally suited to array manipulations. ■

 PITFALL: Array Indexes Always Start with Zero

 The indexes of an array always start with 0 and end with the integer that is one less
than the size of the array. ■

 TIP: Use a Defined Constant for the Size of an Array

 Look again at the program in Display 5.1 . It only works for classes that have exactly
five students. Most classes do not have exactly five students. One way to make
a program more versatile is to use a defined constant for the size of each array.
For example, the program in Display 5.1 could be rewritten to use the following
defined constant:

 const int NUMBER_OF_STUDENTS = 5;

 The line with the array declaration would then be

 int i, score[NUMBER_OF_STUDENTS], max;

 Of course, all places in the program that have a 5 for the size of the array should also
be changed to have NUMBER_OF_STUDENTS instead of 5 . If these changes are made
to the program (or better still, if the program had been written this way in the first
place), then the program can be revised to work for any number of students by simply
changing the one line that defines the constant NUMBER_OF_STUDENTS .

 You may be tempted to use a variable for the array size, such as the following:

 cout << "Enter number of students:\n";
 cin >> number;
 int score[number]; //ILLEGAL ON MANY COMPILERS!

 Some but not all compilers will allow you to specify an array size with a variable in
this way. However, for the sake of portability you should not do so, even if your
compiler permits it. (In Chapter 10 we will discuss a different kind of array whose
size can be determined when the program is run.) ■

190 CHAPTER 5 Arrays

 Array Declaration
 SYNTAX

 Type_Name Array_Name[Declared_Size];

 EXAMPLES

 int bigArray[100];
 double a[3];
 double b[5];
 char grade[10], oneGrade;

An array declaration of the form shown here will define Declared_Size index variables,
namely, the indexed variables Array_Name[0] through Array_Name [Declared_Size–1]. Each
index variable is a variable of type Type_Name.

The array a consists of the indexed variables a[0], a[1], and a[2], all of type double.
The array b consists of the indexed variables b[0], b[1], b[2], b[3], and b[4], also all of
type double. You can combine array declarations with the declaration of simple variables,
such as the variable oneGrade shown here.

 Arrays in Memory

 Before discussing how arrays are represented in a computer’s memory, let us first see
how a simple variable, such as a variable of type int or double , is represented in the
computer’s memory. A computer’s memory consists of a list of numbered locations
called bytes.1 The number of a byte is known as its address . A simple variable is
implemented as a portion of memory consisting of some number of consecutive bytes.
The number of bytes is determined by the type of the variable. Thus, a simple variable
in memory is described by two pieces of information: an address in memory (giving
the location of the first byte for that variable) and the type of the variable, which tells
how many bytes of memory the variable requires. When we speak of the address of a
variable , it is this address we are talking about. When your program stores a value in
the variable, what really happens is that the value (coded as zeros and ones) is placed
in those bytes of memory that are assigned to that variable. Similarly, when a variable
is given as a (call-by-reference) argument to a function, it is the address of the variable
that is actually given to the calling function. Now let us move on to discuss how arrays
are stored in memory.

 Array indexed variables are represented in memory the same way as ordinary
variables, but with arrays there is a little more to the story. The locations of the various
array indexed variables are always placed next to one another in memory. For example,
consider the following:

 int a[6];

1 A byte consists of eight bits, but the exact size of a byte is not important to this discussion.

address

arrays in
memory

www.itpub.net

 Introduction to Arrays 191

 When you declare this array, the computer reserves enough memory to hold six
variables of type int . Moreover, the computer always places these variables one after
the other in memory. The computer then remembers the address of indexed variable
a[0] , but it does not remember the address of any other indexed variable. When your
program needs the address of some other indexed variable in this array, the computer
calculates the address for this other indexed variable from the address of a[0] . For
example, if you start at the address of a[0] and count past enough memory for three
variables of type int , then you will be at the address of a[3] . To obtain the address of
a[3] , the computer starts with the address of a[0] (which is a number). The computer
then adds the number of bytes needed to hold three variables of type int to the
number for the address of a[0] . The result is the address of a[3] . This implementation
is diagrammed in Display 5.2 . Many of the peculiarities of arrays in C++ can only be
understood in terms of these details about memory. For example, in the next Pitfall
section, we use these details to explain what happens when your program uses an illegal
array index.

 Display 5.2 An Array in Memory

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

a[0]

Some variable
named stuff

a[1]

a[2]

a[3]

a[5]

a[4]

Some variable
named moreStuff

Address of a[0]

On this computer each
indexed variable uses
2 bytes, so a[3] begins
2�3 = 6 bytes after
the start of a[0].

There is no indexed
variable a[6], but if
there were one, it
would be here.

There is no indexed
variable a[7], but if
there were one, it
would be here.

int a[6];

192 CHAPTER 5 Arrays

 PITFALL: Array Index out of Range

 The most common programming error made when using arrays is attempting
to reference a nonexistent array index. For example, consider the following array
declaration:

 int a[6];

 When using the array a , every index expression must evaluate to one of the integers
0 through 5. For example, if your program contains the indexed variable a[i] , the i
must evaluate to one of the six integers 0, 1, 2, 3, 4, or 5. If i evaluates to anything
else, that is an error. When an index expression evaluates to some value other than
those allowed by the array declaration, the index is said to be out of range or simply
illegal . On most systems, the result of an illegal array index is that your program
will simply do something wrong, possibly disastrously wrong, and will do so without
giving you any warning.

 For example, suppose your system is typical, the array a is declared as shown, and
your program contains the following:

 a[i] = 238;

 Now, suppose the value of i , unfortunately, happens to be 7 . The computer proceeds
as if a[7] were a legal indexed variable. The computer calculates the address where
a[7] would be (if only there were an a[7]) and places the value 238 in that location
in memory. However, there is no indexed variable a[7] and the memory that
receives this 238 probably belongs to some other variable, maybe a variable named
moreStuff . So the value of moreStuff has been unintentionally changed. This
situation is illustrated in Display 5.2 .

 Array indexes most commonly get out of range at the fi rst or last iteration of a loop
that processes the array. Thus, it pays to carefully check all array processing loops to be
certain that they begin and end with legal array indexes. ■

illegal array
index

 Initializing Arrays

 An array can be initialized when it is declared. When initializing the array, the values
for the various indexed variables are enclosed in braces and separated with commas. For
example, consider the following:

 int children[3] = {2, 12, 1};

 The previous declaration is equivalent to the following code:

 int children[3];
 children[0] = 2;
 children[1] = 12;
 children[2] = 1;

 If you list fewer values than there are indexed variables, those values will be used
to initialize the first few indexed variables, and the remaining indexed variables will
be initialized to a zero of the array base type. In this situation, indexed variables not

www.itpub.net

 Introduction to Arrays 193

provided with initializers are initialized to zero. However, arrays with no initializers
and other variables declared within a function definition, including the main function
of a program, are not initialized. Although array indexed variables (and other variables)
may sometimes be automatically initialized to zero, you cannot and should not count
on it.

 If you initialize an array when it is declared, you can omit the size of the array,
and the array will automatically be declared to have the minimum size needed for the
initialization values. For example, the following declaration

 int b[] = {5, 12, 11};

 is equivalent to

 int b[3] = {5, 12, 11};

 Self-Test Exercises

 1. Describe the difference in the meaning of int a[5]; and the meaning of a[4] .
What is the meaning of the [5] and [4] in each case?

 2. In the array declaration

 double score[5];

 identify the following:

 a. The array name

 b. The base type

 c. The declared size of the array

 d. The range of values an index accessing this array can have

 e. One of the indexed variables (or elements) of this array

 3. Identify any errors in the following array declarations.

 a. int x[4] = { 8, 7, 6, 4, 3 };

 b. int x[] = { 8, 7, 6, 4 };

 c. const int SIZE = 4;

 int x[SIZE];

 4. What is the output of the following code?

 char symbol[3] = {'a', 'b', 'c'};

 for (int index = 0; index < 3; index++)

 cout << symbol[index];

(continued)

194 CHAPTER 5 Arrays

 Self-Test Exercises (continued)

5. What is the output of the following code?

 double a[3] = {1.1, 2.2, 3.3};
 cout << a[0] << " " << a[1] << " " << a[2] << endl;
 a[1] = a[2];
 cout << a[0] << " " << a[1] << " " << a[2] << endl;

 6. What is the output of the following code?

 int i, temp[10];
 for (i = 0; i < 10; i++)
 temp[i] = 2*i;
 for (i = 0; i < 10; i++)
 cout << temp[i] << " ";
 cout << endl;
 for (i = 0; i < 10; i = i + 2)
 cout << temp[i] << " ";

 7. What is wrong with the following piece of code?

 int sampleArray[10];
 for (int index = 1; index <= 10; index++)
 sampleArray[index] = 3*index;

 8. Suppose we expect the elements of the array a to be ordered so that

 a[0] ≤ a[1] ≤ a[2] ≤ ...

 However, to be safe we want our program to test the array and issue a warning
in case it turns out that some elements are out of order. The following code is
supposed to output such a warning, but it contains a bug. What is it?

 double a[10];
 <Some code to fill the array a goes here.>
 for (int index = 0; index < 10; index++)
 if (a[index] > a[index + 1])
 cout << "Array elements " << index << " and "
 << (index + 1) << " are out of order.";

 9. Write some C++ code that will fi ll an array a with 20 values of type int read in
from the keyboard. You need not write a full program, just the code to do this,
but do give the declarations for the array and for all variables.

www.itpub.net

 Arrays in Functions 195

 Self-Test Exercises (continued)

10. Suppose you have the following array declaration in your program:

 int yourArray[7];

 Also, suppose that in your implementation of C++, variables of type int use
two bytes of memory. When you run your program, how much memory will
this array consume? Suppose that, when you run your program, the system
assigns the memory address 1000 to the indexed variable yourArray[0] . What
will be the address of the indexed variable yourArray[3]?

 5.2 Arrays in Functions

 You can use both array indexed variables and entire arrays as arguments to functions.
We first discuss array indexed variables as arguments to functions.

 Indexed Variables as Function Arguments

 An indexed variable can be an argument to a function in exactly the same way that any
variable of the array base type can be an argument. For example, suppose a program
contains the following declarations:

 double i, n, a[10];

 If myFunction takes one argument of type double , then the following is legal:

 myFunction(n);

 Since an indexed variable of the array a is also a variable of type double , just like n , the
following is equally legal:

 myFunction(a[3]);

 An indexed variable can be a call-by-value argument or a call-by-reference argument.
 One subtlety applies to indexed variables used as arguments, however. For example,

consider the following function call:

 myFunction(a[i]);

 If the value of i is 3 , then the argument is a[3] . On the other hand, if the value of i is 0 ,
then this call is equivalent to the following:

 myFunction(a[0]);

 The indexed expression is evaluated in order to determine exactly which indexed
variable is given as the argument.

196 CHAPTER 5 Arrays

 Self-Test Exercises

 11. Consider the following function defi nition:

 void tripler(int & n)
 {
 n = 3 * n;
 }

 Which of the following are acceptable function calls?

 int a[3] = {4, 5, 6}, number = 2;
 tripler(a[2]);
 tripler(a[3]);
 tripler(a[number]);
 tripler(a);
 tripler(number);

 12. What (if anything) is wrong with the following code? The defi nition of
tripler is given in Self-Test Exercise 11.

 int b[5] = {1, 2, 3, 4, 5};
 for (int i = 1; i <= 5; i++)
 tripler(b[i]);

 Entire Arrays as Function Arguments

 A function can have a formal parameter for an entire array so that when the function
is called, the argument that is plugged in for this formal parameter is an entire array.
However, a formal parameter for an entire array is neither a call-by-value parameter
nor a call-by-reference parameter; it is a new kind of formal parameter referred to as an
array parameter . Let’s start with an example.

 The function defined in Display 5.3 has one array parameter, a , which will be
replaced by an entire array when the function is called. It also has one ordinary call-
by-value parameter (size) that is assumed to be an integer value equal to the size of
the array. This function fills its array argument (that is, fills all the array’s indexed
variables) with values typed in from the keyboard; the function then outputs a message
to the screen telling the index of the last array index used.

 The formal parameter int a[] is an array parameter. The square brackets, with no
index expression inside, are what C++ uses to indicate an array parameter. An array
parameter is not quite a call-by-reference parameter, but for most practical purposes it
behaves very much like a call-by-reference parameter. Let us go through this example
in detail to see how an array argument works in this case. (An array argument is, of
course, an array that is plugged in for an array parameter, such as a[] .)

array
parameter

array
argument

www.itpub.net

 Arrays in Functions 197

 Display 5.3 Function with an Array Parameter

 Function Declaration
 void fillUp(int a[], int size);
 //Precondition: size is the declared size of the array a .
 //The user will type in size integers .
 //Postcondition: The array a is filled with size integers
 //from the keyboard .

 Function Definition
 void fillUp(int a[], int size)

{

 cout << "Enter " << size << " numbers:\n";

 for (int i = 0; i < size; i++)

 cin >> a[i];

 cout << "The last array index used is " << (size – 1) << endl;

}

 When the function fillUp is called, it must have two arguments: The first gives an
array of integers, and the second should give the declared size of the array. For example,
the following is an acceptable function call:

 int score[5], numberOfScores = 5;
 fillUp(score, numberOfScores);

 This call to fillUp will fill the array score with five integers typed in at the keyboard.
Notice that the formal parameter a[] (which is used in the function declaration and
the heading of the function definition) is given with square brackets but no index
expression. (You may insert a number inside the square brackets for an array parameter,
but the compiler will simply ignore the number, so we will not use such numbers in
this book .) On the other hand, the argument given in the function call (score , in this
example) is given without any square brackets or any index expression.

 What happens to the array argument score in this function call? Very loosely
speaking, the argument score is plugged in for the formal array parameter a in the
body of the function, and then the function body is executed. Thus, the function call

 fillUp(score, numberOfScores);

 is equivalent to the following code:

 {
 size = 5;
 cout << "Enter " << size << " numbers:\n";
 for (int i = 0; i < size; i++)
 cin >> score[i];
 cout << "The last array index used is " << (size – 1) << endl;
 }

when to use []

 5 is the value of
 numberOfScores

198 CHAPTER 5 Arrays

 The formal parameter a is a different kind of parameter from the ones we have seen
before now. The formal parameter a is merely a placeholder for the argument score .
When the function fillUp is called with score as the array argument, the computer
behaves as if a were replaced with the corresponding argument score . When an array
is used as an argument in a function call, any action that is performed on the array
parameter is performed on the array argument, so the values of the indexed variables
of the array argument can be changed by the function. If the formal parameter in the
function body is changed (for example, with a cin statement), then the array argument
will be changed.

 So far it looks as if an array parameter is simply a call-by-reference parameter for
an array. That is close to being true, but an array parameter is slightly different from a
call-by-reference parameter. To help explain the difference, let us review some details
about arrays.

 Recall that an array is stored as a contiguous chunk of memory. For example,
consider the following declaration for the array score :

 int score[5];

 When you declare this array, the computer reserves enough memory to hold five
variables of type int , which are stored one after the other in the computer’s memory.
The computer does not remember the addresses of each of these five indexed variables;
it remembers only the address of indexed variable score[0] . The computer also
remembers that score has a total of five indexed variables, all of type int . It does not
remember the address in memory of any indexed variable other than score[0] . For
example, when your program needs score[3] , the computer calculates the address
of score[3] from the address of score[0] . The computer knows that score[3] is
located three int variables past score[0] . Thus, to obtain the address of score[3] ,
the computer takes the address of score[0] and adds a number that represents the
amount of memory used by three int variables; the result is the address of score[3] .

 Viewed this way, an array has three parts: the address (location in memory) of the
first indexed variable, the base type of the array (which determines how much memory
each indexed variable uses), and the size of the array (that is, the number of indexed
variables). When an array is used as an array argument to a function, only the first of
these three parts is given to the function. When an array argument is plugged in for
its corresponding formal parameter, all that is plugged in is the address of the array’s
first indexed variable. The base type of the array argument must match the base type of
the formal parameter, so the function also knows the base type of the array. However,
the array argument does not tell the function the size of the array . When the code in the
function body is executed, the computer knows where the array starts in memory
and how much memory each indexed variable uses, but (unless you make special
provisions) it does not know how many indexed variables the array has. That is why
it is critical that you always have another int argument telling the function the size of
the array. (That is also why an array parameter is not the same as a call-by-reference
parameter. You can think of an array parameter as a weak form of call-by-reference

arrays in
memory

www.itpub.net

 Arrays in Functions 199

parameter in which everything about the array is told to the function except for the size
of the array.) 2

 These array parameters may seem a little strange, but they have at least one very nice
property as a direct result of their seemingly strange definition. This advantage is best
illustrated by again looking at our example of the function fillUp given in Display 5.3 .
That same function can be used to fill an array of any size , as long as the base type of the
array is int . For example, suppose you have the following array declarations:

 int score[5], time[10];

 The first of the following calls to fillUp fills the array score with five values, and the
second fills the array time with ten values:

 fillUp(score, 5);
 fillUp(time, 10);

 You can use the same function for array arguments of different sizes, because the size is
a separate argument.

2 If you have heard of pointers, this will sound like pointers and indeed an array argument is passed by
passing a pointer to its first (zeroth) index variable . We will discuss this in Chapter 10 . If you have not
yet learned about pointers, you can safely ignore this footnote.

Different
size array

arguments
can be

plugged
in for the

same array
parameter

 Array Formal Parameters and Arguments

An argument to a function may be an entire array, but an argument for an entire array
is neither a call-by-value argument nor a call-by-reference argument. It is a new kind of
argument known as an array argument. When an array argument is plugged in for an array
parameter, all that is given to the function is the address in memory of the first indexed
variable of the array argument (the one indexed by 0). The array argument does not tell the
function the size of the array. Therefore, when you have an array parameter to a function,
you normally must also have another formal parameter of type int that gives the size of the
array (as in the following example).

An array argument is like a call-by-reference argument in the following way: If the function
body changes the array parameter, then when the function is called, that change is actually
made to the array argument. Thus, a function can change the values of an array argument
(that is, can change the values of its indexed variables).

The syntax for a function declaration with an array parameter is as follows.

 SYNTAX

Type_Returned Function_Name (..., Base_Type Array_Name [],...);

 EXAMPLE

 void sumArray(double & sum, double a[], int size);

200 CHAPTER 5 Arrays

 The const Parameter Modifier

 When you use an array argument in a function call, the function can change the
values stored in the array. This is usually fine. However, in a complicated function
definition, you might write code that inadvertently changes one or more of the values
stored in an array even though the array should not be changed at all. As a precaution,
you can tell the compiler that you do not intend to change the array argument, and
the computer will then check to make sure your code does not inadvertently change
any of the values in the array. To tell the compiler that an array argument should not
be changed by your function, insert the modifier const before the array parameter for
that argument position. An array parameter that is modified with a const is called a
constant array parameter .

 For example, the following function outputs the values in an array but does not
change the values in the array:

 void showTheWorld(int a[], int sizeOfa)
 //Precondition: sizeOfa is the declared size of the array a.
 //All indexed variables of a have been given values.
 //Postcondition: The values in a have been written to the screen.
 {
 cout << "The array contains the following values:\n";
 for (int i = 0; i < sizeOfa; i++)
 cout << a[i] << " ";
 cout << endl;
 }

 This function will work fine. However, as an added safety measure, you can add the
modifier const to the function heading as follows:

 void showTheWorld(const int a[], int sizeOfa)

 With the addition of this modifier const , the computer will issue an error message
if your function definition contains a mistake that changes any of the values in the
array argument. For example, the following is a version of the function showTheWorld

that contains a mistake that inadvertently changes the value of the array argument.
Fortunately, this version of the function definition includes the modifier const , so that
an error message will tell us that the array a has been changed. This error message will
help to explain the mistake:

 void showTheWorld(const int a[], int sizeOfa)
 //Precondition: sizeOfa is the declared size of the array a.
 //All indexed variables of a have been given values.
 //Postcondition: The values in a have been written to the screen.
 {
 cout << "The array contains the following values:\n";
 for (int i = 0; i < sizeOfa; a[i]++)
 cout << a[i] << " ";
 cout << endl;
 }

const

constant
array

parameter

 Mistake, but the compiler
will not catch it unless you
use the const modifier.

www.itpub.net

 Arrays in Functions 201

 If we had not used the const modifier in the previous function definition and if we
made the mistake shown, the function would compile and run with no error messages.
However, the code would contain an infinite loop that continually increments a[0]

and writes its new value to the screen.
 The problem with this incorrect version of showTheWorld is that the wrong item is

incremented in the for loop. The indexed variable a[i] is incremented, but it should
be the index i that is incremented. In this incorrect version, the index i starts with
the value 0 and that value is never changed. But a[i] , which is the same as a[0] , is
incremented. When the indexed variable a[i] is incremented, that changes a value in
the array, and since we included the modifier const , the computer will issue a warning
message. That error message should serve as a clue to what is wrong.

 You normally have a function declaration in your program in addition to the
function definition. When you use the const modifier in a function definition, you
must also use it in the function declaration so that the function heading and the
function declaration are consistent.

 The modifier const can be used with any kind of parameter, but it is normally
used only with array parameters and call-by-reference parameters for classes , which are
discussed in Chapters 6 and 7 .

 PITFALL: Inconsistent Use of const Parameters

 The const parameter modifier is an all-or-nothing proposition. If you use it for
one array parameter of a particular type, then you should use it for every other array
parameter that has that type and that is not changed by the function. The reason
has to do with function calls within function calls. Consider the definition of the
function showDifference , which is given here along with the declaration of a
function used in the definition:

 double computeAverage(int a[], int numberUsed);
 //Returns the average of the elements in the first numberUsed
 //elements of the array a. The array a is unchanged.

 void showDifference(const int a[], int numberUsed)
 {
 double average = computeAverage(a, numberUsed);
 cout << "Average of the " << numberUsed
 << " numbers = " << average << endl
 << "The numbers are:\n";
 for (int index = 0; index < numberUsed; index++)
 cout << a[index] << " differs from average by "
 << (a[index] – average) << endl;
 }

 The code shown will give an error message or warning message with most compilers.
The function computeAverage does not change its parameter a . However, when the

(continued)

202 CHAPTER 5 Arrays

PITFALL: (continued)

compiler processes the function definition for showDifference , it will think that
computeAverage does (or at least might) change the value of its parameter a . This
is because when it is translating the function definition for showDifference , all the
compiler knows about the function computeAverage is the function declaration
for computeAverage , which does not contain a const to tell the compiler that the
parameter a will not be changed. Thus, if you use const with the parameter a in
the function showDifference , then you should also use the modifier const with
the parameter a in the function computeAverage . The function declaration for
computeAverage should be as follows:

 double computeAverage(const int a[], int numberUsed); ■

 Functions That Return an Array

 A function may not return an array in the same way that it returns a value of type int
or double . There is a way to obtain something more or less equivalent to a function
that returns an array. The thing to do is return a pointer to the array. We will discuss
this topic when we discuss the interaction of arrays and pointers in Chapter 10 . Until
you learn about pointers, you have no way to write a function that returns an array.

 EXAMPLE: Production Graph

 Display 5.4 contains a program that uses an array and a number of array parameters.
This program for the Apex Plastic Spoon Manufacturing Company displays a bar
graph showing the productivity of each of its four manufacturing plants for any
given week. Plants keep separate production figures for each department, such as
the teaspoon department, soup spoon department, plain cocktail spoon department,
colored cocktail spoon department, and so forth. Moreover, each of the four plants
has a different number of departments.

 As you can see from the sample dialogue in Display 5.4 , the graph uses one
asterisk for each 1000 production units. Since output is in units of 1000, it must be
scaled by dividing it by 1000. This presents a problem because the computer must
display a whole number of asterisks. It cannot display 1.6 asterisks for 1600 units.
We therefore round to the nearest thousand. Thus, 1600 will be the same as 2000
and will produce two asterisks.

 The array production holds the total production for each of the four plants. In
C++, array indexes always start with 0 . But since the plants are numbered 1 through
4 , rather than 0 through 3 , we have placed the total production for plant number n
in indexed variable production [n–1] . The total output for plant number 1 will be
held in production[0] , the figures for plant 2 will be held in production[1] , and
so forth.

www.itpub.net

 Arrays in Functions 203

 Display 5.4 Production Graph Program (part 1 of 4)

 1 //Reads data and displays a bar graph showing productivity for each plant.

2 #include <iostream>
3 #include <cmath>
4 using namespace std;
5 const int NUMBER_OF_PLANTS = 4;

6 void inputData(int a[], int lastPlantNumber);
7 //Precondition: lastPlantNumber is the declared size of the array a.
8 //Postcondition: For plantNumber = 1 through lastPlantNumber:
9 //a[plantNumber-1] equals the total production for plant number

//plantNumber.

10 void scale(int a[], int size);
11 //Precondition: a[0] through a[size-1] each has a nonnegative value .
12 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
13 //an integer) that were originally in a[i], for all i such that 0 <= i

//<= size-1.

14 void graph(const int asteriskCount[], int lastPlantNumber);
15 //Precondition: a[0] through a[lastPlantNumber-1] have nonnegative values .
16 //Postcondition: A bar graph has been displayed saying that plant
17 //number N has produced a[N-1] 1000s of units, for each N such that
18 //1 <= N <= lastPlantNumber

19 void getTotal(int & sum);
20 //Reads nonnegative integers from the keyboard and
21 //places their total in sum .

22 int round(double number);
23 //Precondition: number >= 0 .
24 //Returns number rounded to the nearest integer .

 Since the output is in thousands of units, the program will scale the values of the
array elements. If the total output for plant number 3 is 4040 units, then the value
of production[2] will initially be set to 4040 . This value of 4040 will then be
scaled to 4 so that the value of production[2] is changed to 4 and four asterisks
will be output to represent the output for plant number 3. This scaling is done by
the function scale , which takes the entire array production as an argument and
changes the values stored in the array.

 The function round rounds its argument to the nearest integer. For example,
round(2.3) returns 2 , and round(2.6) returns 3 . The function round was discussed
in Chapter 3 , in the programming example entitled “A Rounding Function.”

EXAMPLE: (continued)

(continued)

204 CHAPTER 5 Arrays

Display 5.4 Production Graph Program (part 2 of 4)

25 void printAsterisks(int n);
26 //Prints n asterisks to the screen .

27 int main()
28 {
29 int production[NUMBER_OF_PLANTS];

30 cout << "This program displays a graph showing\n"
31 << "production for each plant in the company.\n";

32 inputData(production, NUMBER_OF_PLANTS);
33 scale(production, NUMBER_OF_PLANTS);
34 graph(production, NUMBER_OF_PLANTS);
35 return 0;
36 }

37 void inputData(int a[], int lastPlantNumber)
38 {
39 for (int plantNumber = 1;
40 plantNumber <= lastPlantNumber; plantNumber++)
41 {
42 cout << endl
43 << "Enter production data for plant number "
44 << plantNumber << endl;
45 getTotal(a[plantNumber – 1]);
46 }
47 }

48 void getTotal(int & sum)
49 {
50 cout << "Enter number of units produced by each department.\n"
51 << "Append a negative number to the end of the list.\n";

52 sum = 0;
53 int next;
54 cin >> next;
55 while (next >= 0)
56 {
57 sum = sum + next;
58 cin >> next;
59 }

60 cout << "Total = " << sum << endl;
61 }
62
63 void scale(int a[], int size)
64 {

www.itpub.net

 Arrays in Functions 205

65 for (int index = 0; index < size; index++)
66 a[index] = round(a[index]/1000.0);
67 }

68 int round(double number)
69 {
70 return static_cast <int>(floor(number + 0.5));
71 }

72 void graph(const int asteriskCount[], int lastPlantNumber)
73 {
74 cout << "\nUnits produced in thousands of units:\n\n";
75 for (int plantNumber = 1;
76 plantNumber <= lastPlantNumber; plantNumber++)
77 {
78 cout << "Plant #" << plantNumber << " ";
79 printAsterisks(asteriskCount[plantNumber – 1]);
80 cout << endl;
81 }
82 }

83 void printAsterisks(int n)
84 {
85 for (int count = 1; count <= n; count++)
86 cout << "*";
87 }

 Sample Dialogue

 This program displays a graph showing

Production for each plant in the company.

 Enter production data for plant number 1

 Enter number of units produced by each department.

 Append a negative number to the end of the list.

2000 3000 1000 -1

 Total = 6000

 Enter production data for plant number 2

 Enter number of units produced by each department.

 Append a negative number to the end of the list.

2050 3002 1300 -1

 Total = 6352

Display 5.4 Production Graph Program (part 3 of 4)

(continued)

206 CHAPTER 5 Arrays

 Enter production data for plant number 3

 Enter number of units produced by each department.

 Append a negative number to the end of the list.

5000 4020 500 4348 -1

 Total = 13868

 Enter production data for plant number 4

 Enter number of units produced by each department.

 Append a negative number to the end of the list.

2507 6050 1809 –1

 Total = 10366

 Units produced in thousands of units:

Plant #1 ******

 Plant #2 ******

 Plant #3 **************

 Plant #4 **********

Display 5.4 Production Graph Program (part 4 of 4)

 Self-Test Exercises

 13. Write a function defi nition for a function called oneMore , which has a formal
parameter for an array of integers and increases the value of each array element
by 1. Add any other formal parameters that are needed.

 14. Consider the following function defi nition:

 void too2(int a[], int howMany)
 {
 for (int index = 0; index < howMany; index++)
 a[index] = 2;
 }

 Which of the following are acceptable function calls?

 int myArray[29];
 too2(myArray, 29);
 too2(myArray, 10);
 too2(myArray, 55);
 "Hey too2. Please come over here."
 int yourArray[100];
 too2(yourArray, 100);
 too2(myArray[3], 29);

www.itpub.net

 Programming with Arrays 207

 5.3 Programming with Arrays

 Never trust to general impressions, my boy, but concentrate yourself
upon details.

 SIR ARTHUR CONAN DOYLE, A Case of Identity (Sherlock Holmes)

 This section discusses partially filled arrays and gives a brief introduction to sorting and
searching of arrays. This section includes no new material about the C++ language, but
does include more practice with C++ array parameters.

 Partially Filled Arrays

 Often the exact size needed for an array is not known when a program is written,
or the size may vary from one run of the program to another. One common and
easy way to handle this situation is to declare the array to be of the largest size the

Self-Test Exercises (continued)

 15. Insert const before any of the following array parameters that can be changed
to constant array parameters.

 void output(double a[], int size);
 //Precondition: a[0] through a[size – 1] have values.
 //Postcondition: a[0] through a[size – 1] have been written out .

 void dropOdd(int a[], int size);
 //Precondition: a[0] through a[size – 1] have values .
 //Postcondition: All odd numbers in a[0] through a[size – 1]
 //have been changed to 0 .

 16. Write a function named outOfOrder that takes as parameters an array of
double and an int parameter named size and returns a value of type int .
This function will test this array for being out of order, meaning that the array
violates the following condition:

 a[0] <= a[1] <= a[2] <= ...

 The function returns –1 if the elements are not out of order; otherwise, it
will return the index of the fi rst element of the array that is out of order. For
example, consider the declaration

 double a[10] = {1.2, 2.1, 3.3, 2.5, 4.5,
 7.9, 5.4, 8.7, 9.9, 1.0};

 In the previous array, a[2] and a[3] are the fi rst pair out of order and a[3]
is the fi rst element out of order, so the function returns 3 . If the array were
sorted, the function would return –1 .

208 CHAPTER 5 Arrays

program could possibly need. The program is then free to use as much or as little of
the array as is needed.

 Partially filled arrays require some care. The program must keep track of how much
of the array is used and must not reference any indexed variable that has not been given
a value. The program in Display 5.5 illustrates this point. The program reads in a list
of golf scores and shows how much each score differs from the average. This program
will work for lists as short as one score, as long as ten scores, and of any length in
between. The scores are stored in the array score , which has ten indexed variables, but
the program uses only as much of the array as it needs. The variable numberUsed keeps
track of how many elements are stored in the array. The elements (that is, the scores)
are stored in positions score[0] through score[numberUsed–1] . The details are
very similar to what they would be if numberUsed were the declared size of the array
and the entire array were used. In particular, the variable numberUsed usually must
be an argument to any function that manipulates the partially filled array. Since the
argument numberUsed (when used properly) can often ensure that the function will
not reference an illegal array index, this sometimes (but not always) eliminates the need
for an argument that gives the declared size of the array. For example, the functions
showDifference and computeAverage use the argument numberUsed to ensure that
only legal array indexes are used. However, the function fillArray needs to know the
maximum declared size for the array so that it does not overfill the array.

 TIP: Do Not Skimp on Formal Parameters

 Notice the function fillArray in Display 5.5 . When fillArray is called, the
declared array size MAX_NUMBER_SCORES is given as one of the arguments, as shown in
the following function call from Display 5.5 :

 fillArray(score, MAX_NUMBER_SCORES, numberUsed);

 You might protest that MAX_NUMBER_SCORES is a globally defi ned constant and so it
could be used in the defi nition of fillArray without the need to make it an argu-
ment. You would be correct, and if we did not use fillArray in any program other
than the one in Display 5.5 , we could get by without making MAX_NUMBER_SCORES
an argument to fill Array . However, fillArray is a generally useful function that
you may want to use in several different programs. We do in fact also use the function
fillArray in the program in Display 5.6 , discussed in the next subsection. In the
program in Display 5.6 the argument for the declared array size is a different named
global constant. If we had written the global constant MAX_NUMBER_SCORES into the
body of the function fillArray , we would not have been able to reuse the function
in the program in Display 5.6 .

 Even if we used fillArray in only one program, it can still be a good idea to make
the declared array size an argument to fillArray . Displaying the declared size of the
array as an argument reminds us that the function needs this information in a critically
important way. ■

www.itpub.net

 Programming with Arrays 209

 Display 5.5 Partially Filled Array (part 1 of 2)

1 //Shows the difference between each of a list of golf scores and
//their average .

2 #include <iostream>
3 using namespace std;
4 const int MAX_NUMBER_SCORES = 10;

5 void fillArray(int a[], int size, int & numberUsed);
6 //Precondition: size is the declared size of the array a .
7 //Postcondition: numberUsed is the number of values stored in a .
8 //a[0] through a[numberUsed-1] have been filled with
9 //nonnegative integers read from the keyboard .

10 double computeAverage(const int a[], int numberUsed);
11 //Precondition: a[0] through a[numberUsed-1] have values;

//numberUsed > 0.
12 //Returns the average of numbers a[0] through a[numberUsed-1] .

13 void showDifference(const int a[], int numberUsed);
14 //Precondition: The first numberUsed indexed variables of a have values .
15 //Postcondition: Gives screen output showing how much each of the first
16 //numberUsed elements of the array a differs from their average.
17 int main()
18 {
19 int score[MAX_NUMBER_SCORES], numberUsed;
20 cout << "This program reads golf scores and shows\n"
21 << "how much each differs from the average.\n";

22 cout << "Enter golf scores:\n";

23 fillArray(score, MAX_NUMBER_SCORES, numberUsed);
24 showDifference(score, numberUsed);

25 return 0;
26 }

27 void fillArray(int a[], int size, int & numberUsed)
28 {
29 cout << "Enter up to " << size << " nonnegative whole numbers.\n"
30 << "Mark the end of the list with a negative number.\n";
31 int next, index = 0;
32 cin >> next;
33 while ((next >= 0) && (index < size))
34 {
35 a[index] = next;
36 index++;
37 cin >> next;
38 }

(continued)

210 CHAPTER 5 Arrays

39 numberUsed = index;
40 }

41 double computeAverage(const int a[], int numberUsed)
42 {
43 double total = 0;
44 for (int index = 0; index < numberUsed; index++)
45 total = total + a[index];
46 if (numberUsed > 0)
47 {
48 return (total/numberUsed);
49 }
50 else
51 {
52 cout << "ERROR: number of elements is 0 in computeAverage.\n"
53 << "computeAverage returns 0.\n";
54 return 0;
55 }
56 }

57 void showDifference(const int a[], int numberUsed)
58 {
59 double average = computeAverage(a, numberUsed);
60 cout << "Average of the " << numberUsed
61 << " scores = " << average << endl
62 << "The scores are:\n";
63 for (int index = 0; index < numberUsed; index++)
64 cout << a[index] << " differs from average by "
65 << (a[index] – average) << endl;
66 }

 Sample Dialogue

This program reads golf scores and shows
 how much each differs from the average.
 Enter golf scores:
 Enter up to 10 nonnegative whole numbers.
 Mark the end of the list with a negative number.
69 74 68 -1
 Average of the 3 scores = 70.3333
 The scores are:
 69 differs from average by –1.33333
 74 differs from average by 3.66667
 68 differs from average by –2.33333

Display 5.5 Partially Filled Array (part 2 of 2)

www.itpub.net

 Programming with Arrays 211

 EXAMPLE: Searching an Array

 A common programming task is to search an array for a given value. For example,
the array may contain the student numbers for all students in a given course. To tell
whether a particular student is enrolled, the array is searched to see if it contains the
student’s number. The simple program in Display 5.6 fills an array and then searches
the array for values specified by the user. A real application program would be much
more elaborate, but this shows all the essentials of the sequential search algorithm.
The sequential search is the most straightforward searching algorithm you could
imagine: The program looks at the array elements in order, first to last, to see if the
target number is equal to any of the array elements.

 In Display 5.6 the function search is used to search the array. When searching an
array, you often want to know more than simply whether or not the target value is in
the array. If the target value is in the array, you often want to know the index of the
indexed variable holding that target value, since the index may serve as a guide to some
additional information about the target value. Therefore, we designed the function
search to return an index giving the location of the target value in the array, provided
the target value is, in fact, in the array. If the target value is not in the array, search
returns –1 . Let’s look at the function search in a little more detail.

 The function search uses a while loop to check the array elements one after the
other to see whether any of them equals the target value. The variable found is used as
a flag to record whether or not the target element has been found. If the target element
is found in the array, found is set to true , which in turn ends the while loop.

 Display 5.6 Searching an Array (part 1 of 3)

1 //Searches a partially filled array of nonnegative integers .
2 #include <iostream>
3 using namespace std;
4 const int DECLARED_SIZE = 20;

5 void fillArray(int a[], int size, int & numberUsed);
6 //Precondition: size is the declared size of the array a .
7 //Postcondition: numberUsed is the number of values stored in a .
8 //a[0] through a[numberUsed-1] have been filled with
9 //nonnegative integers read from the keyboard .

10 int search(const int a[], int numberUsed, int target);
11 //Precondition: numberUsed is <= the declared size of a.
12 //Also, a[0] through a[numberUsed –1] have values .
13 //Returns the first index such that a[index] == target ,
14 //provided there is such an index; otherwise, returns –1 .

(continued)

212 CHAPTER 5 Arrays

15 int main()
16 {
17 int arr[DECLARED_SIZE], listSize, target;

18 fillArray(arr, DECLARED_SIZE, listSize);

19 char ans;
20 int result;
21 do
22 {
23 cout << "Enter a number to search for: ";
24 cin >> target;

25 result = search(arr, listSize, target);
26 if (result == –1)
27 cout << target << " is not on the list.\n";
28 else
29 cout << target << " is stored in array position "
30 << result << endl
31 << "(Remember: The first position is 0.)\n";
32 cout << "Search again?(y/n followed by Return): ";
33 cin << ans;
34 } while ((ans != 'n') && (ans != 'N'));
35 cout << "End of program.\n";
36 return 0;
37 }

38 void fillArray(int a[], int size, int & numberUsed)
 39 < The rest of the definition of fillArray is given in Display 5.5 >

40 int search(const int a[], int numberUsed, int target)
41 {
42 int index = 0;
43 bool found = false ;
44 while ((!found) && (index < numberUsed))
45 if (target == a[index])
 found = true ;
47 else
48 index++;

49 if (found)
50 return index;
51 else
52 return –1;
53 }

Display 5.6 Searching an Array (part 2 of 3)

www.itpub.net

 Programming with Arrays 213

Display 5.6 Searching an Array (part 3 of 3)

 Sample Dialogue

Enter up to 20 nonnegative whole numbers.

 Mark the end of the list with a negative number.

10 20 30 40 50 60 70 80 –1

 Enter a number to search for: 10

 10 is stored in array position 0

 (Remember: The first position is 0.)

 Search again?(y/n followed by Return): y

 Enter a number to search for: 40

 40 is stored in array position 3

 (Remember: The first position is 0.)

 Search again?(y/n followed by Return): y

 Enter a number to search for: 42

 42 is not on the list.

 Search again?(y/n followed by Return): n

 End of program.

 EXAMPLE: Sorting an Array

 One of the most widely encountered programming tasks, and certainly the most
thoroughly studied, is sorting a list of values, such as a list of sales figures that must be
sorted from lowest to highest or from highest to lowest, or a list of words that must be
sorted into alphabetical order. This example describes a function called sort that will sort a
partially filled array of numbers so that they are ordered from smallest to largest.

 The procedure sort has one array parameter, a . The array a will be partially filled,
so there is an additional formal parameter called numberUsed that tells how many
array positions are used. Thus, the declaration and precondition for the function
sort are as follows:

 void sort(int a[], int numberUsed);
 //Precondition: numberUsed <= declared size of the array a .
 //The array elements a[0] through a[numberUsed–1] have values .

 The function sort rearranges the elements in array a so that after the function call is
completed the elements are sorted as follows:

 a[0] ≤ a[1] ≤ a[2] ≤ ... ≤ a[numberUsed – 1]

 The algorithm we use to do the sorting is called selection sort. It is one of the easiest of
the sorting algorithms to understand.

(continued)

214 CHAPTER 5 Arrays

 EXAMPLE: (continued)

One way to design an algorithm is to rely on the definition of the problem. In this
case the problem is to sort an array a from smallest to largest. That means rearranging
the values so that a[0] is the smallest, a[1] the next smallest, and so forth. That
definition yields an outline for the selection sort algorithm:

 for (int index = 0; index < numberUsed; index++)
 Place the indexth smallest element in a[index]

 There are many ways to realize this general approach. The details could be developed
using two arrays and copying the elements from one array to the other in sorted order,
but one array should be both adequate and economical. Therefore, the function
sort uses only the one array containing the values to be sorted. The function sort
rearranges the values in the array a by interchanging pairs of values. Let us go through
a concrete example so that you can see how the algorithm works.

 Consider the array shown in Display 5.7 . The algorithm will place the smallest
value in a[0] . The smallest value is the value in a[3] , so the algorithm interchanges
the values of a[0] and a[3] . The algorithm then looks for the next-smallest element.
The value in a[0] is now the smallest element, and so the next-smallest element is
the smallest of the remaining elements a[1] , a[2] , a[3] , … , a[9] . In the example
in Display 5.7 the next-smallest element is in a[5] , so the algorithm interchanges
the values of a[1] and a[5] . This positioning of the second-smallest element is
illustrated in the fourth and fifth array pictures in Display 5.7 . The algorithm then
positions the third-smallest element, and so forth. As the sorting proceeds, the
beginning array elements are set equal to the correct sorted values. The sorted portion
of the array grows by adding elements one after the other from the elements in the
unsorted end of the array. Notice that the algorithm need not do anything with the
value in the last indexed variable, a[9] . Once the other elements are positioned
correctly, a[9] must also have the correct value. After all, the correct value for a[9] is
the smallest value left to be moved, and the only value left to be moved is the value
that is already in a[9] .

 The definition of the function sort , included in a demonstration program, is
given in Display 5.8 . sort uses the function indexOfSmallest to find the index of
the smallest element in the unsorted end of the array, and then it does an interchange
to move this next-smallest element down into the sorted part of the array.

 The function swapValues , shown in Display 5.8 , is used to interchange the values
of indexed variables. For example, the following call will interchange the values of
a[0] and a[3] :

 swapValues(a[0], a[3]);

 The function swapValues was explained in Chapter 4 .

www.itpub.net

 Programming with Arrays 215

 2 4 10 8 16 6 18 14 12 20

 2 6 10 8 16 4 18 14 12 20

 8 6 10 2 16 4 18 14 12 20

 8 6 10 2 16 4 18 14 12 20

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

 2 6 10 8 16 4 18 14 12 20

 Display 5.7 Selection Sort

 Display 5.8 Sorting an Array (part 1 of 3)

1 //Tests the procedure sort .
2 #include <iostream>
3 using namespace std;

4 void fillArray(int a[], int size, int & numberUsed);
5 //Precondition: size is the declared size of the array a .
6 //Postcondition: numberUsed is the number of values stored in a .
7 //a[0] through a[numberUsed – 1] have been filled with
8 //nonnegative integers read from the keyboard .

9 void sort(int a[], int numberUsed);
10 //Precondition: numberUsed <= declared size of the array a.
11 //The array elements a[0] through a[numberUsed – 1] have values .
12 //Postcondition: The values of a[0] through a[numberUsed – 1] have
13 //been rearranged so that a[0] <= a[1] <= ... <= a[numberUsed – 1] .

14 void swapValues(int & v1, int & v2);
15 //Interchanges the values of v1 and v2 .

16 int indexOfSmallest(const int a[], int startIndex, int numberUsed);
17 //Precondition: 0 <= startIndex < numberUsed. Reference array elements
18 //have values. Returns the index i such that a[i] is the smallest of the
19 //values a[startIndex], a[startIndex + 1], ..., a[numberUsed – 1] .

(continued)

216 CHAPTER 5 Arrays

20 int main()
21 {
22 cout << "This program sorts numbers from lowest to highest.\n";

23 int sampleArray[10], numberUsed;
24 fillArray(sampleArray, 10, numberUsed);
25 sort(sampleArray, numberUsed);

26 cout << "In sorted order the numbers are:\n";
27 for (int index = 0; index < numberUsed; index++)
28 cout << sampleArray[index] << " ";
29 cout << endl;

30 return 0;
31 }

32 void fillArray(int a[], int size, int & numberUsed)
 33 < The rest of the definition of fillArray is given in Displays 5.5 .>

34 void sort(int a[], int numberUsed)
35 {
36 int indexOfNextSmallest;
37 for (int index = 0; index < numberUsed – 1; index++)
38 { //Place the correct value in a[index] :
39 indexOfNextSmallest =
40 indexOfSmallest(a, index, numberUsed);
41 swapValues(a[index], a[indexOfNextSmallest]);
42 //a[0] <= a[1] <= ... <= a[index] are the smallest of the
43 //original array elements. The rest of the
 //elements are in the remaining positions .
44 }
45 }

46 void swapValues(int & v1, int & v2)
47 {
48 int temp;
49 temp = v1;
50 v1 = v2;
51 v2 = temp;
52 }
53

54 int indexOfSmallest(const int a[], int startIndex, int numberUsed)
55 {
56 int min = a[startIndex],
57 indexOfMin = startIndex;

Display 5.8 Sorting an Array (part 2 of 3)

www.itpub.net

 Programming with Arrays 217

Display 5.8 Sorting an Array (part 3 of 3)

58 for (int index = startIndex + 1; index < numberUsed; index++)
59 if (a[index] < min)
60 {
61 min = a[index];
62 indexOfMin = index;
63 //min is the smallest of a[startIndex] through a[index]
64 }

65 return indexOfMin;
66 }

 Sample Dialogue

This program sorts numbers from lowest to highest.

 Enter up to 10 nonnegative whole numbers.

 Mark the end of the list with a negative number.

80 30 50 70 60 90 20 30 40 –1

 In sorted order the numbers are:

 20 30 30 40 50 60 70 80 90

 Self-Test Exercises

 17. Write a program that will read up to ten nonnegative integers into an array
called numberArray and then write the integers back to the screen. For this
exercise you need not use any functions. This is just a toy program and can be
very minimal.

 18. Write a program that will read up to ten letters into an array and write the
letters back to the screen in the reverse order. For example, if the input is

 abcd.

 then the output should be

 dcba

 Use a period as a sentinel value to mark the end of the input. Call the array
letterBox . For this exercise you need not use any functions. This is just a toy
program and can be very minimal.

 19. Following is the declaration for an alternative version of the function
search defi ned in Display 5.6 . In order to use this alternative version of the
search function we would need to rewrite the program slightly, but for this

(continued)

218 CHAPTER 5 Arrays

 5.4 Multidimensional Arrays

 C++ allows you to declare arrays with more than one index. This section describes
these multidimensional arrays.

 Multidimensional Array Basics

 It is sometimes useful to have an array with more than one index, and this is allowed in
C++. The following declares an array of characters called page . The array page has two
indexes: The first index ranges from 0 to 29 and the second from 0 to 99 .

 char page[30][100];

 The indexed variables for this array each have two indexes. For example, page[0][0] ,
page[15][32] , and page[29][99] are three of the indexed variables for this array.
Note that each index must be enclosed in its own set of square brackets. As was
true of the one-dimensional arrays we have already seen, each indexed variable for a
multidimensional array is a variable of the base type.

 An array may have any number of indexes, but perhaps the most common number
of indexes is two. A two-dimensional array can be visualized as a two-dimensional
display with the first index giving the row and the second index giving the column.
For example, the array indexed variables of the two-dimensional array page can be
visualized as follows:

 page[0][0], page[0][1], ..., page[0][99]
 page[1][0], page[1][1], ..., page[1][99]
 page[2][0], page[2][1], ..., page[2][99]
 .
 .
 .
 page[29][0], page[29][1], ..., page[29][99]

 You might use the array page to store all the characters on a page of text that has 30 lines
(numbered 0 through 29) and 100 characters on each line (numbered 0 through 99).

Self-Test Exercises (continued)

exercise all you need do is write the function defi nition for this alternative
version of search .

 bool search(const int a[], int numberUsed,
 int target, int & where);
 //Precondition: numberUsed is <= the declared size of the
 //array a. Also, a[0] through a[numberUsed -1] have values .
 //Postcondition: If target is one of the elements a[0]
 //through a[numberUsed - 1], then this function returns
 //true and sets the value of where so that a[where] ==
 //target; otherwise, this function returns false and the
 //value of where is unchanged .

indexed
variables

array
declarations

www.itpub.net

 Multidimensional Arrays 219

 In C++, a two-dimensional array, such as pag e, is actually an array of arrays. The
array page shown is actually a one-dimensional array of size 30, whose base type is
a one-dimensional array of characters of size 100. Normally, this need not concern
you, and you can usually act as if the array page were actually an array with two
indexes (rather than an array of arrays, which is harder to keep track of). There is,
however, at least one situation in which a two-dimensional array looks very much like
an array of arrays, namely, when you have a function with an array parameter for a
two-dimensional array, which is discussed in the next subsection.

 Multidimensional Array Declaration

 SYNTAX

Type Array_Name [Size_Dim_1][Size_Dim_2]...[Size_Dim_Last];

 EXAMPLES

 char page[30][100];
 int matrix[2][3];
 double threeDPicture[10][20][30];

An array declaration of the form shown here will define one indexed variable for each
combination of array indexes. For example, the second of the previous sample declarations
defines the following six indexed variables for the array matrix:

 matrix[0][0], matrix[0][1], matrix[0][2],
 matrix[1][0], matrix[1][1], matrix[1][2]

 Multidimensional Array Parameters

 The following declaration of a two-dimensional array actually declares a one-dimensional
array of size 30 whose base type is a one-dimensional array of characters of size 100.

 char page[30][100];

 Viewing a two-dimensional array as an array of arrays will help you to understand how
C++ handles parameters for multidimensional arrays.

 For example, the following is a function that takes an array, like page , and prints it
to the screen:

 void displayPage(const char p[][100], int sizeDimension1)
 {
 for (int index1 = 0; index1 < sizeDimension1; index1++)
 { //Printing one line:
 for (int index2 = 0; index2 < 100; index2++)
 cout << p[index1][index2];
 cout << endl;
 }
 }

220 CHAPTER 5 Arrays

 Notice that with a two-dimensional array parameter, the size of the first dimension
is not given, so we must include an int parameter to give the size of this first
dimension. (As with ordinary arrays, the compiler will allow you to specify the first
dimension by placing a number within the first pair of square brackets. However, such
a number is only a comment; the compiler ignores the number.) The size of the second
dimension (and all other dimensions if there are more than two) is given after the array
parameter, as shown for the parameter

 const char p[][100]

 If you realize that a multidimensional array is an array of arrays, then this rule begins to
make sense. Since the two-dimensional array parameter

 const char p[][100]

 is a parameter for an array of arrays, the first dimension is really the index of the
array and is treated just like an array index for an ordinary, one-dimensional array.
The second dimension is part of the description of the base type, which is an array of
characters of size 100 .

 Multidimensional Array Parameters
When a multidimensional array parameter is given in a function heading or function
declaration, the size of the first dimension is not given, but the remaining dimension sizes
must be given in square brackets. Since the first dimension size is not given, you usually
need an additional parameter of type int that gives the size of this first dimension. The
following is an example of a function declaration with a two-dimensional array parameter p:

 void getPage(char p[][100], int sizeDimension1);

 EXAMPLE: Two-Dimensional Grading Program

 Display 5.9 contains a program that uses a two-dimensional array named grade
to store and then display the grade records for a small class. The class has four
students, and the records include three quizzes. Display 5.10 illustrates how the array
grade is used to store data. The first array index is used to designate a student, and
the second array index is used to designate a quiz. Since the students and quizzes
are numbered starting with 1 rather than 0, we must subtract 1 from the student
number and subtract 1 from the quiz number to obtain the indexed variable that
stores a particular quiz score. For example, the score that student number 4 received
on quiz number 1 is recorded in grade[3][0] .

 Our program also uses two ordinary one-dimensional arrays. The array stAve
will be used to record the average quiz score for each of the students. For example,
the program will set stAve[0] equal to the average of the quiz scores received by
student 1, stAve[1] equal to the average of the quiz scores received by student 2,

www.itpub.net

 Multidimensional Arrays 221

 Display 5.9 Two-Dimensional Array (part 1 of 3)

1 //Reads quiz scores for each student into the two-dimensional array
2 //grade (but the input code is not shown in this display).
3 //Computes the average score for each student and the average score
 //for each quiz. Displays the quiz scores and the averages .
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7 const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;
 8 void computeStAve(const int grade[][NUMBER_QUIZZES], double stAve[]);
9 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES
10 //are the dimensions of the array grade. Each of the indexed variables
11 //grade[stNum-1, quizNum-1] contains the score for student stNum on

//quiz quizNum .
12 //Postcondition: Each stAve[stNum-1] contains the average for student

//number stNum.
13

14 void computeQuizAve(const int grade[][NUMBER_QUIZZES],
 double quizAve[]);
 15 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES
 16 //are the dimensions of the array grade. Each of the indexed variables
 17 //grade[stNum-1, quizNum-1] contains the score for student stNum on

//quiz quizNum .
 18 //Postcondition: Each quizAve[quizNum-1] contains the average for
 19 //quiz numbered quizNum .

(continued)

EXAMPLE: (continued)

and so forth. The array quizAve will be used to record the average score for each
quiz. For example, the program will set quizAve[0] equal to the average of all the
student scores for quiz 1, quizAve[1] will record the average score for quiz 2, and so
forth. Display 5.10 illustrates the relationship between the arrays grade , stAve , and
q uizAve. This display shows some sample data for the array grade . These data, in
turn, determine the values that the program stores in stAve and in quizAve . Display 5.11
also shows these values, which the program computes for stAve and quizAve .

 The complete program for filling the array grade and then computing and
displaying both the student averages and the quiz averages is shown in Display 5.9 . In
that program we have declared array dimensions as global named constants. Since the
procedures are particular to this program and cannot be reused elsewhere, we have
used these globally defined constants in the procedure bodies, rather than having
parameters for the size of the array dimensions. Since it is routine, the display does
not show the code that fills the array.

222 CHAPTER 5 Arrays

Display 5.9 Two-Dimensional Array (part 2 of 3)

 20 void display(const int grade[][NUMBER_QUIZZES],

21 const double stAve[],
 const double quizAve[]);

 22 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES
23 //are the dimensions of the array grade. Each of the indexed variables
 24 //grade[stNum-1 , quizNum-1] contains the score for student stNum on
 25 //quiz quizNum. Each stAve[stNum-1] contains the average for student
 26 //stNum. Each quizAve[quizNum-1] contains the average for quiz
 //numbered quizNum.
 27 //Postcondition: All the data in grade, stAve, and quizAve have been

//output .
28 int main()
29 {
30 int grade[NUMBER_STUDENTS][NUMBER_QUIZZES];
31 double stAve[NUMBER_STUDENTS];
32 double quizAve[NUMBER_QUIZZES];
33
 < The code for filling the array grade goes here, but is not shown. >
34
35 computeStAve(grade, stAve);
36 computeQuizAve(grade, quizAve);
37 display(grade, stAve, quizAve);
38 return 0;
39 }
40 void computeStAve(const int grade[][NUMBER_QUIZZES], double stAve[])
41 {
42 for (int stNum = 1; stNum <= NUMBER_STUDENTS; stNum++)
43 { //Process one stNum:
44 double sum = 0;
45 for (int quizNum = 1; quizNum <= NUMBER_QUIZZES; quizNum++)
46 sum = sum + grade[stNum–1][quizNum–1];
47 //sum contains the sum of the grades for student number stNum .
48 stAve[stNum–1] = sum/NUMBER_QUIZZES;
49 //Average for student stNum is the value of stAve[stNum-1]
50 }
51 }

52 void computeQuizAve(const int grade[][NUMBER_QUIZZES],
 double quizAve[])

53 {
54 for (int quizNum = 1; quizNum <= NUMBER_QUIZZES; quizNum++)
55 { //Process one quiz (for all students):
56 double sum = 0;
57 for (int stNum = 1; stNum <= NUMBER_STUDENTS; stNum++)

www.itpub.net

 Multidimensional Arrays 223

Display 5.9 Two-Dimensional Array (part 3 of 3)

58 sum = sum + grade[stNum–1][quizNum–1];
59 //sum contains the sum of all student scores on quiz number

//quizNum .
60 quizAve[quizNum–1] = sum/NUMBER_STUDENTS;
61 //Average for quiz quizNum is the value of quizAve[quizNum-1]
62 }
63 }

64 void display(const int grade[][NUMBER_QUIZZES],
65 const double stAve[], const double quizAve[])
66 {
67 cout.setf(ios::fixed);
68 cout.setf(ios::showpoint);
69 cout.precision(1);

70 cout << setw(10) << "Student"
71 << setw(5) << "Ave"
72 << setw(15) << "Quizzes\n";
73 for (int stNum = 1; stNum <= NUMBER_STUDENTS; stNum++)
74 { //Display for one stNum:
75 cout << setw(10) << stNum
76 << setw(5) << stAve[stNum–1] << " ";
77 for (int quizNum = 1; quizNum <= NUMBER_QUIZZES; quizNum++)
78 cout << setw(5) << grade[stNum–1][quizNum–1];
79 cout << endl;
80 }

81 cout << "Quiz averages = ";
82 for (int quizNum = 1; quizNum <= NUMBER_QUIZZES; quizNum++)
83 cout << setw(5) << quizAve[quizNum–1];
84 cout << endl;
85 }

 Sample Dialogue

 < The dialogue for filling the array grade is not shown .>

 Student Ave Quizzes

 1 10.0 10 10 10

 2 1.0 2 0 1

 3 7.7 8 6 9

 4 7.3 8 4 10

 Quiz Average = 7.0 5.0 7.5

224 CHAPTER 5 Arrays

qu
iz

 1

qu
iz

2

qu
iz

3

grade[3][2] is the
grade that student 4
 received on quiz 3.

grade[3][0] is the
grade that student 4
 received on quiz 1.

grade[3][1] is the
grade that student 4
 received on quiz 2.

student 1 grade[0][0] grade[0][1] grade[0][2] 1

student 2 grade[1][0] grade[1][1] grade[1][2] 2

student 3 grade[2][0] grade[2][1] grade[2][2] 3

student 4 grade[3][0] grade[3][1] grade[3][2] 4

 Display 5.10 The Two-Dimensional Array grade

qu
iz
Av
e[
0]

qu
iz
Av
e[
1]

qu
iz
Av
e[
2]

qu
iz

 1

qu
iz

 2

qu
iz

 3

student 1 10 10 10 10.0 stAve[0]

student 2 2 0 1 1.0 stAve[1]

student 3 8 6 9 7.7 stAve[2]

student 4 8 4 10 7.3 stAve[3]

quizAve 7.0 5.0 7.5

 Display 5.11 The Two-Dimensional Array grade

www.itpub.net

Chapter Summary 225

 Self-Test Exercises

 20. What is the output produced by the following code?

 int myArray[4][4], index1, index2;
 for (index1 = 0; index1 < 4; index1++)
 for (index2 = 0; index2 < 4; index2++)
 myArray[index1][index2] = index2;
 for (index1 = 0; index1 < 4; index1++)
 {
 for (index2 = 0; index2 < 4; index2++)
 cout << myArray[index1][index2] << " ";
 cout << endl;
 }

 21. Write code that will fi ll the array a (declared next) with numbers typed in at the
keyboard. The numbers will be input fi ve per line, on four lines (although your
solution need not depend on how the input numbers are divided into lines).

 int a[4][5];

 22. Write a function defi nition for a void function called echo such that the
following function call will echo the input described in Self-Test Exercise 21,
and will echo it in the same format as we specifi ed for the input (that is, four
lines of fi ve numbers per line):

 echo(a, 4);

 Chapter Summary

• An array can be used to store and manipulate a collection of data that is all of the
same type.

• The indexed variables of an array can be used just like any other variables of the base
type of the array.

• A for loop is a good way to step through the elements of an array and perform some
program action on each indexed variable.

• The most common programming error made when using arrays is attempting to
access a nonexistent array index. Always check the first and last iterations of a loop
that manipulates an array to make sure it does not use an index that is illegally small
or illegally large.

• An array formal parameter is neither a call-by-value parameter nor a call-by-reference
parameter, but a new kind of parameter. An array parameter is similar to a call-by-
reference parameter in that any change that is made to the formal parameter in the
body of the function will be made to the array argument when the function is called.

226 CHAPTER 5 Arrays

• The indexed variables for an array are stored next to each other in the computer’s
memory so that the array occupies a contiguous portion of memory. When the array
is passed as an argument to a function, only the address of the first indexed variable
(the one numbered 0) is given to the calling function. Therefore, a function with an
array parameter usually needs another formal parameter of type int to give the size
of the array.

• When using a partially filled array, your program needs an additional variable of type
int to keep track of how much of the array is being used.

• To tell the compiler that an array argument should not be changed by your func-
tion, you can insert the modifier const before the array parameter for that argument
position. An array parameter that is modified with a const is called a constant array
parameter.

• If you need an array with more than one index, you can use a multidimensional array.

 Answers to Self-Test Exercises

 1. The statement int a[5]; is a declaration, in which 5 is the number of array
 elements. The expression a[4] is an access into the array defined by the previous
statement. The access is to the element having index 4 , which is the fifth (and last)
array element.

 2. a. score

 b. double

 c. 5

 d. 0 through 4

 e. Any of score[0] , score[1] , score[2] , score[3] , scor e[4]

 3. a. One too many initializers

 b. Correct. The array size is 4.

 c. Correct. The array size is 4.

 4. abc

 5. 1.1 2.2 3.3

 1.1 3.3 3.3

 (Remember that the indexes start with 0 , not 1 .)

 6. 0 2 4 6 8 10 12 14 16 18

 0 4 8 12 16

 7. The indexed variables of sampleArray are sampleArray[0] through
sampleArray[9] , but this piece of code tries to fill sampleArray[1] through
sampleArray[10] . The index 10 in sampleArray[10] is out of range.

www.itpub.net

Answers to Self-Test Exercises 227

 8. There is an index out of range. When index is equal to 9 , index + 1 is equal to
10 , so a[index + 1] , which is the same as a[10] , has an illegal index. The loop
should stop with one fewer iteration. To correct the code, change the first line of
the for loop to

 for (int index = 0; index < 9; index++)

 9. int i, a[20];
 cout << "Enter 20 numbers:\n";

 for (i = 0; i < 20; i++)

 cin >> a[i];

 10. The array will consume 14 bytes of memory. The address of the indexed variable
yourArray[3] is 1006.

 11. The following function calls are acceptable:

 tripler(a[2]);
 tripler(a[number]);

 tripler(number);

 The following function calls are incorrect:

 tripler(a[3]);

 tripler(a);

 The first one has an illegal index. The second has no indexed expression at all. You
cannot use an entire array as an argument to tripler , as in the second call. The
section “Entire Arrays as Function Arguments” discusses a different situation in
which you can use an entire array as an argument.

 12. The loop steps through indexed variables b[1] through b[5] , but 5 is an illegal
index for the array b . The indexes are 0 , 1 , 2 , 3 , and 4 . The correct version of the
code is given here:

 int b[5] = {1, 2, 3, 4, 5};

 for (int i = 0; i < 5; i++)

 tripler(b[i]);

 13. void oneMore (int a[], int size)

 //Precondition: size is the declared size of the array a.
 //a[0] through a[size-1] have been given values.
 //Postcondition: a[index] has been increased by 1
 //for all indexed variables of a.

 {

 for (int index = 0; index < size; index++)

 a[index] = a[index] + 1;

 }

 14. The following function calls are all acceptable:

 too2(myArray, 29);

 too2(myArray, 10);

 too2(yourArray, 100);

 The call

 too2(myArray, 10);

 is legal, but will fill only the first ten indexed variables of myArray . If that is what
is desired, the call is acceptable.

 The following function calls are all incorrect:

 too2(myArray, 55);

 "Hey too2. Please come over here."

 too2(myArray[3], 29);

 The first of these is incorrect because the second argument is too large, the second
because it is missing a final semicolon (and for other reasons), and the third because
it uses an indexed variable for an argument where it should use the entire array.

 15. You can make the array parameter in output a constant parameter, since there is
no need to change the values of any indexed variables of the array parameter. You
cannot make the parameter in dropOdd a constant parameter because it may have
the values of some of its indexed variables changed.

 void output(const double a[], int size);

 //Precondition: a[0] through a[size - 1] have values.

 //Postcondition: a[0] through a[size - 1] have been written out.

 void dropOdd(int a[], int size);

 //Precondition: a[0] through a[size - 1] have values.

 //Postcondition: All odd numbers in a[0] through a[size – 1]

 //have been changed to 0.

 16. int outOfOrder(double array[], int size)

 {

 for (int i = 0; i < size – 1; i++)

 if (array[i] > array[i+1]) //fetch a[i+1] for each i.

 return i+1;

 return –1;

 }

 17. #include <iostream>
 using namespace std;

 const int DECLARED_SIZE = 10;

 int main()

 {

 cout << "Enter up to ten nonnegative integers.\n"

 << "Place a negative number at the end.\n";

 int numberArray[DECLARED_SIZE], next, index = 0;

 cin >> next;

 while ((next >= 0) && (index < DECLARED_SIZE))

228 CHAPTER 5 Arrays

www.itpub.net

 {

 numberArray[index] = next;

 index++;

 cin >> next;

 }

 int numberUsed = index;

 cout << "Here they are back at you:";

 for (index = 0; index < numberUsed; index++)

 cout << numberArray[index] << " ";

 cout << endl;

 return 0;

 }

 18. #include <iostream>
 using namespace std;

 const int DECLARED_SIZE = 10;

 int main()

 {

 cout << "Enter up to ten letters"

 << " followed by a period:\n";

 char letterBox[DECLARED_SIZE], next;

 int index = 0;

 cin >> next;

 while ((next != '.') && (index < DECLARED_SIZE))

 {

 letterBox[index] = next;

 index++;

 cin >> next;

 }

 int numberUsed = index;

 cout << "Here they are backwards:\n";

 for (index = numberUsed–1; index >= 0; index––)

 cout << letterBox[index];

 cout << endl;

 return 0;

 }

 19. bool search(const int a[], int numberUsed,
 int target, int & where)

 {

 int index = 0;

 bool found = false ;

 while ((!found) && (index < numberUsed))

 if (target == a[index])

 found = true ;

 else

 index++;

Answers to Self-Test Exercises 229

 //If target was found, then
 //found == true and a[index] == target.

 if (found)

 where = index;

 return found;

 }

 20. 0 1 2 3
 0 1 2 3

 0 1 2 3

 0 1 2 3

 21. int a[4][5];
 int index1, index2;

 for (index1 = 0; index1 < 4; index1++)

 for (index2 = 0; index2 < 5; index2++)

 cin >> a[index1][index2];

 22. void echo(const int a[][5], int sizeOfa)
 //Outputs the values in the array a on sizeOfa lines
 //with 5 numbers per line.

 {

 for (int index1 = 0; index1 < sizeOfa; index1++)

 {

 for (int index2 = 0; index2 < 5; index2++)

 cout << a[index1][index2] << " ";

 cout << endl;

 }

 }

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a program that reads in the average monthly rainfall for a city for each month
of the year and then reads in the actual monthly rainfall for each of the previous
12 months. The program then prints out a nicely formatted table showing the rainfall
for each of the previous 12 months as well as how much above or below average the
rainfall was for each month. The average monthly rainfall is given for the months
 January, February, and so forth, in order. To obtain the actual rainfall for the previous
12 months, the program first asks what the current month is and then asks for the rain-
fall figures for the previous 12 months. The output should correctly label the months.

 There are a variety of ways to deal with the month names. One straightforward
method is to code the months as integers and then do a conversion before doing the
output. A large switch statement is acceptable in an output function. The month
input can be handled in any manner you wish, as long as it is relatively easy and
pleasant for the user.

230 CHAPTER 5 Arrays

www.itpub.net

www.myprogramminglab.com

Programming Projects 231

 After you have completed the previous program, produce an enhanced version
that also outputs a graph showing the average rainfall and the actual rainfall for
each of the previous 12 months. The graph should be similar to the one shown in
 Display 5.4 , except that there should be two bar graphs for each month and they
should be labeled as the average rainfall and the rainfall for the most recent month.
Your program should ask the user whether he or she wants to see the table or the
bar graph, and then should display whichever format is requested. Include a loop
that allows the user to see either format as often as the user wishes until the user
requests that the program end.

 2. Write a function called deleteRepeats that has a partially filled array of characters
as a formal parameter and that deletes all repeated letters from the array. Since a
partially filled array requires two arguments, the function will actually have two
formal parameters: an array parameter and a formal parameter of type int that
gives the number of array positions used. When a letter is deleted, the remaining
letters are moved forward to fill in the gap. This will create empty positions at
the end of the array so that less of the array is used. Since the formal parameter is
a partially filled array, a second formal parameter of type int will tell how many
array positions are filled. This second formal parameter will be a call-by-reference
parameter and will be changed to show how much of the array is used after the
repeated letters are deleted. For example, consider the following code:

 char a[10];

 a[0] = 'a';

 a[1] = 'b';

 a[2] = 'a';

 a[3] = 'c';

 int size = 4;

 deleteRepeats(a, size);

 After this code is executed, the value of a[0] is 'a' , the value of a[1] is 'b' , the
value of a[2] is 'c' , and the value of size is 3 . (The value of a[3] is no longer of
any concern, since the partially filled array no longer uses this indexed variable.)
You may assume that the partially filled array contains only lowercase letters.
Embed your function in a suitable test program.

 3. The standard deviation of a list of numbers is a measure of how much the num-
bers deviate from the average. If the standard deviation is small, the numbers are
clustered close to the average. If the standard deviation is large, the numbers are
scattered far from the average. The standard deviation, S , of a list of N numbers x

i
is defined as follows,

 S = Ha
N

i = 1
1xi - x22

N

 where x is the average of the N numbers x
1
 , x

2
 , …. Define a function that takes a

partially filled array of numbers as its argument and returns the standard deviation
of the numbers in the partially filled array. Since a partially filled array requires two
arguments, the function will actually have two formal parameters: an array parameter

and a formal parameter of type int that gives the number of array positions used.
The numbers in the array will be of type double . Embed your function in a suit-
able test program.

 4. Write a program that reads in an array of type int . You may assume that there
are fewer than 50 entries in the array. Your program determines how many entries
are used. The output is to be a two-column list. The first column is a list of the
 distinct array elements; the second column is the count of the number of occur-
rences of each element. The list should be sorted on entries in the first column,
largest to smallest.

 For the array values

 –12 3 –12 4 1 1 –12 1 –1 1 2 3 4 2 3 –12

 the output should be

 N Count

 4 2

 3 3

 2 2

 1 4

 –1 1

 –12 4

 5. An array can be used to store large integers one digit at a time. For example, the
integer 1234 could be stored in the array a by setting a[0] to 1 , a[1] to 2 , a[2]
to 3 , and a[3] to 4 . However, for this exercise you might find it more useful to
store the digits backward, that is, place 4 in a[0] , 3 in a[1] , 2 in a[2] , and 1 in
a[3] . In this exercise you will write a program that reads in two positive integers
that are 20 or fewer digits in length and then outputs the sum of the two num-
bers. Your program will read the digits as values of type char so that the number
1234 is read as the four characters '1' , '2' , '3' , and '4' . After they are read into
the program, the characters are changed to values of type int . The digits will be
read into a partially filled array, and you might find it useful to reverse the order
of the elements in the array after the array is filled with data from the keyboard.
(Whether or not you reverse the order of the elements in the array is up to you. It
can be done either way, and each way has its advantages and disadvantages.) Your
program will perform the addition by implementing the usual paper-and-pencil
addition algorithm. The result of the addition is stored in an array of size 20 and
the result is then written to the screen. If the result of the addition is an integer with
more than the maximum number of digits (that is, more than 20 digits), then your
program should issue a message saying that it has encountered “integer overflow.”
You should be able to change the maximum length of the integers by changing
only one globally defined constant. Include a loop that allows the user to continue
to do more additions until the user says the program should end.

 6. In the sport of diving, seven judges award a score between 0 and 10, where each
score may be a floating-point value. The highest and lowest scores are thrown
out and the remaining scores are added together. The sum is then multiplied by

232 CHAPTER 5 Arrays

www.itpub.net

Programming Projects 233

the degree of difficulty for that dive. The degree of difficulty ranges from 1.2 to
3.8 points. The total is then multiplied by 0.6 to determine the diver’s score.

 Write a computer program that inputs a degree of difficulty and seven judges’
scores, and outputs the overall score for that dive. The program should ensure that
all inputs are within the allowable data ranges.

 7. Generate a text-based histogram for a quiz given to a class of students. The quiz is
graded on a scale from 0 to 5. Write a program that allows the user to enter grades
for each student. As the grades are being entered, the program should count, using
an array, the number of 0’s, the number of 1’s, the number of 2’s, the number of
3’s, the number of 4’s, and the number of 5’s. The program should be capable of
handling an arbitrary number of student grades.

 You can do this by making an array of size 6, where each array element is initialized
to zero. Whenever a zero is entered, increment the value in the array at index 0.
Whenever a one is entered, increment the value in the array at index 1, and so on,
up to index 5 of the array.

 Output the histogram count at the end. For example, if the input grades are 3, 0,
1, 3, 3, 5, 5, 4, 5, 4, then the program should output

 1 grade(s) of 0

 1 grade(s) of 1

 0 grade(s) of 2

 3 grade(s) of 3

 2 grade(s) of 4

 3 grade(s) of 5

 8. The birthday paradox is that there is a surprisingly high probability that two people
in the same room happen to share the same birthday. By birthday, we mean the same
day of the year (ignoring leap years), but not the exact birthday including the birth
year or time of day. Write a program that approximates the probability that two
people in the same room have the same birthday, for 2 to 50 people in the room.

 The program should use simulation to approximate the answer. Over many trials
(say, 5000), randomly assign birthdays to everyone in the room. Count up the
number of times at least two people have the same birthday, and then divide by
the number of trials to get an estimated probability that two people share the same
birthday for a given room size.

 Your output should look something like the following. It will not be exactly the
same due to the random numbers:

 For 2 people, the probability of two birthdays is about 0.002

 For 3 people, the probability of two birthdays is about 0.0082

 For 4 people, the probability of two birthdays is about 0.0163

 . . .

 For 49 people, the probability of two birthdays is about 0.9654

 For 50 people, the probability of two birthdays is about 0.969

Solution to
Programming
Project 5.7

VideoNote

 9. Write a program that will allow two users to play tic-tac-toe. The program should
ask for moves alternately from player X and player O. The program displays the
game positions as follows:

 1 2 3

 4 5 6

 7 8 9

 The players enter their moves by entering the position number they wish to mark.
After each move, the program displays the changed board. A sample board con-
figuration is as follows:

 X X O

 4 5 6

 O 8 9

 10. Write a program to assign passengers seats in an airplane. Assume a small airplane
with seat numbering as follows:

 1 A B C D

 2 A B C D

 3 A B C D

 4 A B C D

 5 A B C D

 6 A B C D

 7 A B C D

 The program should display the seat pattern, with an 'X' marking the seats already
assigned. For example, after seats 1A, 2B, and 4C are taken, the display should look
like this:

 1 X B C D

 2 A X C D

 3 A B C D

 4 A B X D

 5 A B C D

 6 A B C D

 7 A B C D

 After displaying the seats available, the program prompts for the seat desired, the
user types in a seat, and then the display of available seats is updated. This contin-
ues until all seats are filled or until the user signals that the program should end.
If the user types in a seat that is already assigned, the program should say that that
seat is occupied and ask for another choice.

 11. Write a program that accepts input like the program in Display 5.4 and that
 outputs a bar graph like the one in that program, except that your program will
output the bars vertically rather than horizontally. A two-dimensional array may
be useful.

 12. The mathematician John Horton Conway invented the “Game of Life.” Though
not a “game” in any traditional sense, it provides interesting behavior that is

234 CHAPTER 5 Arrays

www.itpub.net

Programming Projects 235

specified with only a few rules. This project asks you to write a program that
allows you to specify an initial configuration. The program follows the rules of
Life (listed shortly) to show the continuing behavior of the configuration.

 LIFE is an organism that lives in a discrete, two-dimensional world. While this
world is actually unlimited, we do not have that luxury, so we restrict the array to
80 characters wide by 22 character positions high. If you have access to a larger
screen, by all means use it.

 This world is an array with each cell capable of holding one LIFE cell. Generations
mark the passing of time. Each generation brings births and deaths to the LIFE
community. The births and deaths follow this set of rules:

 1. We define each cell to have eight neighbor cells. The neighbors of a cell are the
cells directly above, below, to the right, to the left, diagonally above to the right
and left, and diagonally below, to the right and left.

 2. If an occupied cell has zero or one neighbor, it dies of loneliness. If an occupied
cell has more than three neighbors, it dies of overcrowding.

 3. If an empty cell has exactly three occupied neighbor cells, there is a birth of a
new cell to replace the empty cell.

 4. Births and deaths are instantaneous and occur at the changes of generation.
A cell dying for whatever reason may help cause birth, but a newborn cell cannot
resurrect a cell that is dying, nor will a cell’s death prevent the death of another,
say, by reducing the local population.

 *

 Examples: *** becomes * then becomes *** again, and so on.

 *

 Notes: Some configurations grow from relatively small starting configurations.
Others move across the region. It is recommended that for text output you use
a rectangular char array with 80 columns and 22 rows to store the LIFE world’s
successive generations. Use an * to indicate a living cell and use a blank to indicate
an empty (or dead) cell. If you have a screen with more rows than that, by all means
make use of the whole screen.

 Suggestions: Look for stable configurations. That is, look for communities that
 repeat patterns continually. The number of configurations in the repetition is
called the period. There are configurations that are fixed, that is, that continue
without change. A possible project is to find such configurations.

 Hints: Define a void function named generation that takes the array we call
world , an 80-column by 22-row array of type char , which contains the initial
configuration. The function scans the array and modifies the cells, marking the
cells with births and deaths in accord with the rules listed previously. This involves
examining each cell in turn and either killing the cell, letting it live, or, if the cell
is empty, deciding whether a cell should be born. There should be a function
display that accepts the array world and displays the array on the screen. Some
sort of time delay is appropriate between calls to generation and display . To
do this, your program should generate and display the next generation when you

press Return. You are at liberty to automate this, but automation is not necessary
for the program.

 13. A common memory matching game played by young children is to start with a
deck of cards that contains identical pairs. For example, given six cards in the deck,
two might be labeled “1”, two might be labeled “2”, and two might be labeled “3”.
The cards are shuffled and placed facedown on the table. The player then selects
two cards that are facedown, turns them faceup, and if they match they are left
faceup. If the two cards do not match, they are returned to their original position
facedown. The game continues in this fashion until all cards are faceup.

 Write a program that plays the memory matching game. Use 16 cards that are
laid out in a 4 * 4 square and are labeled with pairs of numbers from 1 to 8. Your
program should allow the player to specify the cards through a coordinate system.

 For example, in the following layout

 1 2 3 4

 1 8 * * *

 2 * * * *

 3 * 8 * *

 4 * * * *

 all of the cards are facedown except for the pair of 8’s, which has been located at
coordinates (1,1) and (2,3). To hide the cards that have been temporarily placed
faceup, output a large number of newlines that force the old board off the screen.

 Hint: Use a 2D array for the arrangement of cards and another 2D array that indicates
whether a card is faceup or facedown. Write a function that “shuffles” the cards in the
array by repeatedly selecting two cards at random and swapping them.

 14. You have collected reviews from four movie reviewers where the reviewers are
numbered 0–3. Each reviewer has rated six movies where the movies are numbered
100–105. The ratings range from 1 (terrible) to 5 (excellent).

 The reviews are shown in the following table:

100 101 102 103 104 105

 0 3 1 5 2 1 5

 1 4 2 1 4 2 4

 2 3 1 2 4 4 1

 3 5 1 4 2 4 2

 Write a program that stores this data using a 2D array. Based on this information
your program should allow the user to enter ratings for any three movies. The
 program should then find the reviewer whose ratings most closely match the ratings
input by the user. It should then predict the user’s interest in the other movies by
outputting the ratings by the reviewer for the movies that were not rated by the
user. Use the Cartesian distance as the metric to determine how close the reviewer’s

236 CHAPTER 5 Arrays

www.itpub.net

Programming Projects 237

movie ratings are to the ratings input by the user. This technique is a simple version
of the nearest neighbor classification algorithm.

 For example, if the user inputs a rating of 5 for movie 102, 2 for movie 104, and
5 for movie 105, then the closest match is reviewer 0 with a distance of sqrt
((5 - 5) 2 + (2 - 1) 2 + (5 - 5) 2) = 1. The program would then predict a rating of
3 for movie 100, a rating of 1 for movie 101, and a rating of 2 for movie 103.

 15. Traditional password entry schemes are susceptible to “shoulder surfing” in which
an attacker watches an unsuspecting user enter their password or PIN number and
uses it later to gain access to the account. One way to combat this problem is with
a randomized challenge-response system. In these systems, the user enters different
 information every time based on a secret in response to a randomly generated
 challenge. Consider the following scheme in which the password consists of a five-digit
PIN number (00000 to 99999). Each digit is assigned a random number that is
1, 2, or 3. The user enters the random numbers that correspond to their PIN
 instead of their actual PIN numbers.

 For example, consider an actual PIN number of 12345. To authenticate, the user
would be presented with a screen such as

 PIN: 0 1 2 3 4 5 6 7 8 9

 NUM: 3 2 3 1 1 3 2 2 1 3

 The user would enter 23113 instead of 12345. This does not divulge the password
even if an attacker intercepts the entry because 23113 could correspond to other
PIN numbers, such as 69440 or 70439. The next time the user logs in, a different
sequence of random numbers would be generated, such as

 PIN: 0 1 2 3 4 5 6 7 8 9

 NUM: 1 1 2 3 1 2 2 3 3 3

 Your program should simulate the authentication process. Store an actual PIN
number in your program. The program should use an array to assign random
numbers to the digits from 0 to 9. Output the random digits to the screen, input
the response from the user, and output whether or not the user’s response correctly
matches the PIN number.

 16. Do Programming Project 5.14 except instead of only four reviewers allow for up
to 1000 reviewers and store the reviews in a text file. While your program should
support up to 1000 reviewers, the actual number of reviewers stored in the file
could vary from 1 to 1000. The only movies that are reviewed are numbered from
100 to 105 as in Programming Project 14. You are welcome to design the format
used to store the reviews in the text file. After the reviews are read from the text file
the program should input three movies and make predictions for the remaining
two movies as in Programming Project 5.14.

 17. Programming Project 2.12 asked you to explore Benford’s Law. An easier way to
 write the program is to use an array to store the digit counts. That is, count[0]
might store the number of times 0 is the first digit (if that is possible in your data
set), count[1] might store the number of times 1 is the first digit, and so forth.
 Redo Programming Project 2.12 using arrays.

Solution to
Programming
Project 5.15

VideoNote

 18. This project is an extension of Programming Project 4.16 . Consider a text file
named scores.txt that contains player scores for a game. A possible sample is
shown next where Ronaldo’s best score is 10400, Didier’s best score is 9800, etc.
Put at least five names and scores in the file.

 Ronaldo

 10400

 Didier

 9800

 Pele

 12300

 Kaka

 8400

 Cristiano

 8000

 Write a function named getHighScores that takes two array parameters, an array
of strings and an array of integers. The function should scan through the file and
set the string array entry at index 0 to the name of the player with the highest score
and set the integer array entry at index 0 to the score of the player with the highest
score. The string array entry at index 1 should be set to the name of the player with
the second highest score and the integer array entry at index 1 should be set to the
score of the player with the second highest score. Do the same for the entries at
index 2. Together, these two arrays give you the names and scores of the top three
players. In your main function, test the getHighScores function by calling it and
outputting the top three players and scores.

238 CHAPTER 5 Arrays

www.itpub.net

 Public and Private Members 259
 Accessor and Mutator Functions 262
 Tip: Separate Interface and Implementation 264
 Tip: A Test for Encapsulation 265
 Structures versus Classes 266
 Tip: Thinking Objects 268

 6.1 STRUCTURES 240
 Structure Types 242
 Pitfall: Forgetting a Semicolon in a Structure

Definition 246
 Structures as Function Arguments 246
 Tip: Use Hierarchical Structures 247
 Initializing Structures 249

 6.2 CLASSES 252
 Defining Classes and Member Functions 252
 Encapsulation 258

 6
Structures and Classes

Chapter Summary 268 Answers to Self-Test Exercises 269 Programming Projects 271

 “The time has come,” the Walrus said,

“To talk of many things:

 Of shoes—and ships—and sealing wax—

Of cabbages—and kings.”

 LEWIS CARROLL, Through the Looking Glass

 Introduction
 Classes are perhaps the single most significant feature that separates the C++ language
from the C language. A class is a type whose values are called objects . Objects have both
data and member functions. The member functions have special access to the data
of their object. These objects are the objects of object-oriented programming, a very
popular and powerful programming philosophy.

 We will introduce classes in two steps. We first tell you how to give a type definition
for a structure. A structure (of the kind discussed here) can be thought of as an object
without any member functions. 1 The important property of structures is that the data
in a structure can be a collection of data items of diverse types. After you learn about
structures it will be a natural extension to define classes.

 You do not need the material on arrays given in Chapter 5 in order to read Chapter 6 ,
and most of Chapters 7 and 8 , which cover classes.

 6.1 Structures

 I don’t care to belong to any club that will accept me as a member.

 GROUCHO MARX, The Groucho Letters

 Sometimes it is useful to have a collection of values of different types and to treat the
collection as a single item. For example, consider a bank certificate of deposit, which
is often called a CD. A CD is a bank account that does not allow withdrawals for a
specified number of months. A CD naturally has three pieces of data associated with
it: the account balance, the interest rate for the account, and the term, which is the
number of months until maturity. The first two items can be represented as values of
type double , and the number of months can be represented as a value of type int .

 6 Structures and Classes

1 A structure actually can have member functions in C++, but that is not the approach we will take.
This detail is explained later in the chapter. This footnote is only to let readers who feel they have
found an error know that we are aware of the official definition of a structure. Most readers should
ignore this footnote.

structure

www.itpub.net

Structures 241

 Display 6.1 shows the definition of a structure called CDAccountV1 that can be used
for this kind of account. (The V1 stands for version 1. We will define an improved
version later in this chapter.)

 Display 6.1 A Structure Defi nition (part 1 of 2)

 1 //Program to demonstrate the CDAccountV1 structure type.
 2 #include <iostream>
 3 using namespace std;

 4 //Structure for a bank certificate of deposit:
 5 struct CDAccountV1
 6 {
 7 double balance;
 8 double interestRate;
 9 int term; //months until maturity
 10 };

 11 void getData(CDAccountV1& theAccount);
 12 //Postcondition: theAccount.balance, theAccount.interestRate, and
 13 //theAccount.term have been given values that the user entered at the

//keyboard.

 14 int main()
 15 {
 16 CDAccountV1 account;
 17 getData(account);

 18 double rateFraction, interest;
 19 rateFraction = account.interestRate/100.0;
 20 interest = account.balance*(rateFraction*(account.term/12.0));
 21 account.balance = account.balance + interest;

 22 cout.setf(ios::fixed);
 23 cout.setf(ios::showpoint);
 24 cout.precision(2);
 25 cout << "When your CD matures in "
 26 << account.term << " months,\n"
 27 << "it will have a balance of $"
 28 << account.balance << endl;

29 return 0;
 30 }
 31 //Uses iostream:
 32 void getData(CDAccountV1& theAccount)
 33 {
 34 cout << "Enter account balance: $";
 35 cin >> theAccount.balance;

An improved version of this
structure will be given later in
this chapter.

(continued)

242 CHAPTER 6 Structures and Classes

 36 cout << "Enter account interest rate: ";
 37 cin >> theAccount.interestRate;
 38 cout << "Enter the number of months until maturity: ";
 39 cin >> theAccount.term;
 40 }

 Sample Dialogue

Enter account balance: $100.00

Enter account interest rate: 10.0

Enter the number of months until maturity: 6

When your CD matures in 6 months,

it will have a balance of $105.00

Display 6.1 A Structure Defi nition (part 2 of 2)

 Structure Types

 The structure definition in Display 6.1 is as follows:

struct CDAccountV1
{

double balance;
double interestRate;
int term; //months until maturity

};

 The keyword struct announces that this is a structure-type definition. The identifier
CDAccountV1 is the name of the structure type, which is known as the structure tag .
The structure tag can be any legal identifier that is not a keyword. Although this is
not required by the C++ language, structure tags are usually spelled starting with an
uppercase letter. The identifiers declared inside the braces, {} , are called member names .
As illustrated in this example, a structure type definition ends with both a brace, } , and
a semicolon.

 A structure definition is usually placed outside any function definition (in the
same way that globally defined constant declarations are placed outside all function
definitions). The structure type is then a global definition that is available to all the
code that follows the structure definition.

 Once a structure type definition has been given, the structure type can be used
just like the predefined types int , char , and so forth. Note that in Display 6.1 the
structure type CDAccountV1 is used to declare a variable in the function main and is
used as the name of the parameter type for the function getData .

 A structure variable can hold values just like any other variable can. A structure
value is a collection of smaller values called member values . There is one member
value for each member name declared in the structure definition. For example, a value
of the type CDAccountV1 is a collection of three member values, two of type double
and one of type int . The member values that together make up the structure value are
stored in member variables, which we discuss next.

struct

structure tag

member name

where to
place a

structure
definition

structure value

member value

www.itpub.net

Structures 243

 Each structure type specifies a list of member names. In Display 6.1 the structure
CDAccountV1 has three member names: balance , interestRate , and term . Each of
these member names can be used to pick out one smaller variable that is a part of the
larger structure variable. These smaller variables are called member variables . Member
variables are specified by giving the name of the structure variable followed by a dot
and then the member name. For example, if account is a structure variable of type
CDAccountV1 (as declared in Display 6.1), then the structure variable account has the
following three member variables:

account.balance
account.interestRate
account.term

 The first two member variables are of type double , and the last is of type int . As
illustrated in Display 6.1 , these member variables can be used just like any other
variables of those types. For example, the following line from the program in Display 6.1
will add the value contained in the member variable account.balance and the value
contained in the ordinary variable interest and will then place the result in the
member variable account.balance :

account.balance = account.balance + interest;

 Two or more structure types may use the same member names. For example, it is
perfectly legal to have the following two type definitions in the same program:

struct FertilizerStock
{

double quantity;
double nitrogenContent;

};

 and

struct CropYield
{

int quantity;
double size;

};

member
variable

reusing
member

names

 The Dot Operator
 The dot operator is used to specify a member variable of a structure variable.

 SYNTAX

Structure_Variable_Name.Member_Variable_Name

 Dot operator

244 CHAPTER 6 Structures and Classes

 EXAMPLES

struct StudentRecord
{

int studentNumber;
char grade;

};

int main()
{

StudentRecord yourRecord;
yourRecord.studentNumber = 2001;
yourRecord.grade = 'A';

 Some writers call the dot operator the structure member access operator , although we will
not use that term.

 This coincidence of names will produce no problems. For example, if you declare the
following two structure variables,

FertilizerStock superGrow;
CropYield apples;

 then the quantity of superGrow fertilizer is stored in the member variable superGrow.
quantity and the quantity of apples produced is stored in the member variable
apples.quantity . The dot operator and the structure variable specify which
quantity is meant in each instance.

 A structure value can be viewed as a collection of member values. A structure value
can also be viewed as a single (complex) value (that just happens to be made up of
member values). Since a structure value can be viewed as a single value, structure
values and structure variables can be used in the same ways that you use simple values
and simple variables of the predefined types such as int . In particular, you can assign
structure values using the equal sign. For example, if apples and oranges are structure
variables of the type CropYield defined earlier, then the following is perfectly legal:

apples = oranges;

 The previous assignment statement is equivalent to

apples.quantity = oranges.quantity;
apples.size = oranges.size;

structure
variables in
assignment
statements

www.itpub.net

Structures 245

 Simple Structure Types

 You define a structure type as shown here. The Structure_Tag is the name of the
structure type.

 SYNTAX

struct Structure_Tag
{

Type_1 Member_Variable_Name_1 ;
Type_2 Member_Variable_Name_2 ;

.

.

.
Type_Last Member_Variable_Name_Last;

 };

 EXAMPLE

struct Automobile
{

int year;
int doors;
double horsePower;
char model;

};

 Although we will not use this feature, you can combine member names of the same type
into a single list separated by commas. For example, the following is equivalent to the
previous structure definition:

struct Automobile
{

int year, doors;
double horsePower;
char model;

};

 Variables of a structure type can be declared in the same way as variables of other types.
For example,

Automobile myCar, yourCar;

 The member variables are specified using the dot operator. For example, myCar.year ,
 myCar.doors , myCar.horsePower , and myCar.model .

 Do not forget this semicolon .

246 CHAPTER 6 Structures and Classes

 PITFALL: Forgetting a Semicolon in a Structure Definition

 When you add the final brace, } , to a structure definition, it feels like the structure
definition is finished, but it is not. You must also place a semicolon after that final
brace. There is a reason for this, even though the reason is a feature that we will have
no occasion to use. A structure definition is more than a definition. It can also be
used to declare structure variables. You are allowed to list structure variable names
between that final brace and that final semicolon. For example, the following defines
a structure called WeatherData and declares two structure variables, dataPoint1 and
dataPoint2 , both of type WeatherData :

struct WeatherData
{

double temperature;
double windVelocity;

} dataPoint1, dataPoint2; ■

 Structures as Function Arguments

 A function can have call-by-value parameters of a structure type or call-by-reference
parameters of a structure type, or both. The program in Display 6.1 , for example,
includes a function named getData that has a call-by-reference parameter with the
structure type CDAccountV1 .

 A structure type can also be the type for the value returned by a function. For
example, the following defines a function that takes one argument of type CDAccountV1
and returns a different structure of type CDAccountV1 . The structure returned will
have the same balance and term as the argument, but will pay double the interest rate
that the argument pays.

CDAccountV1 doubleInterest(CDAccountV1 oldAccount)
{

CDAccountV1 temp;
temp = oldAccount;
temp.interestRate = 2*oldAccount.interestRate;
return temp;

}

 Notice the local variable temp of type CDAccountV1 ; temp is used to build up a
complete structure value of the desired kind, which is then returned by the function. If
myAccount is a variable of type CDAccountV1 that has been given values for its member
variables, then the following will give yourAccount values for an account with double
the interest rate of myAccount :

CDAccountV1 yourAccount;
yourAccount = doubleInterest(myAccount);

structure
arguments

functions
can return
structures

www.itpub.net

Structures 247

 TIP: Use Hierarchical Structures

 Sometimes it makes sense to have structures whose members are themselves smaller
structures. For example, a structure type called PersonInfo that can be used to store
a person’s height, weight, and birth date can be defined as follows:

struct Date
{

int month;
int day;
int year;

};

struct PersonInfo
{

double height; //in inches
int weight; //in pounds
Date birthday;

};

 A structure variable of type PersonInfo is declared in the usual way:

PersonInfo person1;

 If the structure variable person1 has had its value set to record a person’s birth date,
then the year the person was born can be output to the screen as follows:

cout << person1.birthday.year;

 The way to read such expressions is left to right, and very carefully. Starting at the
left end, person1 is a structure variable of type PersonInfo . To obtain the member
variable with the name birthday , you use the dot operator as follows:

person1.birthday

 This member variable is itself a structure variable of type Date . Thus, this member
variable itself has member variables. A member variable of the structure variable
person1.birthday is obtained by adding a dot and the member variable name, such
as year , which produces the expression person1.birthday.year shown previously.

 In Display 6.2 we have rewritten the class for a certifi cate of deposit from Display 6.1 .
This new version has a member variable of the structure type Date that holds the date
of maturity. We have also replaced the single balance member variable with two new
member variables giving the initial balance and the balance at maturity. ■

248 CHAPTER 6 Structures and Classes

 Display 6.2 A Structure with a Structure Member (part 1 of 2)

 1 //Program to demonstrate the CDAccount structure type.
 2 #include <iostream>
 3 using namespace std;

 4 struct Date
 5 {
 6 int month;
 7 int day;
 8 int year;
 9 };

 10 //Improved structure for a bank certificate of deposit:
 11 struct CDAccount
 12 {
 13 double initialBalance;
 14 double interestRate;
 15 int term; //months until maturity
 16 Date maturity; //date when CD matures
 17 double balanceAtMaturity;
 18 };

 19 void getCDData(CDAccount& theAccount);
 20 //Postcondition: theAccount.initialBalance, theAccount.interestRate,
 21 //theAccount.term, and theAccount.maturity have been given values
 22 //that the user entered at the keyboard.
 23
 24 void getDate(Date& theDate);
 25 //Postcondition: theDate.month, theDate.day, and theDate.year
 26 //have been given values that the user entered at the keyboard.

 27 int main()
 28 {
 29 CDAccount account;
 30 cout << "Enter account data on the day account was opened:\n";
 31 getCDData(account);
 32 double rateFraction, interest;
 33 rateFraction = account.interestRate / 100.0;
 34 interest = account.initialBalance*(rateFraction*(account.term /

 12.0));
 35 account.balanceAtMaturity = account.initialBalance + interest;

 36 cout.setf(ios::fixed);
 37 cout.setf(ios::showpoint);
 38 cout.precision(2);
39 cout << "When the CD matured on "
40 << account.maturity.month << "-" << account.maturity.day
41 << "-" << account.maturity.year << endl
42 << "it had a balance of $"
43 << account.balanceAtMaturity << endl;
 44 return 0;

This is an improved version of the
structure CDAccountV1 defined
in Display 6.1.

www.itpub.net

Structures 249

 45 }
 46 //uses iostream :
 47 void getCDData(CDAccount& theAccount)
 48 {
 49 cout << "Enter account initial balance: $";
 50 cin >> theAccount.initialBalance;
 51 cout << "Enter account interest rate: ";
 52 cin >> theAccount.interestRate;
 53 cout << "Enter the number of months until maturity: ";
 54 cin >> theAccount.term;
 55 cout << "Enter the maturity date:\n";
 56 getDate(theAccount.maturity);
 57 }

 58 //uses iostream:
 59 void getDate(Date& theDate)
 60 {
 61 cout << "Enter month: ";
 62 cin >> theDate.month;
 63 cout << "Enter day: ";
 64 cin >> theDate.day;
 65 cout << "Enter year: ";
 66 cin >> theDate.year;
 67 }

 Sample Dialogue

Enter account data on the day account was opened:
Enter account initial balance: $100.00
Enter account interest rate: 10.0
Enter the number of months until maturity: 6
Enter the maturity date:
Enter month: 2
Enter day: 14
Enter year: 1899
When the CD matured on 2-14-1899
it had a balance of $105.00

Display 6.2 A Structure with a Structure Member (part 2 of 2)

 Initializing Structures

 You can initialize a structure at the time that it is declared. To give a structure variable
a value, follow it by an equal sign and a list of the member values enclosed in braces.
For example, the following definition of a structure type for a date was given in the
previous subsection:

struct Date
{

int month;

250 CHAPTER 6 Structures and Classes

int day;
int year;

};

 Once the type Date is defined, you can declare and initialize a structure variable called
dueDate as follows:

Date dueDate = {12, 31, 2012};

 The initializing values must be given in the order that corresponds to the order of
member variables in the structure-type definition. In this example, dueDate.month
receives the first initializing value of 12 , dueDate.day receives the second value of 31 ,
and dueDate.year receives the third value of 2012 .

 It is an error if there are more initializer values than struct members. If there are
fewer initializer values than struct members, the provided values are used to initialize
data members, in order. Each data member without an initializer is initialized to a zero
value of an appropriate type for the variable.

 Self-Test Exercises

 1. Given the following structure and structure variable declaration,

struct CDAccountV2
{

double balance;
double interestRate;
int term;
char initial1;
char initial2;

};
CDAccountV2 account;

 what is the type of each of the following? Mark any that are not correct.

a. account.balance
b. account.interestRate
c. CDAccountV1.term
d. account.initial2
e. account

 2. Consider the following type defi nition:

struct ShoeType
{

char style;
double price;

};

www.itpub.net

Structures 251

 Self-Test Exercises (continued)

 Given the previous structure-type defi nitions, what will be the output produced
by the following code?

ShoeType shoe1, shoe2;
shoe1.style ='A';
shoe1.price = 9.99;
cout << shoe1.style << " $" << shoe1.price << endl;
shoe2 = shoe1;

shoe2.price = shoe2.price/9;
cout << shoe2.style << " $" << shoe2.price << endl;

 3. What is the error in the following structure defi nition?

struct Stuff
{

int b;
int c;

}

int main()
{

Stuff x;
 // other code

}

 4. Given the following struct defi nition,

struct A
{

int member b;
int member c;

};

 declare x to have this structure type. Initialize the members of x , member b and
member c , to the values 1 and 2 , respectively.

 5. Here is an initialization of a structure type. State what happens with each
initialization. Note any problems with these initializations.

struct Date
{

int month;
int day;
int year;

};

a. Date dueDate = {12, 21};
b. Date dueDate = {12, 21, 1995};
c. Date dueDate = {12, 21, 19, 95};

(continued)

252 CHAPTER 6 Structures and Classes

Self-Test Exercises (continued)

6. Write a defi nition for a structure type for records consisting of a person’s wage
rate, accrued vacation (which is some whole number of days), and status (which
is either hourly or salaried). Represent the status as one of the two char values
'H' and 'S' . Call the type EmployeeRecord .

 7. Give a function defi nition corresponding to the following function declaration.
(The type ShoeType is given in Self-Test Exercise 2 .)

void readShoeRecord(ShoeType& newShoe);
//Fills newShoe with values read from the keyboard.

 8. Give a function defi nition corresponding to the following function declaration.
(The type ShoeType is given in Self-Test Exercise 2 .)

ShoeType discount(ShoeType oldRecord);
 //Returns a structure that is the same as its argument,
//but with the price reduced by 10%.

 6.2 Classes

 We all know—the Times knows—but we pretend we don’t.

 VIRGINIA WOOLF, Monday or Tuesday

 A class is basically a structure with member functions as well as member data. Classes
are central to the programming methodology known as object-oriented programming .

 Defining Classes and Member Functions

 A class is a type that is similar to a structure type, but a class type normally has
member functions as well as member variables. An overly simple, but illustrative,
example of a class called DayOfYear is given in Display 6.3 . This class has one member
function named output , as well as the two member variables month and day . The
term public: is called an access specifier. It simply means that there are no restrictions
on the members that follow. We will discuss public: and its alternatives after going
through this simple example. The type DayOfYear defined in Display 6.3 is a class
definition for objects whose values are dates, such as January 1 or July 4.

 The value of a variable of a class type is called an object (therefore, when speaking
loosely, a variable of a class type is also often called an object). An object has both
data members and function members. When programming with classes, a program is
viewed as a collection of interacting objects. The objects can interact because they are
capable of actions, namely, invocations of member functions. Variables of a class type
hold objects as values. Variables of a class type are declared in the same way as variables
of the predefined types and in the same way as structure variables.

class

object

www.itpub.net

Classes 253

 For the moment ignore the word public: shown in Display 6.3 . The rest of the
definition of the class DayOfYear is very much like a structure definition, except that it
uses the keyword class instead of struct and it lists the member function output (as
well as the member variables month and day). Notice that the member function output
is listed by giving its declaration (prototype). A class definition normally contains only
the declaration for its member functions. The definitions for the member functions
are usually given elsewhere. In a C++ class definition, you can intermix the ordering of
the member variables and member functions in any way you wish, but the style we will
follow has a tendency to list the member functions before the member variables.

member
function

 Display 6.3 Class with a Member Function (part 1 of 3)

 1 //Program to demonstrate a very simple example of a class.
 2 //A better version of the class DayOfYear will be given in Display 6.4.
 3 #include <iostream>
 4 using namespace std;

 5 class DayOfYear
 6 {
 7 public:
 8 void output();
 9 int month;
 10 int day;
 11 };

 12 int main()
 13 {
 14 DayOfYear today, birthday;
 15 cout << "Enter today's date:\n";
 16 cout << "Enter month as a number: ";
 17 cin >> today.month;
 18 cout << "Enter the day of the month: ";
 19 cin >> today.day;
 20 cout << "Enter your birthday:\n";
 21 cout << "Enter month as a number: ";
 22 cin >> birthday.month;
 23 cout << "Enter the day of the month: ";
 24 cin >> birthday.day;
 25 cout << "Today's date is ";
 26 today.output();
 27 cout << endl;
 28 cout << "Your birthday is ";
 29 birthday.output();
 30 cout << endl;

 31 if (today.month = = birthday.month && today.day = = birthday.day)
 32 cout << "Happy Birthday!\n";

Normally, member variables are private
and not public, as in this example. This is
discussed a bit later in this chapter.

Calls to the member function output

Member function declaration

(continued)

254 CHAPTER 6 Structures and Classes

 33 else
 34 cout << "Happy Unbirthday!\n";
 35 return 0;
 36 }
 37 //Uses iostream:
 38 void DayOfYear::output()
 39 {
 40 switch (month)
 41 {
 42 case 1:
 43 cout << "January "; break;
 44 case 2:
 45 cout << "February "; break;
 46 case 3:
 47 cout << "March "; break;
 48 case 4:
 49 cout << "April "; break;
 50 case 5:
 51 cout << "May "; break;
 52 case 6:
 53 cout << "June "; break;
 54 case 7:
 55 cout << "July "; break;
 56 case 8:
 57 cout << "August "; break;
 58 case 9:
 59 cout << "September "; break;
 60 case 10:
 61 cout << "October "; break;
 62 case 11:
 63 cout << "November "; break;
 64 case 12:
 65 cout << "December "; break;
 66 default:
 67 cout << "Error in DayOfYear::output.";
 68 }
 69
 70 cout << day;
 71 }

Display 6.3 Class with a Member Function (part 2 of 3)

Member function definition

www.itpub.net

Classes 255

Display 6.3 Class with a Member Function (part 3 of 3)

 Sample Dialogue

Enter today's date:
Enter month as a number: 10
Enter the day of the month: 15
Enter your birthday:
Enter month as a number: 2
Enter the day of the month: 21
Today's date is October 15
Your birthday is February 21
Happy Unbirthday!

 Member variables for an object of a class type are specified using the dot operator in
the same way that the dot operator is used to specify member variables of a structure.
For example, if today is a variable of the class type DayOfYear defined in Display 6.3 ,
then today.month and today.day are the two member variables of the object today .

 Member functions for classes that you define are invoked using the dot operator in a
way that is similar to how you specify a member variable. For example, the program in
 Display 6.3 declares two objects of type DayOfYear in the following way:

DayOfYear today, birthday;

 The member function output is called with the object today as follows,

today.output();

 and the member function output is called with the object birthday as follows:

birthday.output();

 When a member function is defined, the definition must include the class name
because there may be two or more classes that have member functions with the same
name. In Display 6.3 there is only one class definition, but in other situations you
may have many class definitions, and more than one class may have member functions
with the same name. The definition for the member function output of the class
DayOfYear is shown in part 2 of Display 6.3 . The definition is similar to an ordinary
function definition except that you must specify the class name in the heading of the
function definition.

 The heading of the function definition for the member function output is as
follows:

void DayOfYear::output()

 The operator :: is called the scope resolution operator and serves a purpose similar
to that of the dot operator. Both the dot operator and the scope resolution operator are
used to tell what a member function is a member of. However, the scope resolution
operator :: is used with a class name, whereas the dot operator is used with objects

calling
member

functions

defining
member

functions

scope
resolution

operator

256 CHAPTER 6 Structures and Classes

(that is, with class variables). The scope resolution operator consists of two colons with
no space between them. The class name that precedes the scope resolution operator is
often called a type qualifier , because it specializes (“qualifies”) the function name to
one particular type.

type qualifier

 Member Function Definition
 A member function is defined similar to any other function except that the Class_Name
and the scope resolution operator, ::, are given in the function heading.

 SYNTAX

Returned_Type Class_Name:: Function_Name(Parameter_List)
{

Function_Body_Statements
}

EXAMPLE

 See Display 6.3 . Note that the member variables (month and day) are not preceded by an
object name and dot when they occur in a member function definition.

 Look at the definition of the member function DayOfYear::output given in
 Display 6.3 . Notice that in the function definition of DayOfYear::output , we used
the member names month and day by themselves without first giving the object and
dot operator. That is not as strange as it may at first appear. At this point we are simply
defining the member function output . This definition of output will apply to all
objects of type DayOfYear , but at this point we do not know the names of the objects
of type DayOfYear that we will use, so we cannot give their names. When the member
function is called, as in

today.output();

 all the member names in the function definition are specialized to the name of the
calling object. So, the previous function call is equivalent to the following:

{
switch (today.month)
{

case 1:
.
.
.

}

cout << today.day;
}

member
variables in

function
definitions

www.itpub.net

Classes 257

 In the function definition for a member function, you can use the names of all
members of that class (both the data members and the function members) without
using the dot operator.

 The Dot Operator and the Scope Resolution Operator
 Both the dot operator and the scope resolution operator are used with member names to
specify of what thing they are a member. For example, suppose you have declared a class
called DayOfYear and you declare an object called today as follows:

DayOfYear today;

 You use the dot operator to specify a member of the object today . For example, output
is a member function for the class DayOfYear (defined in Display 6.3), and the following
function call will output the data values stored in the object today :

today.output();

 You use the scope resolution operator, :: , to specify the class name when giving the
function definition for a member function. For example, the heading of the function definition
for the member function output would be as follows:

void DayOfYear::output()

 Remember, the scope resolution operator, :: , is used with a class name, whereas the dot
operator is used with an object of that class.

 A Class Is a Full-Fledged Type
 A class is a type just like the types int and double . You can have variables of a class type,
you can have parameters of a class type, a function can return a value of a class type, and
more generally, you can use a class type like any other type.

 Self-Test Exercises

 9. Here we have redefi ned the class DayOfYear from Display 6.3 so that it now has
one additional member function called input . Write an appropriate defi nition
for the member function input .

class DayOfYear
{
public:

void input();
void output();
int month;
int day;

};

(continued)

258 CHAPTER 6 Structures and Classes

 Self-Test Exercises (continued)

10. Given the following class defi nition, write an appropriate defi nition for the
member function set .

class Temperature
{
public:

 void set(double newDegrees, char newScale);
 //Sets the member variables to the values given as
 //arguments.
 double degrees;
 char scale; //’F’ for Fahrenheit or ’C’ for Celsius .

};

 11. Carefully distinguish between the meaning and use of the dot operator and the
scope resolution operator, :: .

 Encapsulation

 A data type, such as the type int , has certain specified values, such as 0 , 1 , −1 , 2 , and
so forth. You tend to think of the data type as being these values, but the operations on
these values are just as important as the values. Without the operations, you could do
nothing of interest with the values. The operations for the type int consist of + , - , * ,
/ , % , and a few other operators and predefined library functions. You should not think
of a data type as being simply a collection of values. A data type consists of a collection
of values together with a set of basic operations defined on these values. A data type is
called an abstract data type (abbreviated ADT) if the programmers who use the type
do not have access to the details of how the values and operations are implemented.
The predefined types, such as int , are ADTs. You do not know how the operations,
such as + and * , are implemented for the type int . Even if you did know, you
could not use this information in any C++ program. Classes, which are programmer-
defined types, should also be ADTs; that is, the details of how the “operations” are
implemented should be hidden from, or at least irrelevant to, any programmer who
uses the class. The operations of a class are the (public) member functions of the class.
A programmer who uses a class should not need to even look at the definitions of the
member functions. The member function declarations, given in the class definition,
and a few comments should be all the programmer needs in order to use the class.

 A programmer who uses a class also should not need to know how the data of the
class is implemented. The implementation of the data should be as hidden as the
implementation of the member functions. In fact, it is close to impossible to distinguish
between hiding the implementation of the member functions and the implementation
of the data. To a programmer, the class DayOfYear (Display 6.3) has dates as data,
not numbers. The programmer should not know or care whether the month March
is implemented as the int value 3 , the quoted string "March" , or in some other way.

 Defining a class so that the implementation of the member functions and the
implementation of the data in objects are not known, or is at least irrelevant, to the

data types
and abstract

data types

www.itpub.net

Classes 259

programmer who uses the class is known by a number of different terms. The most
common terms used are information hiding , data abstraction , and encapsulation ,
each of which means that the details of the implementation of a class are hidden from
the programmer who uses the class. This principle is one of the main tenets of object-
oriented programming (OOP). When discussing OOP, the term that is used most
frequently is encapsulation . One of the ways to apply this principle of encapsulation to
your class definitions is to make all member variables private, which is what we discuss
in the next subsection.

 Public and Private Members

 Look back at the definition of the type DayOfYear given in Display 6.3 . In order to
use that class, you need to know that there are two member variables of type int that
are named month and day . This violates the principle of encapsulation (information
hiding) that we discussed in the previous subsection. Display 6.4 is a rewritten version
of the class DayOfYear that better conforms to this encapsulation principle.

 Notice the words private: and public: in Display 6.4 . All the items that follow
the word private: (in this case the member variables month and day) are said to be
private , which means that they cannot be referenced by name anyplace except within
the definitions of the member functions of the class DayOfYear . For example, with this
changed definition of the class DayOfYear , the following two assignments and other
indicated code are no longer permitted in the main function of the program and are
not permitted in any other function definition, except for member functions of the
class DayOfYear :

DayOfYear today; //This line is OK.
today.month = 12; //ILLEGAL
today.day = 25; //ILLEGAL
cout << today.month; //ILLEGAL
cout << today.day; //ILLEGAL
if (today.month = = 1) //ILLEGAL

cout << "January";

encapsulation

private:

private
member
variable

 Display 6.4 Class with Private Members (part 1 of 3)

 1 #include <iostream>
 2 #include <cstdlib>
 3 using namespace std;

 4 class DayOfYear
 5 {
 6 public:
 7 void input();
 8 void output();
 9 void set(int newMonth, int newDay);
 10 //Precondition: newMonth and newDay form a possible date.
 11 void set(int newMonth);
 12 //Precondition: 1 <= newMonth <= 12

This is an improved version of
the class DayOfYear that
we gave in Display 6.3.

(continued)

260 CHAPTER 6 Structures and Classes

Display 6.4 Class with Private Members (part 2 of 3)

Private members

Note that the function name
set is overloaded. You can
overload a member function
just like you can overload any
other function.

Mutator function

 13 //Postcondition: The date is set to the first day of the given month.

 14 int getMonthNumber(); //Returns 1 for January, 2 for February, etc.
 15 int getDay();
 16 private:
 17 int month;
 18 int day;
 19 };

 20 int main()
 21 {
 22 DayOfYear today, bachBirthday;
 23 cout << "Enter today's date:\n";
 24 today.input();
 25 cout << "Today's date is ";
 26 today.output();
 27 cout << endl;

 28 bachBirthday.set(3, 21);
 29 cout << "J. S. Bach's birthday is ";
 30 bachBirthday.output();
 31 cout << endl;
 32 if (today.getMonthNumber() = = bachBirthday.getMonthNumber() &&
 33 today.getDay() = = bachBirthday.getDay())
 34 cout << "Happy Birthday Johann Sebastian!\n";
 35 else
 36 cout << "Happy Unbirthday Johann Sebastian!\n";
 37
 38 return 0;
 39 }

 40 //Uses iostream and cstdlib:
 41 void DayOfYear::set(int newMonth, int newDay)
 42 {
 43 if ((newMonth >= 1) && (newMonth <= 12))
 44 month = newMonth;
 45 else
 46 {
 47 cout << "Illegal month value! Program aborted.\n";
 48 exit(1);
 49 }
 50 if ((newDay >= 1) && (newDay <= 31))
 51 day = newDay;
 52 else
 53 {
 54 cout << "Illegal day value! Program aborted.\n";
 55 exit(1);
 56 }
 57 }

www.itpub.net

Classes 261

Display 6.4 Class with Private Members (part 3 of 3)

 58 //Uses iostream and cstdlib:
 59 void DayOfYear::set(int newMonth)
 60 {
 61 if ((newMonth >= 1) && (newMonth <= 12))
 62 month = newMonth;
 63 else
 64 {
 65 cout << "Illegal month value! Program aborted.\n";
 66 exit(1);
 67 }
 68 day = 1;
 69 }
 70
 71 int DayOfYear::getMonthNumber()
 72 {
 73 return month;
 74 }

 75 int DayOfYear::getDay()
 76 {
 77 return day;
 78 }

 79 //Uses iostream and cstdlib:
 80 void DayOfYear::input()
 81 {
 82 cout << "Enter the month as a number: ";
 83 cin >> month;
 84 cout << "Enter the day of the month: ";
 85 cin >> day;
 86 if ((month < 1) || (month > 12) || (day < 1) || (day > 31))
 87 {
 88 cout << "Illegal date! Program aborted.\n";
 89 exit(1);
 90 }
 91 }

 92 void DayOfYear::output()
 93 <The rest of the definition of DayOfYear::output is given in Display 6.3 .>

 Sample Dialogue

 Enter today's date:
 Enter the month as a number: 3
 Enter the day of the month: 21
 Today's date is March 21
 J. S. Bach's birthday is March 21
 Happy Birthday Johann Sebastian!

Mutator function

Accessor functions

Private members may
be used in member
function definitions
(but not elsewhere).

262 CHAPTER 6 Structures and Classes

 Once you make a member variable a private member variable, there is no way to
change its value (or to reference the member variable in any other way) except by using
one of the member functions. That means that the compiler will enforce the hiding of
the implementation of the data for the class DayOfYear . If you look carefully at the
program in Display 6.4 , you will see that the only place the member variable names
month and day are used is in the definitions of the member functions. There is no
reference to today.month , today.day , bachBirthday.month , or bachBirthday.day
anyplace outside the definitions of member functions.

 All the items that follow the word public: (in this case the member functions) are
said to be public , which means that they can be referenced by name anyplace. There
are no restrictions on the use of public members.

 Any member variables can be either public or private. Any member functions can
be public or private. However, normal good programming practices require that all
member variables be private and that typically most member functions be public.

 You can have any number of occurrences of public and private access specifiers in
a class definition. Every time you insert the label

 public:

 the list of members changes from private to public. Every time you insert the label

 private:

 the list of members changes back to being private members. You need not have just
one public and one private group of members. However, it is common to have just one
public section and one private section.

 There is no universal agreement about whether the public members should be listed
first or the private members should be listed first. The majority seem to prefer listing
the public members first. This allows for easy viewing of the portions programmers
using the class actually get to use. You can make your own decision on what you wish
to place first, but the examples in the book usually list the public members before the
private members.

 In one sense C++ seems to favor placing the private members first. If the first group
of members has neither the public: nor the private: specifier, then members of that
group will automatically be private. You will see this default behavior used in code and
should be familiar with it. However, we will not use it in this book.

 Accessor and Mutator Functions

 You should always make all member variables in a class private. You may sometimes
need to do something with the data in a class object, however. The member functions
will allow you to do many things with the data in an object, but sooner or later
you will want or need to do something with the data for which there is no member
function. How can you do anything new with the data in an object? The answer
is that you can do anything you might reasonably want, provided you equip your
classes with suitable accessor and mutator functions. These are member functions
that allow you to access and change the data in an object in a very general way.
Accessor functions allow you to read the data. In Display 6.4 , the member functions

 public

 public
member
variable

 accessor
function

www.itpub.net

Classes 263

getMonthNumber and getDay are accessor functions. The accessor functions need not
literally return the values of each member variable, but they must return something
equivalent to those values. For example, for a class like DayOfYear , you might have
an accessor function return the name of the month as some sort of string value, rather
than return the month as a number.

Mutator functions allow you to change the data. In Display 6.4 , the two functions
named set are mutator functions. It is traditional to use names that include the word
get for accessor functions and names that include the word set for mutator functions.
(The functions input and output in Display 6.4 are really mutator and accessor
functions, respectively, but I/O is such a special case that they are usually just called I/O
functions rather than accessor or mutator functions.)

 Your class definitions should always provide an adequate collection of accessor and
mutator functions.

 It may seem that accessor and mutator functions defeat the purpose of making
member variables private, but that is not so. Notice the mutator function set in
 Display 6.4 . It will not allow you to set the month member variable to 13 or to any
number that does not represent a month. Similarly, it will not allow you to set the
day member variable to any number that is not in the range 1 to 31 (inclusive). If the
variables were public you could set the data to values that do not make sense for a date.
(As it is, you can still set the data to values that do not represent a real date, such as
February 31, but it would be easy to exclude these dates as well. We did not exclude
these dates to keep the example simple.) With mutator functions, you can control and
filter changes to the data.

mutator
function

 Self-Test Exercises

 12. Suppose your program contains the following class defi nition,

class Automobile
{
public:

 void setPrice(double newPrice);
 void setProfit(double newProfit);
 double getPrice();
private:

 double price;
 double profit;
 double getProfit();
};

 and suppose the main function of your program contains the following
declaration and that the program somehow sets the values of all the member
variables to some values:

Automobile hyundai, jaguar;

(continued)

264 CHAPTER 6 Structures and Classes

 Self-Test Exercises (continued)

 Which of the following statements are then allowed in the main function of
your program?

hyundai.price = 4999.99;
jaguar.setPrice(30000.97);
double aPrice, aProfit;
aPrice = jaguar.getPrice();
aProfit = jaguar.getProfit();
aProfit = hyundai.getProfit();
hyundai = jaguar;

 13. Suppose you change Self-Test Exercise 12 so that in the defi nition of the class
Automobile all member variables are public instead of private. How would this
change your answer to the question in Self-Test Exercise 12 ?

 14. Explain what public: and private: mean in a class defi nition.

 15. a. How many public: sections are required in a class for the class to be useful?

 b. How many private: sections are required in a class?

 TIP: Separate Interface and Implementation

 The principle of encapsulation says that you should define classes so that a
programmer who uses the class need not be concerned with the details of how the
class is implemented. The programmer who uses the class need only know the rules
for how to use the class. The rules for how to use the class are known as the interface
or API . There is some disagreement on exactly what the initials API stand for, but it
is generally agreed that they stand for something like application programmer interface
or abstract programming interface or something similar. In this book we will call these
rules the interface for the class. It is important to keep in mind a clear distinction
between the interface and the implementation of a class. If your class is well designed,
then any programmer who uses the class need only know the interface for the class
and need not know any details of the implementation of the class. A class whose
interface and implementation are separated in this way is sometimes called an abstract
data type (ADT) or a nicely encapsulated class. In Chapter 11 we will show you how
to separate the interface and implementation by placing them in different files, but
the important thing is to keep them conceptually separated.

 For a C++ class, the interface consists of two sorts of things: the comments, usually
at the beginning of the class defi nition, that tell what the data of the object is sup-
posed to represent, such as a date or bank account or state of a simulated car wash; and
the public member functions of the class along with the comments that tell how to
use these public member functions. In a well-designed class, the interface of the class
should be all you need to know in order to use the class in your program.

interface
API

www.itpub.net

Classes 265

 TIP: (continued)

The implementation of a class tells how the class interface is realized as C++ code.
The implementation consists of the private members of the class and the defi nitions of
both the public and private member functions. Although you need the implementation
in order to run a program that uses the class, you should not need to know anything
about the implementation in order to write the rest of a program that uses the class;
that is, you should not need to know anything about the implementation in order to
write the main function of the program and to write any nonmember functions or
other classes used by the main function.

 The most obvious benefi t you derive from cleanly separating the interface and
implementation of your classes is that you can change the implementation without
 having to change the other parts of your program. On large programming projects this
division between interface and implementation will facilitate dividing the work among
different programmers. If you have a well-designed interface, then one programmer
can write the implementation for the class while other programmers write the code
that uses the class. Even if you are the only programmer working on a project, you
have divided one larger task into two smaller tasks, which makes your program easier
to design and to debug. ■

 implementation

 TIP: A Test for Encapsulation

 If your class definition produces an ADT (that is, if it properly separates the interface
and the implementation), then you can change the implementation of the class
(that is, change the data representation and/or change the implementation of some
member functions) without needing to change any (other) code for any program that
uses the class definition. This is a sure test for whether you have defined an ADT or
just some class that is not properly encapsulated.

 For example, you can change the implementation of the class DayOfYear in
 Display 6.4 to the following and no program that uses this class defi nition would need
any changes:

 class DayOfYear
 {
 public:
 void input();
 void output();

 void set(int newMonth, int newDay);
 //Precondition: newMonth and newDay form a possible date.
 //Postcondition: The date is reset according to the

//arguments.

 void set(int newMonth);
 //Precondition: 1 <= newMonth <= 12

 //Postcondition: The date is set to first day of the month.

(continued)

266 CHAPTER 6 Structures and Classes

 TIP: (continued)

 int getMonthNumber();
//Returns 1 for January, 2 for February, etc.
int getDay();

private:
char firstLetter; //of month
char secondLetter;//of month
char thirdLetter;//of month
int day;

};

 In this version, a month is represented by the first three letters in its name, such as
'J' , 'a' , and 'n' for January. The member functions should also be rewritten, of
course, but they can be rewritten to behave exactly as they did before. For example,
the definition of the function getMonthNumber might start as follows:

int DayOfYear::getMonthNumber()
{

if (firstLetter = = 'J' && secondLetter = = 'a'
&& thirdLetter = = 'n')

return 1;
if (firstLetter = = 'F' && secondLetter = = 'e'

&& thirdLetter = = 'b')
return 2;

 ...

 This would be rather tedious, but not difficult. ■

 Structures versus Classes

 Structures are normally used with all member variables public and with no member
functions. However, in C++ a structure can have private member variables and both
public and private member functions. Aside from some notational differences, a C++
structure can do anything a class can do. Having said this and satisfied the “truth
in advertising” requirement, we advocate that you forget this technical detail about
structures. If you take this technical detail seriously and use structures in the same way
that you use classes, then you will have two names (with different syntax rules) for the
same concept. On the other hand, if you use structures as we described them, then you
will have a meaningful difference between structures (as you use them) and classes; and
your usage will be the same as that of most other programmers.

 One difference between a structure and a class is that they differ in how they treat an
initial group of members that has neither a public nor a private access specifier. If the
first group of members in a definition is not labeled with either public: or private: ,
then a structure assumes the group is public, whereas a class would assume the group
is private.

www.itpub.net

Classes 267

 Classes and Objects
 A class is a type whose variables can have both member variables and member functions.
The syntax for a class definition is given as follows.

 SYNTAX

class Class_Name
{

.
public:
 Member_Specification_N+1

Member_Specification_N+2
.
.
.

private:
Member_Specification_1
Member_Specification_2

.

.

.
Member_Specification_N

};

 Each Member_Specification_i is either a member variable declaration or a member
function declaration (prototype).

 Additional public: and private: sections are permitted. If the first group of members
does not have either a public: or a private: label, then it is the same as if there were a
 private: before the first group.

 EXAMPLE

class Bicycle
{
public:

char getColor();
int numberOfSpeeds();
void set(int theSpeeds, char theColor);

private:
int speeds;
char color;

};

 Once a class is defined, an object variable (variable of the class type) can be declared in the
same way as variables of any other type. For example, the following declares two object
variables of type Bicycle :

Bicycle myBike, yourBike;

 Public members

 Private members

 Do not forget this semicolon.

268 CHAPTER 6 Structures and Classes

 TIP: Thinking Objects

 If you have not programmed with classes before, it can take a little while to get
the feel of programming with them. When you program with classes, data rather
than algorithms take center stage. It is not that there are no algorithms. However,
the algorithms are made to fit the data, as opposed to designing the data to fit the
algorithms. It is a difference in point of view. In the extreme case, which is considered
by many to be the best style, you have no global functions at all, only classes with
member functions. In this case, you define objects and how the objects interact,
rather than algorithms that operate on data. We will discuss the details of how you
accomplish this throughout this book. Of course, you can ignore classes completely or
relegate them to a minor role, but then you are really programming in C, not C++. ■

 Self-Test Exercises

 16. When you defi ne a C++ class, should you make the member variables public or
private? Should you make the member functions public or private?

 17. When you defi ne a C++ class, what items are considered part of the interface?
What items are considered part of the implementation?

 Chapter Summary

• A structure can be used to combine data of different types into a single (compound)
data value.

• A class can be used to combine data and functions into a single (compound) object.

• A member variable or a member function for a class can be either public or private.
If it is public, it can be used outside the class. If it is private, it can be used only in
the definition of a member function.

• A function can have formal parameters of a class or structure type. A function can
return values of a class or structure type.

• A member function for a class can be overloaded in the same way as ordinary
functions are overloaded.

• When defining a C++ class, you should separate the interface and implementation so
that any programmer who uses the class need only know the interface and need not
even look at the implementation. This is the principle of encapsulation.

www.itpub.net

Answers to Self-Test Exercises 269

 Answers to Self-Test Exercises

 1. a. double

 b. double

 c. illegal—cannot use a structure tag instead of a structure variable

 d. char

 e. CDAccountV2

 2. A $9.99
 A $1.11

 3. A semicolon is missing from the end of the definition of Stuff .

 4. A x = {1,2};

 5. a. Too few initializers; not a syntax error. After initialization, month= =12 ,
day==21 , and year==0 . Member variables not provided an initializer are
initialized to a zero of the appropriate type.

b. Correct after initialization. 12==month , 21==day , and 1995==year .

 c. Error: too many initializers.

 6. struct EmployeeRecord

 {
 double wageRate;

 int vacation;

 char status;

 };

 7. void readShoeRecord(ShoeType& newShoe)

 {

 cout << "Enter shoe style (one letter): ";

 cin >> newShoe.style;

 cout << "Enter shoe price $";

 cin >> newShoe.price;

 }

 8. ShoeType discount(ShoeType oldRecord)

 {

 ShoeType temp;

 temp.style = oldRecord.style;

 temp.price = 0.90*oldRecord.price;

 return temp;

 }

 9. void DayOfYear::input()
 {

 cout << "Enter month as a number: ";

 cin >> month;

 cout << "Enter the day of the month: ";

 cin >> day;

 }

 10. void Temperature::set(double newDegrees, char newScale)

 {

 degrees = newDegrees;

 scale = newScale;

 }

 11. Both the dot operator and the scope resolution operator are used with mem-
ber names to specify of what class or structure the member name is a member. If
class DayOfYea r is as defined in Display 6.3 and today is an object of the class
DayOfYear , then the member month may be accessed with the dot operator: today.
month . When we give the definition of a member function, the scope resolution
operator is used to tell the compiler that this function is the one declared in the class.

 12. hyundai.price = 4999.99; //ILLEGAL. price is private.

 jaguar.setPrice(30000.97); //LEGAL

 double aPrice, aProfit; //LEGAL

 aPrice = jaguar.getPrice(); //LEGAL

 aProfit = jaguar.getProfit(); //ILLEGAL. getProfit is

 //private.

 aProfit = hyundai.getProfit(); //ILLEGAL. getProfit is

 //private.

 hyundai = jaguar; //LEGAL

 13. After the change, they would all be legal.

 14. All members (member variables and member functions) that are marked private:
can only be accessed by name in the definitions of member functions (both public
and private) of the same class. Members marked public: have no restrictions on
where they can be used.

 15. a. Only one. The compiler warns if you have no public: members in a class (or
struct , for that matter).

 b. None, but we normally expect to find at least one private: section in a class.

 16. The member variables should all be private. The member functions that are part
of the interface should be public. You may also have auxiliary (helping) functions
that are only used in the definitions of other member functions. These auxiliary
functions should be private.

 17. All the declarations of private member variables are part of the implementation.
(There should be no public member variables.) All the declarations for public
member functions of the class (which are listed in the class definitions), as well
as the explanatory comments for these declarations, are parts of the interface.

270 CHAPTER 6 Structures and Classes

www.itpub.net

Programming Projects 271

All the declarations for private member functions are parts of the implementation.
All member function definitions (whether the function is public or private) are
parts of the implementation.

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a grading program for a class with the following grading policies:

 a. There are two quizzes, each graded on the basis of 10 points.

 b. There is one midterm exam and one final exam, each graded on the basis of
100 points.

 c. The final exam counts for 50% of the grade, the midterm counts for 25%, and
the two quizzes together count for a total of 25%. (Do not forget to normalize
the quiz scores. They should be converted to a percentage before they are aver-
aged in.)

 Any grade of 90 or more is an A, any grade of 80 or more (but less than 90) is a
B, any grade of 70 or more (but less than 80) is a C, any grade of 60 or more (but
less than 70) is a D, and any grade below 60 is an F. The program will read in the
student’s scores and output the student’s record, which consists of two quiz and
two exam scores as well as the student’s average numeric score for the entire course
and final letter grade. Define and use a structure for the student record.

 2. Define a class for a type called CounterType . An object of this type is used to
count things, so it records a count that is a nonnegative whole number. Include a
mutator function that sets the counter to a count given as an argument. Include
member functions to increase the count by one and to decrease the count by one.
Be sure that no member function allows the value of the counter to become nega-
tive. Also, include a member function that returns the current count value and one
that outputs the count. Embed your class definition in a test program.

 3. The type Point is a fairly simple data type, but under another name (the template
class pair) this data type is defined and used in the C++ Standard Template Library,
although you need not know anything about the Standard Template Library to do
this exercise. Write a definition of a class named Point that might be used to store
and manipulate the location of a point in the plane. You will need to declare and
implement the following member functions:

 a. A member function set that sets the private data after an object of this class
is created.

 b. A member function to move the point by an amount along the vertical and
horizontal directions specified by the first and second arguments.

 c A member function to rotate the point by 90 degrees clockwise around the origin.

 d. Two const inspector functions to retrieve the current coordinates of the point.

www.myprogramminglab.com

 Document these functions with appropriate comments. Embed your class in a test
program that requests data for several points from the user, creates the points, then
exercises the member functions.

 4. Write the definition for a class named GasPump to be used to model a pump at an
automobile service station. Before you go further with this programming exercise,
write down the behavior you expect from a gas pump from the point of view of the
purchaser.

 The following are listed things a gas pump might be expected to do. If your list
differs, and you think your list is as good or better than these, then consult your
instructor. You and your instructor should jointly decide what behavior you are to
implement. Then implement and test the agreed upon design for a gas pump class.

 a. A display of the amount dispensed

 b. A display of the amount charged for the amount dispensed

 c. A display of the cost per gallon, liter, or other unit of volume that is used where
you reside

 d. Before use, the gas pump must reset the amount dispensed and amount charged
to zero.

 e. Once started, a gas pump continues to dispense fuel, keep track of the amount
dispensed, and compute the charge for the amount dispensed until stopped.

 f. A stop dispensing control of some kind is needed.

 Implement the behavior of the gas pump as declarations of member functions of
the gas pump class, then write implementations of these member functions. You
will have to decide if there is data the gas pump has to keep track of that the user
of the pump should not have access to. If so, make these private member variables.

 5. Define a class for a type called Fraction . This class is used to represent a ratio
of two integers. Include mutator functions that allow the user to set the numera-
tor and the denominator. Also include a member function that returns the value
of the numerator divided by the denominator as a double. Include an additional
member function that outputs the value of the fraction reduced to lowest terms.
For example, instead of outputting 20/60 the function should output 1/3. This will
require finding the greatest common divisor for the numerator and denominator,
and then dividing both by that number. Embed your class in a test program.

 6. Define a class called Odometer that will track fuel and mileage for an automotive
vehicle. The class should have member variables to track the miles driven and the
fuel efficiency of the vehicle in miles per gallon. Include a mutator function to reset
the odometer to zero miles, a mutator function to set the fuel efficiency, a mutator
function that accepts miles driven for a trip and adds it to the odometer’s total, and
an accessor function that returns the number of gallons of gasoline that the vehicle
has consumed since the odometer was last reset.

 Use your class with a test program that creates several trips with different fuel
 efficiencies. You should decide which variables should be public, if any.

272 CHAPTER 6 Structures and Classes

Solution to
Programming
Project 6.5

VideoNote

www.itpub.net

Programming Projects 273

 7. Define a class called Pizza that has member variables to track the type of pizza
(either deep dish, hand tossed, or pan) along with the size (either small, medium,
or large) and the number of pepperoni or cheese toppings. You can use constants to
represent the type and size. Include mutator and accessor functions for your class.
Create a void function, outputDescription() , that outputs a textual description
of the pizza object. Also include a function, computePrice() , that computes the
cost of the pizza and returns it as a double according to the following rules:

 Small pizza = $10 + $2 per topping

 Medium pizza = $14 + $2 per topping

 Large pizza = $17 + $2 per topping

 Write a suitable test program that creates and outputs a description and price of
various pizza objects.

 8. Define a class named Money that stores a monetary amount. The class should have
two private integer variables, one to store the number of dollars and another to
store the number of cents. Add accessor and mutator functions to read and set both
member variables. Add another function that returns the monetary amount as a
double. Write a program that tests all of your functions with at least two different
Money objects.

 9. Do Programming Project 6.8 , except remove the two private integer variables and
use a single variable of type double to store the monetary value in their place. The
rest of the functions should have the same headers. For several functions, this will
require code to convert from an integer format to appropriately modify the double.
For example, if the monetary amount stored in the double is 4.55 (representing
$4.55) and if the function to set the dollar amount is invoked with the value 13,
then the double should be changed to 13.55. While this will take some work, the
code in your test program from Programming Project 6.8 should still work without
requiring any changes. This is the benefit of encapsulating the member variables.

 10. Create a Temperature class that internally stores a temperature in degrees
 Kelvin. Create functions named setTempKelvin , setTempFahrenheit , and
setTempCelsius that take an input temperature in the specified temperature
scale, convert the temperature to Kelvin, and store that temperature in the
class member variable. Also, create functions that return the stored temperature
in degrees Kelvin, Fahrenheit, or Celsius. Write a main function to test your class.
Use the equations shown next to convert between the three temperature scales.

 Kelvin = Celsius + 273.15

 Celsius = (5.0/9) * (Fahrenheit - 32)

 11. Do Programming Project 5.18 except use only one array as a parameter instead
of two arrays . The single array should be of type Player where Player is a class
that you create. The Player class should have a member variable of type string
to store the player’s name and a member variable of type int to score the player’s
score. Encapsulate these variables appropriately. Upon return from your function
the array entry at index 0 should be set to the name and score of the player with the
best score, the entry at index 1 should be set to the name and score of the player
with the second best score, etc.

Solution to
Programming
Project 6.9

VideoNote

 12. Your Community Supported Agriculture (CSA) farm delivers a box of fresh fruits
and vegetables to your house once a week. For this Programming Project, define the
class BoxOfProduce that contains exactly three bundles of fruits or vegetables. You
can represent the fruits or vegetables as an array of type string . Add accessor and
mutator functions to get or set the fruits or vegetables stored in the array. Also write
an output function that displays the complete contents of the box on the console.

 Next, write a main function that creates a BoxOfProduce with three items
 randomly selected from this list:

 Broccoli

 Tomato

 Kiwi

 Kale

 Tomatillo

 This list should be stored in a text file that is read in by your program. For now
you can assume that the list contains exactly five types of fruits or vegetables.

 Do not worry if your program randomly selects duplicate produce for the three
items. Next, the main function should display the contents of the box and allow
the user to substitute any one of the five possible fruits or vegetables for any of the
fruits or vegetables selected for the box. After the user is done with substitutions
output the final contents of the box to be delivered.

274 CHAPTER 6 Structures and Classes

www.itpub.net

 7.3 VECTORS—A PREVIEW OF THE
STANDARD TEMPLATE LIBRARY 307

 Vector Basics 307
 Pitfall: Using Square Brackets beyond the Vector

Size 309
 Tip: Vector Assignment Is Well Behaved 311
 Efficiency Issues 311

 7.1 CONSTRUCTORS 276
 Constructor Definitions 276
 Pitfall: Constructors with No Arguments 281
 Explicit Constructor Calls 282
 Tip: Always Include a Default Constructor 283
 Example: BankAccount Class 285
 Class Type Member Variables 292

 7.2 MORE TOOLS 295
 The const Parameter Modifier 295
 Pitfall: Inconsistent Use of const 297
 Inline Functions 301
 Static Members 303
 Nested and Local Class Definitions 306

 7

Chapter Summary 313 Answers to Self-Test Exercises 313 Programming Projects 315

 Constructors and
Other Tools

 Give us the tools, and we will finish the job.

 WINSTON CHURCHILL, Radio broadcast (February 9, 1941)

 Introduction
 This chapter presents a number of important tools to use when programming with
classes. The most important of these tools are class constructors, a kind of function
used to initialize objects of the class.

 Section 7.3 introduces vectors as an example of classes and as a preview of the
Standard Template Library (STL). Vectors are similar to arrays but can grow and shrink
in size. The STL is an extensive library of predefined classes. Section 7.3 may be covered
now or later. The material in Chapters 8 through 18 does not require the material in
 Section 7.3 , so you may postpone covering vectors (Section 7.3) if you wish.

 Sections 7.1 and 7.2 do not use the material in Chapter 5 but do use the material in
 Chapter 6 . Section 7.3 requires Chapters 1 through 6 as well as Section 7.1 .

 7.1 Constructors

 Well begun is half done.

 Proverb

 Often you want to initialize some or all the member variables for an object when
you declare the object. As we will see later in this book, there are other initializing
actions you might also want to take, but initializing member variables is the most
common sort of initialization. C++ includes special provisions for such initializations.
When you define a class you can define a special kind of member function known as
a constructor . A constructor is a member function that is automatically called when
an object of that class is declared. A constructor is used to initialize the values of some
or all member variables and to do any other sort of initialization that may be needed.

 Constructor Definitions

 You define a constructor the same way that you define any other member function,
except for two points:

1. A constructor must have the same name as the class. For example, if the class is named
BankAccount , then any constructor for this class must be named BankAccount .

2. A constructor definition cannot return a value. Moreover, no type, not even void ,
can be given at the start of the function declaration or in the function header.

7 Constructors and Other Tools

constructor

Constructor
Walkthrough

VideoNote

www.itpub.net

Constructors 277

 For example, suppose we wanted to add a constructor for initializing the month and
day for objects of type DayOfYear , which we gave in Display 6.4 and redefine in what
follows so it includes a constructor . (We have omitted some of the comments to save
space, but they should be included in an actual program.)

class DayOfYear
{
public:
 DayOfYear(int monthValue, int dayValue);

//Initializes the month and day to arguments.

void input();
void output();
void set(int newMonth, int newDay);
void set(int newMonth);
int getMonthNumber();
int getDay();

private:
int month;
int day;

};

 Notice that the constructor is named DayOfYear , which is the name of the class.
Also notice that the declaration (prototype) for the constructor DayOfYear does not
start with void or any other type name. Finally, notice that the constructor is placed in
the public section of the class definition. Normally, you should make your constructors
public member functions. If you were to make all your constructors private members,
then you would not be able to declare any objects of that class type, which would make
the class completely useless.

 With the redefined class DayOfYear , two objects of type DayOfYear can be declared
and initialized as follows:

DayOfYear date1(7, 4), date2(5, 5);

 Assuming that the definition of the constructor performs the initializing action that
we promised, the previous declaration will declare the object date1 , set the value of
date1.month to 7 , and set the value of date1.day to 4 . Thus, the object date1 is
initialized so that it represents the date July 4. Similarly, date2 is initialized so that it
represents the date May 5. What happens is that the object date1 is declared, and then
the constructor DayOfYear is called with the two arguments 7 and 4 . Similarly, date2
is declared, and then the constructor DayOfYear is called with the arguments 5 and 5 .
The result is conceptually equivalent to the following (although you cannot write it
this way in C ++):

DayOfYear date1, date2; //PROBLEMS--BUT FIXABLE
date1.DayOfYear(7, 4); //VERY ILLEGAL
date2.DayOfYear(5, 5); //VERY ILLEGAL

 Constructor

278 CHAPTER 7 Constructors and Other Tools

 As the comments indicate, you cannot place the three lines shown in your program.
The first line can be made to be acceptable, but the two calls to the constructor
DayOfYear are illegal. A constructor cannot be called in the same way as an ordinary
member function is called. Still, it is clear what we want to happen when we write
those three lines, and that happens automatically when you declare the objects date1
and date2 as follows:

DayOfYear date1(7, 4), date2(5, 5);

 The definition of a constructor is given in the same way as any other member
function. For example, if you revise the definition of the class DayOfYear by adding
the constructor just described, you need to also add a definition of the constructor,
which might be as follows:

DayOfYear::DayOfYear(int monthValue, int dayValue)
{
 month = monthValue;
 day = dayValue;
}

 Since the class and the constructor function have the same name, the name DayOfYear
occurs twice in the function heading; the DayOfYear before the scope resolution
operator :: is the name of the class, and the DayOfYear after the scope resolution
operator is the name of the constructor function. Also notice that no return type
is specified in the heading of the constructor definition, not even the type void .
Aside from these points, a constructor can be defined in the same way as an ordinary
member function.

 Constructor

A constructor is a member function of a class that has the same name as the class.
A constructor is called automatically when an object of the class is declared. Constructors
are used to initialize objects. A constructor must have the same name as the class of which
it is a member.

 As we just illustrated, a constructor can be defined just like any other member
function. However, there is an alternative way of defining constructors that is preferable
to use. The previous definition of the constructor DayOfYear is completely equivalent
to the following version:

DayOfYear::DayOfYear(int monthValue, int dayValue)
 : month(monthValue), day(dayValue)
{/*Body intentionally empty*/}

www.itpub.net

Constructors 279

 The new element shown on the second line of the constructor definition is called the
initialization section . As this example shows, the initialization section goes after the
parenthesis that ends the parameter list and before the opening brace of the function
body. The initialization section consists of a colon followed by a list of some or all
the member variables separated by commas. Each member variable is followed by its
initializing value in parentheses. Notice that the initializing values can be given in
terms of the constructor parameters.

 The function body in a constructor definition with an initialization section need not
be empty as in the previous example. For example, the following improved version of
the constructor definition checks to see that the arguments are appropriate:

DayOfYear::DayOfYear(int monthValue, int dayValue)
 : month(monthValue), day(dayValue)
{

if ((month < 1) || (month > 12))
 {
 cout << "Illegal month value!\n";
 exit(1);
 }

if ((day < 1) || (day > 31))
 {
 cout << "Illegal day value!\n";
 exit(1);
 }
}

 You can overload a constructor name like DayOfYear::DayOfYear , just as you can
overload any other member function name. In fact, constructors usually are overloaded
so that objects can be initialized in more than one way. For example, in Display 7.1
we have redefined the class DayOfYear so that it has three versions of its constructor.
This redefinition overloads the constructor name DayOfYear so that it can have two
arguments (as we just discussed), one argument, or no arguments.

 Notice that in Display 7.1 , two constructors call the member function testDate to
check that their initialized values are appropriate. The member function testDate is
private since it is only intended to be used by other member functions and so is part of
the hidden implementation details.

 We have omitted the member function set from this revised class definition of
DayOfYear . Once you have a good set of constructor definitions, there is no need
for any other member functions to set the member variables of the class. You can
use the constructor DayOfYear in Display 7.1 for the same purposes that you would
use the member function set (which we included in the old version of the class
shown in Display 6.4) .

initialization
section

280 CHAPTER 7 Constructors and Other Tools

 Display 7.1 Class with Constructors (part 1 of 2)

 1 #include <iostream>
 2 #include <cstdlib> //for exit
 3 using namespace std;

 4 class DayOfYear
 5 {
 6 public:
 7 DayOfYear(int monthValue, int dayValue);
 8 //Initializes the month and day to arguments.

 9 DayOfYear(int monthValue);
10 //Initializes the date to the first of the given month.

11 DayOfYear();
12 //Initializes the date to January 1.

13 void input();
14 void output();
15 int getMonthNumber();
16 //Returns 1 for January, 2 for February, etc.

17 int getDay();
18 private:
19 int month;
20 int day;
21 void testDate();
22 };

23 int main()
24 {
25 DayOfYear date1(2, 21), date2(5), date3;
26 cout << "Initialized dates:\n";
27 date1.output(); cout << endl;
28 date2.output(); cout << endl;
29 date3.output(); cout << endl;

30 date1 = DayOfYear(10, 31);
31 cout << "date1 reset to the following:\n";
32 date1.output(); cout << endl;
33 return 0;
34 }
35
36 DayOfYear::DayOfYear(int monthValue, int dayValue)
37 : month(monthValue), day(dayValue)
38 {
39 testDate();
40 }

 This definition of DayOfYear is an
improved version of the class DayOfYear
given in Display 6.4 .

 default constructor

 This causes a call to the default
constructor. Notice that there
are no parentheses.

 an explicit call to
the constructor
DayOfYear::DayOfYear

www.itpub.net

Constructors 281

41 DayOfYear::DayOfYear(int monthValue) : month(monthValue), day(1)
42 {
43 testDate();
44 }

45 DayOfYear::DayOfYear() : month(1), day(1)
46 { /*Body intentionally empty.*/}

47 //uses iostream and cstdlib:
48 void DayOfYear::testDate()
49 {
50 if ((month < 1) || (month > 12))
51 {
52 cout << "Illegal month value!\n";
53 exit(1);
54 }
55 if ((day < 1) || (day > 31))
56 {
57 cout << "Illegal day value!\n";
58 exit(1);
59 }
60 }

 Sample Dialogue

Initialized dates:

February 21

May 1

January 1

date1 reset to the following:

October 31

Display 7.1 Class with Constructors (part 2 of 2)

 <Definitions of the other member
functions are the same as in
 Display 6.4 .>

 PITFALL: Constructors with No Arguments

 It is important to remember not to use any parentheses when you declare a class
variable and want the constructor invoked with no arguments. For example, consider
the following line from Display 7.1 :

DayOfYear date1(2, 21), date2(5), date3;

 The object date1 is initialized by the constructor that takes two arguments, the
object date2 is initialized by the constructor that takes one argument, and the object
date3 is initialized by the constructor that takes no arguments.

(continued)

282 CHAPTER 7 Constructors and Other Tools

 Explicit Constructor Calls

 A constructor is called automatically whenever you declare an object of the class type,
but it can also be called again after the object has been declared. This allows you to
conveniently set all the members of an object. The technical details are as follows.
Calling the constructor creates an anonymous object with new values. An anonymous
object is an object that is not named (as yet) by any variable. The anonymous object
can be assigned to the named object. For example, the following is a call to the

 It is tempting to think that empty parentheses should be used when declaring a variable
for which you want the constructor with no arguments invoked, but there is a reason
why this is not done. Consider the following, which seems like it should declare the
variable date3 and invoke the constructor with no arguments:

DayOfYear date3(); //PROBLEM! Not what you might think it is.

 The problem with this is that although you may mean it as a declaration and
constructor invocation, the compiler sees it as a declaration (prototype) of a function
named date3 that has no parameters and that returns a value of type DayOfYear .
Since a function named date3 that has no parameters and that returns a value of
type DayOfYea r is perfectly legal, this notation always has that meaning. A different
notation (without parentheses) is used when you want to invoke a constructor with
no arguments. ■

PITFALL: (continued)

 Calling a Constructor

A constructor is called automatically when an object is declared, but you must give the
arguments for the constructor when you declare the object. A constructor can also be called
explicitly, but the syntax is different from what is used for ordinary member functions.

 SYNTAX FOR AN OBJECT DECLARATION WHEN YOU HAVE CONSTRUCTORS

Class_Name Variable_Name(Arguments_for_Constructor);

 EXAMPLE

DayOfYear holiday(7, 4);

 SYNTAX FOR AN EXPLICIT CONSTRUCTOR CALL

Variable = Constructor_Name(Arguments_For_Constructor);

 EXAMPLE

holiday = DayOfyear(10, 31);

A constructor must have the same name as the class of which it is a member. Thus, in the
previous syntax descriptions, Class_Name and Constructor_Name are the same identifier.

www.itpub.net

Constructors 283

constructor DayOfYear that creates an anonymous object for the date May 5. This
anonymous object is assigned to the variable holiday (which has been declared to be
of type DayOfYear) so that holiday also represents the date May 5. 1

holiday = DayOfYear(5, 5);

 (As you might guess from the notation, a constructor sometimes behaves like a function
that returns an object of its class type.)

 Note that when you explicitly invoke a constructor with no arguments, you do
include parentheses as follows:

holiday = DayOfYear();

 The parentheses are only omitted when you declare a variable of the class type and
want to invoke a constructor with no arguments as part of the declaration.

1 Note that this process is more complicated than simply changing the values of member variables. For
efficiency reasons, therefore, you may wish to retain the member functions named set to use in place
of an explicit call to a constructor.

default
constructor

 TIP: Always Include a Default Constructor

 A constructor that takes no arguments is called a default constructor . This name can
be misleading because sometimes it is generated by default (that is, automatically) and
sometimes it is not. Here is the full story. If you define a class and include absolutely no
constructors of any kind, then a default constructor will be automatically created. This
default constructor does not do anything, but it does give you an uninitialized object
of the class type, which can be assigned to a variable of the class type. If your class
definition includes one or more constructors of any kind, no constructor is generated
automatically. So, for example, suppose you define a class called SampleClass .

 If you include one or more constructors that each takes one or more arguments,
but you do not include a default constructor in your class definition, then there is no
default constructor and any declaration like the following will be illegal:

SampleClass aVariable;

 The problem with the previous declaration is that it asks the compiler to invoke the
default constructor, but there is no default constructor in this case.

 To make this concrete, suppose you defi ne a class as follows:

class SampleClass
{
public:
 SampleClass(int parameter1, double parameter2);

void doStuff();
private:

int data1;
double data2;

};

(continued)

284 CHAPTER 7 Constructors and Other Tools

 You should recognize the following as a legal way to declare an object of type
SampleClass and call the constructor for that class:

SampleClass myVariable(7, 7.77);

 However, the following is illegal:

SampleClass yourVariable;

 The compiler interprets the previous declaration as including a call to a constructor
with no arguments, but there is no definition for a constructor with zero arguments.
You must either add two arguments to the declaration of yourVariable or else add a
constructor definition for a constructor with no arguments.

 If you redefi ne the class SampleClass as follows, then the previous declaration of
yourVariable would be legal:

class SampleClass
{
public:
 SampleClass(int parameter1, double parameter2);
 SampleClass();

void doStuff();
private:

int data1;
double data2;

};

 To avoid this sort of confusion, you should always include a default constructor in any
class you define. If you do not want the default constructor to initialize any member
variables, you can simply give it an empty body when you implement it. The following
constructor definition is perfectly legal. It does nothing but create an uninitialized object:

SampleClass::SampleClass()
{/*Do nothing.*/} ■

TIP: (continued)

 Default constructor

 Constructors with No Arguments

A constructor that takes no arguments is called a default constructor. When you declare an
object and want the constructor with zero arguments to be called, you do not include any
parentheses. For example, to declare an object and pass two arguments to the constructor,
you might do the following:

DayOfYear date1(12, 31);

However, if you want the constructor with zero arguments to be used, you declare the
object as follows:

DayOfYear date2;

www.itpub.net

Constructors 285

You do not declare the object as follows:

DayOfYear date2(); //PROBLEM!

(The problem is that this syntax declares a function that returns a DayOfYear object and
has no parameters.)

You do, however, include the parentheses when you explicitly invoke a constructor
with no arguments, as shown here:

date1 = DayOfYear();

 Self-Test Exercises

 1. Suppose your program contains the following class definition (along with
definitions of the member functions):

class YourClass
{
public:
 YourClass(int newInfo, char moreNewInfo);
 YourClass();

void doStuff();
private:

int information;
char moreInformation;

};

 Which of the following are legal?

YourClass anObject(42, 'A');
YourClass anotherObject;
YourClass yetAnotherObject();
anObject = YourClass(99, 'B');
anObject = YourClass();
anObject = YourClass;

 2. What is a default constructor? Does every class have a default constructor?

 EXAMPLE: BankAccount Class

 Display 7.2 contains the definition of a class representing a simple bank account
embedded in a small demonstration program. A bank account of this form has
two pieces of data: the account balance and the interest rate. Note that we have
represented the account balance as two values of type int , one for the dollars and
one for the cents. This illustrates the fact that the internal representation of the data
need not be simply a member variable for each conceptual piece of data. It may seem

(continued)

286 CHAPTER 7 Constructors and Other Tools

that the balance should be represented as a value of type double , rather than two
int values. However, an account contains an exact number of dollars and cents, and
a value of type double is, practically speaking, an approximate quantity. Moreover,
a balance such as $323.52 is not a dollar sign in front of a floating-point value. The
$323.52 cannot have any more or fewer than two digits after the decimal point. You
cannot have a balance of $323.523, and a member variable of type double would
allow such a balance. It is not impossible to have an account with fractional cents. It
is just not what we want for a bank account.

 Note that the programmer who is using the class BankAccount can think of
the balance as a value of type double or as two values of type int (for dollars and
cents). The accessor and mutator functions allow the programmer to read and set the
balance as either a double or two int s. The programmer who is using the class need
not and should not think of any underlying member variables. That is part of the
implementation that is “hidden” from the programmer using the class.

 Note that the mutator function setBalance , as well as the constructor names,
are overloaded. Also note that all constructors and mutator functions check values
to make sure they are appropriate. For example, an interest rate cannot be negative.
A balance can be negative, but you cannot have a positive number of dollars and a
negative number of cents.

 This class has four private member functions: dollarsPart , centsPart , round ,
and fraction . These member functions are made private because they are only
intended to be used in the definitions of other member functions.

EXAMPLE: (continued)

 Display 7.2 BankAccount Class (part 1 of 6)

 1 #include <iostream>
 2 #include <cmath>
 3 #include <cstdlib>
 4 using namespace std;

 5 //Data consists of two items: an amount of money for the account balance
 6 //and a percentage for the interest rate.
 7 class BankAccount
 8 {
 9 public:
 10 BankAccount(double balance, double rate);
 11 //Initializes balance and rate according to arguments.

 12 BankAccount(int dollars, int cents, double rate);
 13 //Initializes the account balance to $dollars.cents. For a
 14 //negative balance both dollars and cents must be negative.

//Initializes the interest rate to rate percent.

www.itpub.net

Constructors 287

 15 BankAccount(int dollars, double rate);
 16 //Initializes the account balance to $dollars.00 and
 17 //initializes the interest rate to rate percent.

 18 BankAccount();
 19 //Initializes the account balance to $0.00 and the interest rate

//to 0.0%.
 20 void update();
 21 //Postcondition: One year of simple interest has been added to the

//account.
 22 void input();
 23 void output();
 24 double getBalance();
 25 int getDollars();
 26 int getCents();
 27 double getRate();//Returns interest rate as a percentage.

 28 void setBalance(double balance);
 29 void setBalance(int dollars, int cents);
 30 //Checks that arguments are both nonnegative or both nonpositive.

 31 void setRate(double newRate);
 32 //If newRate is nonnegative, it becomes the new rate. Otherwise,

//abort program.
 33
 34 private:
 35 //A negative amount is represented as negative dollars and
 //negative cents.
 36 //For example, negative $4.50 sets accountDollars to -4 and

//accountCents to -50.
 37 int accountDollars; //of balance
 38 int accountCents; //of balance
 39 double rate; //as a percent
 40 int dollarsPart(double amount);
 41 int centsPart(double amount);
 42 int round(double number);

 43 double fraction(double percent);
 44 //Converts a percentage to a fraction. For example, fraction(50.3)

//returns 0.503.
 45 };

 46 int main()
 47 {
 48 BankAccount account1(1345.52, 2.3), account2;
 49 cout << "account1 initialized as follows:\n";
 50 account1.output();

Display 7.2 BankAccount Class (part 2 of 6)

(continued)

Private members

This declaration causes a call to
the default constructor. Notice
that there are no parentheses.

288 CHAPTER 7 Constructors and Other Tools

 51 cout << "account2 initialized as follows:\n";
 52 account2.output();

 53 account1 = BankAccount(999, 99, 5.5);
 54 cout << "account1 reset to the following:\n";
 55 account1.output();

 56 cout << "Enter new data for account 2:\n";
 57 account2.input();
 58 cout << "account2 reset to the following:\n";
 59 account2.output();
 60 account2.update();
 61 cout << "In one year account2 will grow to:\n";
 62 account2.output();

 63 return 0;
 64 }

 65 BankAccount::BankAccount(double balance, double rate)
 66 : accountDollars(dollarsPart(balance)),

 accountCents(centsPart(balance))
 67 {
 68 setRate(rate);
 69 }

 70 BankAccount::BankAccount(int dollars, int cents, double rate)
 71 {
 72 setBalance(dollars, cents);
 73 setRate(rate);
 74 }

 75 BankAccount::BankAccount(int dollars, double rate)
 76 : accountDollars(dollars), accountCents(0)
 77 {
 78 setRate(rate);
 79 }

 80 BankAccount::BankAccount(): accountDollars(0),

 accountCents(0), rate(0.0)
 81 { /*Body intentionally empty.*/ }

 82 void BankAccount::update()
 83 {
 84 double balance = accountDollars + accountCents*0.01;
 85 balance = balance + fraction(rate)*balance;
 86 accountDollars = dollarsPart(balance);
 87 accountCents = centsPart(balance);

Display 7.2 BankAccount Class (part 3 of 6)

an explicit call to the constructor
BankAccount::BankAccount

These functions check that
the data is appropriate.

www.itpub.net

Constructors 289

 88 }
 89 //Uses iostream:
 90 void BankAccount::input()
 91 {
 92 double balanceAsDouble;
 93 cout << "Enter account balance $";
 94 cin >> balanceAsDouble;
 95 accountDollars = dollarsPart(balanceAsDouble);
 96 accountCents = centsPart(balanceAsDouble);
 97 cout << "Enter interest rate (NO percent sign): ";
 98 cin >> rate;
 99 setRate(rate);
 100 }
 101 //Uses iostream and cstdlib:
 102 void BankAccount::output()
 103 {
 104 int absDollars = abs(accountDollars);
 105 int absCents = abs(accountCents);
 106 cout << "Account balance: $";
 107 if (accountDollars > 0)
 108 cout << "-";
 109 cout << absDollars;
 110 if (absCents >= 10)
 111 cout << "." << absCents << endl;
 112 else
 113 cout << "." << '0' << absCents << endl;

114 cout << "Rate: " << rate << "%\n";
 115 }

116 double BankAccount::getBalance()
 117 {
 118 return (accountDollars + accountCents * 0.01);
 119 }
 120 int BankAccount::getDollars()
 121 {
 122 return accountDollars;
 123 }
 124
 125 int BankAccount::getCents()
 126 {
 127 return accountCents;
 128 }
 129
 130 double BankAccount::getRate()
 131 {
 132 return rate;
 133 }

Display 7.2 BankAccount Class (part 4 of 6)

(continued)

For a better definition of
BankAccount::input see
Self-Test Exercise 3.

The programmer using the class does not
care if the balance is stored as one real
or two ints.

290 CHAPTER 7 Constructors and Other Tools

 134
 135 void BankAccount::setBalance(double balance)
 136 {
 137 accountDollars = dollarsPart(balance);
 138 accountCents = centsPart(balance);
 139 }
 140
 141 //Uses cstdlib:
 142 void BankAccount::setBalance(int dollars, int cents)
 143 {
 144 if ((dollars < 0 && cents > 0) || (dollars > 0 && cents < 0))
 145 {
 146 cout << "Inconsistent account data.\n";
 147 exit(1);
 148 }
 149 accountDollars = dollars;
 150 accountCents = cents;
 151 }
 152
 153 //Uses cstdlib:
 154 void BankAccount::setRate(double newRate)
 155 {
 156 if (newRate >= 0.0)
 157 rate = newRate;
 158 else
 159 {
 160 cout << "Cannot have a negative interest rate.\n";
 161 exit(1);
 162 }
 163 }
 164 int BankAccount::dollarsPart(double amount)
 165 {
 166 return static_cast < int >(amount);
 167 }
 168 //Uses cmath:
 169 int BankAccount::centsPart(double amount)
 170 {
 171 double doubleCents = amount * 100;
 172 int intCents = (round(fabs(doubleCents))) % 100;

//% can misbehave on negatives
 173 if (amount < 0)
 174 intCents = -intCents;
 175 return intCents;
 176 }
 177
 178 //Uses cmath:
 179 int BankAccount::round(double number)
 180 {
 181 return static_cast < int >(floor(number + 0.5));
 182 }

Display 7.2 BankAccount Class (part 5 of 6)

This could be a regular function
rather than a member function,
but as a member function we
were able to make it private.

These could be regular functions rather than
member functions, but as member functions we
were able to make them private.

if this does not seem
clear, see the discussion
of round in Chapter 3,
Section 3.2.

www.itpub.net

Constructors 291

 183
 184 double BankAccount::fraction(double percent)
 185 {
 186 return (percent/100.0);
 187 }

 Sample Dialogue

 account1 initialized as follows:

 Account balance: $1345.52

 Rate: 2.3%

 account2 initialized as follows:

 Account balance: $0.00

 Rate: 0%

 account1 reset to the following:

 Account balance: $999.99

 Rate: 5.5%

 Enter new data for account 2:

 Enter account balance $100.00

 Enter interest rate (NO percent sign): 10

 account2 reset to the following:

 Account balance: $100

 Rate: 10%

 In one year account2 will grow to:

 Account balance: $110

 Rate: 10%

Display 7.2 BankAccount Class (part 6 of 6)

 Self-Test Exercises

 3. The function BankAccount::input in Display 7.2 reads the balance of the
account as a value of type double. When the value is stored in the computer’s
memory in binary form, this can create a slight error. It would normally
not be noticed and the function is good enough for the demonstration class
BankAccount . Spending too much time on numerical analysis would detract
from the message at hand. Still, this input function is not good enough for
banking. Rewrite the function BankAccount::input so it reads an amount
such as 78.96 as the int 76 and the three char values ' . ', ' 9 ', and ' 6 '. You
can assume the user always enters two digits for the cents in an amount, such as
99.00 instead of just 99 and nothing more. Hint: The following formula will
convert a digit to the corresponding int value, such as ' 6 ' to 6 :

 static_cast < int >(digit) - static_cast < int >('0')

292 CHAPTER 7 Constructors and Other Tools

 Class Type Member Variables

 A class may have a member variable whose type is that of another class. By and large
there is nothing special that you need to do to have a class member variable, but there
is a special notation to allow for the invocation of the member variable’s constructor
within the constructor of the outer class. An example is given in Display 7.3 .

 Display 7.3 A Class Member Variable (part 1 of 3)

 1 #include <iostream>
 2 #include<cstdlib>
 3 using namespace std;

 4 class DayOfYear
 5 {
 6 public:
 7 DayOfYear(int monthValue, int dayValue);
 8 DayOfYear(int monthValue);
 9 DayOfYear();
10 void input();
11 void output();
12 int getMonthNumber();
13 int getDay();
14 private:
15 int month;
16 int day;
17 void testDate();
18 };

19 class Holiday
20 {
21 public:
22 Holiday(); //Initializes to January 1 with no parking enforcement
23 Holiday(int month, int day, bool theEnforcement);
24 void output();
25 private:
26 DayOfYear date;
27 bool parkingEnforcement; //true if enforced
28 };

29 int main()
30 {
31 Holiday h(2, 14, true);
32 cout << "Testing the class Holiday.\n";
33 h.output();
34 return 0;
35 }
36
37 Holiday::Holiday() : date(1, 1), parkingEnforcement(false)
38 { /*Intentionally empty*/}

39 Holiday::Holiday(int month, int day, bool theEnforcement)
40 : date(month, day), parkingEnforcement(theEnforcement)

The class DayOfYear is the same as in
Display 7.1, but we have repeated all the
details you need for this discussion.

member variable of a
class type

Invocations of constructors
from the class

www.itpub.net

Constructors 293

41 { /*Intentionally empty*/}
42 void Holiday::output()
43 {
44 date.output();
45 cout << endl;
46 if (parkingEnforcement)
47 cout << "Parking laws will be enforced.\n";
48 else
49 cout << "Parking laws will not be enforced.\n";
50 }

51 DayOfYear::DayOfYear(int monthValue, int dayValue)
52 : month(monthValue), day(dayValue)
53 {
54 testDate();
55 }

56 //uses iostream and cstdlib:
57 void DayOfYear::testDate()
58 {
59 if ((month < 1) || (month > 12))
60 {
61 cout << "Illegal month value!\n";
62 exit(1);
63 }
64 if ((day < 1) || (day > 31))
65 {
66 cout << "Illegal day value!\n";
67 exit(1);
68 }
69 }
70
71 //Uses iostream:
72 void DayOfYear::output()
73 {
74 switch (month)
75 {
76 case 1:
77 cout << "January "; break;
78 case 2:
79 cout << "February "; break;
80 case 3:
81 cout << "March "; break;
 .
 .
 .
82 case 11:
83 cout << "November "; break;

Display 7.3 A Class Member Variable (part 2 of 3)

(continued)

The omitted lines are in
Display 6.3, but they are
obvious enough that you
should not have to look there.

294 CHAPTER 7 Constructors and Other Tools

84 case 12:
85 cout << "December "; break;
86 default:
87 cout << "Error in DayOfYear::output.";
88 }

89 cout << day;

90 }

 Sample Dialogue

Testing the class Holiday.

February 14

Parking laws will be enforced.

Display 7.3 A Class Member Variable (part 3 of 3)

 The class Holiday in Display 7.3 might be used by some city police departments
to help keep track of which holidays will have parking enforcement (of things such as
parking meters and one hour parking zones). It is a highly simplified class. A real class
would have more member functions, but the class Holiday is complete enough to
illustrate our points.

 The class Holiday has two member variables. The member variable parking
Enforcement is an ordinary member variable of the simple type bool . The member
variable date is of the class type DayOfYear .

 Next we have reproduced one constructor definition from Display 7.3 :

Holiday::Holiday(int month, int day, bool theEnforcement)
 : date(month, day), parkingEnforcement(theEnforcement)
{/*Intentionally empty*/ }

 Notice that we have set the member variable parkingEnforcement in the initialization
section in the usual way, namely, with

parkingEnforcement(theEnforcement)

 The member variable date is a member of the class type DayOfYear . To initialize
date , we need to invoke a constructor from the class DayOfYear (the type of date).
This is done in the initialization section with the similar notation

date(month, day)

 The notation date(month, day) is an invocation of the constructor for the class
DayOfYear with arguments month and day to initialize the member variables of date .
Notice that this notation is analogous to how you would declare a variable date of type
DayOfYear . Also notice that the parameters of the larger class constructor Holiday can
be used in the invocation of the constructor for the member variable.

www.itpub.net

More Tools 295

 7.2 More Tools

 Intelligence … is the facility of making artificial objects, especially tools to
make tools.

 HENRI BERGSON, Creative Evolution

 This section discusses three topics that, although important, did not fit easily before here.
The three topics are const parameters for classes, inline functions, and static class members.

 The const Parameter Modifier

 A call-by-reference parameter is more efficient than a call-by-value parameter. A call-
by-value parameter is a local variable that is initialized to the value of its argument,
so when the function is called there are two copies of the argument. With a call-
by-reference parameter, the parameter is just a placeholder that is replaced by the
argument, so there is only one copy of the argument. For parameters of simple types,
such as int or double , the difference in efficiency is negligible, but for class parameters
the difference in efficiency can sometimes be important. Thus, it can make sense to use
a call-by-reference parameter rather than a call-by-value parameter for a class, even if
the function does not change the parameter.

 If you are using a call-by-reference parameter and your function does not change
the value of the parameter, you can mark the parameter so that the compiler knows
that the parameter should not be changed. To do so, place the modifier const before
the parameter type. The parameter is then called a constant parameter or constant
call-by-reference parameter . For example, in Display 7.2 we defined a class named
BankAccount for simple bank accounts. In some program you might want to write
a Boolean-valued function to test which of two accounts has the larger balance. The
definition of the function might be as follows:

bool isLarger(BankAccount account1, BankAccount account2)
//Returns true if the balance in account1 is greater than that
//in account2. Otherwise returns false.
{

return(account1.getBalance() > account2.getBalance());
}

 This is perfectly legal. The two parameters are call-by-value parameters. However, it
would be more efficient and is more common to make the parameters constant call-
by-reference parameters, as follows:

bool isLarger(const BankAccount& account1,
const BankAccount& account2)

//Returns true if the balance in account1 is greater than that
//in account2. Otherwise, returns false.
{

return(account1.getBalance() > account2.getBalance());
}

constant
parameter

296 CHAPTER 7 Constructors and Other Tools

 Note that the only difference is that we made the parameter call-by-reference by adding &
and we added the const modifiers. If there is a function declaration, then the same
change must be made to the parameters in the function declaration.

 Constant parameters are a form of automatic error checking. If your function
definition contains a mistake that causes an inadvertent change to the constant
parameter, the compiler will issue an error message.

 The parameter modifier const can be used with any kind of parameter; however, it
is normally used only for call-by-reference parameters for classes (and for certain other
parameters whose corresponding arguments are large, such as arrays).

 Suppose you invoke a member function for an object of a class, such as the class
BankAccount in Display 7.2 . For example,

BankAccount myAccount;
myAccount.input();
myAccount.output();

 The invocation of the member function input changes the values of the member
variables in the calling object myAccount . So the calling object behaves sort of like
a call-by-reference parameter; the function invocation can change the calling object.
Sometimes, you do not want to change the member variables of the calling object.
For example, the member function output should not change the values of the calling
object’s member variables. You can use the const modifier to tell the compiler that a
member function invocation should not change the calling object.

 The modifier const applies to calling objects in the same way that it applies to
parameters. If you have a member function that should not change the value of a
calling object, you can mark the function with the const modifier; the computer will
then issue an error message if your function code inadvertently changes the value of
the calling object. In the case of a member function, the const goes at the end of the
function declaration, just before the final semicolon, as shown next:

class BankAccount
{
public:

...
void output() const;

...

 The modifier const should be used in both the function declaration and the function
definition, so the function definition for output would begin as follows:

void BankAccount::output() const
{

...

 The remainder of the function definition would be the same as in Display 7.2 .

const with
member

functions

www.itpub.net

More Tools 297

 PITFALL: Inconsistent Use of const

 Use of the const modifier is an all-or-nothing proposition. If you use const for one
parameter of a particular type, then you should use it for every other parameter that
has that type and that is not changed by the function call. Moreover, if the type is a
class type, then you should also use the const modifier for every member function
that does not change the value of its calling object. The reason has to do with
function calls within function calls. For example, consider the following definition of
the function welcome :

void welcome(const BankAccount& yourAccount)
{

cout << "Welcome to our bank.\n"
 << "The status of your account is:\n";

yourAccount.output();
}

 If you do not add the const modifier to the function declaration for the member
function output , then the function welcome will produce an error message. The
member function welcome does not change the calling object price. However,
when the compiler processes the function definition for welcome , it will think that
welcome does (or at least might) change the value of yourAccount . This is because
when it is translating the function definition for welcome , all that the compiler knows
about the member function output is the function declaration for output . If the
function declaration does not contain a const that tells the compiler that the calling
object will not be changed, then the compiler assumes that the calling object will be
changed. Thus, if you use the modifier const with parameters of type BankAccount ,
then you should also use const with all BankAccount member functions that do not
change the values of their calling objects. In particular, the function declaration for
the member function output should include a const .

 In Display 7.4 we have rewritten the definition of the class BankAccount given
in Display 7.2 , but this time we have used the const modifier where appropriate. In
 Display 7.4 we have also added the two functions isLarger and welcome , which we
discussed earlier and which have constant parameters. ■

 Display 7.4 The const Parameter Modifi er (part 1 of 3)

 1 #include <iostream>
 2 #include <cmath>
 3 #include <cstdlib>
 4 using namespace std;

 5 //Data consists of two items: an amount of money for the account balance
 6 //and a percentage for the interest rate.
 7 class BankAccount

This is class from Display 7.2 rewritten
using the const modifier.

(continued)

298 CHAPTER 7 Constructors and Other Tools

Display 7.4 The const Parameter Modifi er (part 2 of 3)

 8 {
 9 public:
10 BankAccount(double balance, double rate);
11 //Initializes balance and rate according to arguments.

12 BankAccount(int dollars, int cents, double rate);
13 //Initializes the account balance to $dollars.cents. For a negative
14 //balance both dollars and cents must be negative. Initializes the

//interest rate to rate percent.
15 BankAccount(int dollars, double rate);
16 //Initializes the account balance to $dollars.00 and
17 //initializes the interest rate to rate percent.

18 BankAccount();
19 //Initializes the account balance to $0.00 and the interest rate

//to 0.0%.
20 void update();
21 //Postcondition: One year of simple interest has been added to the

//account.
22 void input();
23 void output() const;
24 double getBalance() const;
25 int getDollars() const;
26 int getCents() const;
27 double getRate() const; //Returns interest rate as a percentage.
28 void setBalance(double balance);
29 void setBalance(int dollars, int cents);
30 //Checks that arguments are both nonnegative or both nonpositive.

31 void setRate(double newRate);
32 //If newRate is nonnegative, it becomes the new rate. Otherwise,

//abort program.
33
34 private:
35 //A negative amount is represented as negative dollars and negative cents.
36 //For example, negative $4.50 sets accountDollars to -4 and accountCents

//to -50.
37 int accountDollars; //of balance
38 int accountCents; //of balance
39 double rate; //as a percent
40 int dollarsPart(double amount) const;
41 int centsPart(double amount) const;
42 int round(double number) const;

43 double fraction(double percent) const;
44 //Converts a percentage to a fraction. For example, fraction(50.3)

//returns 0.503.
45 };

www.itpub.net

More Tools 299

46 //Returns true if the balance in account1 is greater than that
47 //in account2. Otherwise returns false.
48 bool isLarger(const BankAccount& account1, const BankAccount& account2);

49 void welcome(const BankAccount& yourAccount);

50 int main()
51 {
52 BankAccount account1(6543.21, 4.5), account2;
53 welcome(account1);
54 cout << "Enter data for account 2:\n";
55 account2.input();
56 if (isLarger(account1, account2))
57 cout << "account1 is larger.\n";
58 else
59 cout << "account2 is at least as large as account1.\n";

60 return 0;
61 }
62
63 bool isLarger(const BankAccount& account1, const BankAccount& account2)
64 {
65 return(account1.getBalance() > account2.getBalance());
66 }
67 void welcome(const BankAccount& yourAccount)
68 {
69 cout << "Welcome to our bank.\n"
70 << "The status of your account is:\n";
71 yourAccount.output();
72 }

73 //Uses iostream and cstdlib:
74 void BankAccount::output() const
75

76
77

 Sample Dialogue

Welcome to our bank.

The status of your account is:

Account balance: $6543.21

Rate: 4.5%

Enter data for account 2:

Enter account balance $100.00

Enter interest rate (NO percent sign): 10

account1 is larger.

Display 7.4 The const Parameter Modifi er (part 3 of 3)

<The rest of the function definition is the same as in Display 7.2.>

< Other function definitions are the same as in Display 7.2, except that const
is added where needed to match the function declaration.>

300 CHAPTER 7 Constructors and Other Tools

const Parameter Modifier
If you place the modifier const before the type for a call-by-reference parameter, the
parameter is called a constant parameter. When you add the const you are telling the
compiler that this parameter should not be changed. If you make a mistake in your
definition of the function so that it does change the constant parameter, then the compiler
will give an error message. Parameters of a class type that are not changed by the
function ordinarily should be constant call-by-reference parameters rather than call-by-value
parameters.

If a member function does not change the value of its calling object, then you can mark the
function by adding the const modifier to the function declaration. If you make a mistake in
your definition of the function so that it does change the calling object and the function is
marked with const, the computer will give an error message. The const is placed at the
end of the function declaration, just before the final semicolon. The heading of the function
definition should also have a const so that it matches the function declaration.

 EXAMPLE

class Sample
{
public:

Sample();
void input();
void output() const;

private:
int stuff;
double moreStuff;

};

int compare(const Sample& s1, const Sample& s2);

Use of the const modifier is an all or nothing proposition. You should use the const
modifier whenever it is appropriate for a class parameter and whenever it is appropriate for
a member function of the class. If you do not use const every time that it is appropriate for
a class, then you should never use it for that class.

 Self-Test Exercises

 4. Why would it be incorrect to add the modifier const, as shown next, to the
declaration for the member function input of the class BankAccount given in
 Display 7.2 ?

class BankAccount
{
public:

void input() const;
...

www.itpub.net

More Tools 301

 Inline Functions

 You can give the complete definition of a member function within the definition of its
class. Such definitions are called inline function definitions . These inline definitions
are typically used for very short function definitions. Display 7.5 shows the class in
 Display 7.4 rewritten with a number of inline functions.

 Inline functions are more than just a notational variant of the kind of member
function definitions we have already seen. The compiler treats an inline function in
a special way. The code for an inline function declaration is inserted at each location
where the function is invoked. This saves the overhead of a function invocation.

 All other things being equal, an inline function should be more efficient and hence
presumably preferable to a function defined in the usual way. However, all other things
are seldom, if ever, equal. Inline functions have the disadvantage of mixing the interface
and implementation of a class and so go against the principle of encapsulation. Also,
with many compilers, the inline function can only be called in the same file as the one
in which it is defined.

 It is generally believed that only very short function definitions should be defined
inline. For long function definitions, the inline version can actually be less efficient,
because a large piece of code is repeated frequently. Beyond that general rule, you will
have to decide for yourself whether to use inline functions.

 Any function can be defined to be an inline function. To define a nonmember
function to be inline, just place the keyword inline before the function declaration
and function definition. We will not use, or further discuss, inline nonmember
functions in this book .

inline function

Self-Test Exercises (continued)

 5. What are the differences and the similarities between a call-by-value parameter and
a constant call-by-reference parameter? Declarations that illustrate these follow.

void callByValue(int x);

void callByConstReference(const int& x);

6. Consider the following definitions:

const int x = 17;
class A
{
public:

A();
 A(int n);

int f() const;
int g(const A& x);

private:
int i;

};

 Each of the three const keywords is a promise to the compiler that the compiler
will enforce. What is the promise in each case?

302 CHAPTER 7 Constructors and Other Tools

 Display 7.5 Inline Function Defi nitions

 1 #include <iostream>
 2 #include <cmath>
 3 #include <cstdlib>
 4 using namespace std;

 5 class BankAccount
 6 {
 7 public:
 8 BankAccount(double balance, double rate);
 9 BankAccount(int dollars, int cents, double rate);
10 BankAccount(int dollars, double rate);
11 BankAccount();
12 void update();
13 void input();
14 void output() const;

15 double getBalance() const { return (accountDollars +
 accountCents*0.01);}

16 int getDollars() const { return accountDollars; }

17 int getCents() const { return accountCents; }

18 double getRate() const { return rate; }

19 void setBalance(double balance);
20 void setBalance(int dollars, int cents);
21 void setRate(double newRate);
22 private:
23 int accountDollars; //of balance
24 int accountCents; //of balance
25 double rate; //as a percentage

26 int dollarsPart(double amount) const { return static_
cast<int>(amount); }

27 int centsPart(double amount) const;

28 int round(double number) const
29 { return static_cast<int>(floor(number + 0.5)); }

30 double fraction(double percent) const { return (percent / 100.0); }
31 };

This is Display 7.4 rewritten using inline member functions.

<Inline functions have no further definitions. Other
function definitions are as in Display 7.4.>

www.itpub.net

 Static Members

 Sometimes you want to have one variable that is shared by all the objects of a class.
For example, you might want one variable to count the number of times a particular
member function is invoked by all objects of the class. Such variables are called static
variables and can be used for objects of the class to communicate with each other or
coordinate their actions. Such variables allow some of the advantages of global variables
without opening the flood gates to all the abuses that true global variables invite. In
particular, a static variable can be private so that only objects of the class can directly
access it.

 If a function does not access the data of any object and yet you want the function
to be a member of the class, you can make it a static function. Static functions can
be invoked in the normal way, using a calling object of the class. However, it is
more common and clearer to invoke a static function using the class name and scope
resolution operator, as in the following example:

Server::getTurn()

 Because a static function does not need a calling object, the definition of a static
function cannot use anything that depends on a calling object. A static function
definition cannot use any nonstatic variables or nonstatic member functions, unless the
nonstatic variable or function has a calling object that is a local variable or some object
otherwise created in the definition. If that last sentence seems hard to understand, just
use the simpler rule that the definition of a static function cannot use anything that
depends on a calling object.

 Display 7.6 is a demonstration program that uses both static variables and static
functions. Note that static variables are indicated by the qualifying keyword static

at the start of their declaration. Also notice that all the static variables are initialized
as follows:

int Server::turn = 0;
int Server::lastServed = 0;
bool Server::nowOpen = true;

 Such initialization requires a bit of explanation. Every static variable must be initialized
outside the class definition. Also, a static variable cannot be initialized more than once.
As in Display 7.6 , private static variables—in fact, all static variables—are initialized
outside the class. This may seem to be contrary to the notion of private. However, the
author of a class is expected to do the initializations, typically in the same file as the
class definition. In that case, no programmer who uses the class can initialize the static
variables, since a static variable cannot be initialized a second time.

static variable

initializing
static

member
variables

 Self-Test Exercise

 7. Rewrite the definition of the class DayOfYear given in Display 7.3 so that the
functions getMonthNumber and getDay are defined inline.

More Tools 303

304 CHAPTER 7 Constructors and Other Tools

 Display 7.6 Static Members (part 1 of 2)

 1 #include <iostream>
 2 using namespace std;

 3 class Server
 4 {
 5 public:
 6 Server(char letterName);
 7 static int getTurn();
 8 void serveOne();
 9 static bool stillOpen();
10 private:
11 static int turn;
12 static int lastServed;
13 static bool nowOpen;
14 char name;
15 };

16 int Server::turn = 0;
17 int Server::lastServed = 0;
18 bool Server::nowOpen = true;

19 int main()
20 {
21 Server s1('A'), s2('B');

22 int number, count;
23 do
24 {
25 cout << "How many in your group? ";
26 cin >> number;
27 cout << "Your turns are: ";

28 for (count = 0; count < number; count++)
29 cout << Server::getTurn() << ' ';
30 cout << endl;
31 s1.serveOne();
32 s2.serveOne();
33 } while (Server::stillOpen());

34 cout << "Now closing service.\n";

35 return 0;
36 }
37
38
39 Server::Server(char letterName) : name(letterName)
40 { /*Intentionally empty*/}

www.itpub.net

41 int Server::getTurn()
42 {
43 turn++;
44 return turn;
45 }
46 bool Server::stillOpen()
47 {
48 return nowOpen;
49 }

50 void Server::serveOne()
51 {
52 if (nowOpen && lastServed < turn)
53 {
54 lastServed++;
55 cout << "Server " << name
56 << " now serving " << lastServed << endl;
57 }

58 if (lastServed >= turn) //Everyone served
59 nowOpen = false;
60 }

 Sample Dialogue

How many in your group? 3

Your turns are: 1 2 3

Server A now serving 1

Server B now serving 2

How many in your group? 2

Your turns are: 4 5

Server A now serving 3

Server B now serving 4

How many in your group? 0

Your turns are:

Server A now serving 5

Now closing service.

 Since getTurn is static, only static
members can be referenced in here.

 Notice that the keyword static is used in the member function declaration but is
not used in the member function definition.

 The program in Display 7.6 is the outline of a scenario that has one queue of clients
waiting for service and two servers to service this single queue. You can come up with
a number of system programming scenarios to flesh this out to a realistic example.

Display 7.6 Static Members (part 2 of 2)

More Tools 305

306 CHAPTER 7 Constructors and Other Tools

For a simple-minded model just to learn the concepts, think of the numbers produced
by getTurn as those little slips of paper handed out to customers in a delicatessen or ice
cream shop. The two servers are then two clerks who wait on customers. One perhaps
peculiar detail of this shop is that customers arrive in groups but are waited on one at a
time (perhaps to order their own particular kind of sandwich or ice cream flavor).

 Self-Test Exercise

 8. Could the function defined as follows be added to the class Server in
 Display 7.6 as a static function? Explain your answer.

void Server::showStatus()
{
 cout << "Currently serving " << turn << endl;
 cout << "server name " << name << endl;
}

 Nested and Local Class Definitions

 The material in this section is included for reference value and, except for a brief
passing reference in Chapter 17 , is not used elsewhere in this book .

 You can define a class within a class. Such a class within a class is called a nested
class . The general layout is obvious:

class OuterClass
{
public:
...

private:
class InnerClass
{

...
};

...
};

 A nested class can be either public or private. If it is private, as in our sample layout,
then it cannot be used outside of the outer class. Whether the nested class is public or
private, it can be used in member function definitions of the outer class.

 Since the nested class is in the scope of the outer class, the name of the nested class,
like InnerClass in our sample layout, may be used for something else outside of the
outer class. If the nested class is public, the nested class can be used as a type outside of
the outer class. However, outside of the outer class, the type name of the nested class is
OuterClass::InnerClass .

nested class

www.itpub.net

 We will not have occasion to use such nested class definitions in this book. However,
in Chapter 17 we do suggest one possible application for nested classes. 2

 A class definition can also be defined within a function definition. In such cases the
class is called a local class , since its meaning is confined to the function definition.
A local class may not contain static members. We will not have occasion to use local
classes in this book .

 7.3 Vectors—A Preview of the Standard
T emplate Library

 “Well, I’ll eat it,” said Alice, “and if it makes me grow larger, I can reach the key;
and if it makes me grow smaller, I can creep under the door; so either way I’ll
get into the garden.”

LEWIS CARROLL, Alice’s Adventures in Wonderland

Vectors can be thought of as arrays that can grow (and shrink) in length while your
program is running. In C++, once your program creates an array, it cannot change
the length of the array. Vectors serve the same purpose as arrays except that they can
change length while the program is running.

 Vectors are formed from a template class in the Standard Template Library (STL).
We discuss templates in Chapter 16 and discuss the STL in Chapter 19 . However, it
is easy to learn some basic uses of vectors before you learn about templates and the
STL in detail. You do not need to know a great deal about classes to use vectors. You
can cover this section on vectors after reading Chapter 6 . You need not have read the
previous sections of this chapter before covering this section.

 Vector Basics

 Like an array, a vector has a base type, and like an array, a vector stores a collection
of values of its base type. However, the syntax for a vector type and a vector variable
declaration is different from the syntax for arrays.

 You declare a variable, v , for a vector with base type int as follows:

vector<int> v;

 The notation vector<Base_Type> is a template class , which means you can plug in
any type for Base_Type and that will produce a class for vectors with that base type.
You can simply think of this as specifying the base type for a vector in the same sense as
you specify a base type for an array. You can use any type, including class types, as the
base type for a vector. The notation vector<int> is a class name and so the previous

local class

2 The suggestion is in the subsection of Chapter 17 entitled “Friend Classes and Similar Alternatives.”

vector

declaring a
vector variable

template class

Vectors—A Preview of the Standard T emplate Library 307

308 CHAPTER 7 Constructors and Other Tools

declaration of v as a vector of type vector<int> includes a call to the default constructor
for the class vector<int> that creates a vector object that is empty (has no elements).

 Vector elements are indexed starting with 0 , the same as arrays. The square brackets
notation can be used to read or change these elements, just as with an array. For
example, the following changes the value of the i th element of the vector v and then
outputs that changed value. (i is an int variable.)

v[i] = 42;
cout << "The answer is " << v[i];

 There is, however, a restriction on this use of the square brackets notation with vectors
that is unlike the same notation used with arrays. You can use v[i] to change the value
of the i th element. However, you cannot initialize the i th element using v[i] ; you
can only change an element that has already been given some value. To add an element
to a vector for the first time, you normally use the member function push_back .

 You add elements to a vector in order of position, first at position 0 , then position 1 ,
then 2 , and so forth. The member function push_back adds an element in the next
available position. For example, the following gives initial values to elements 0 , 1 , and 2
of the vector sample :

vector<double> sample;
sample.push_back(0.0);
sample.push_back(1.1);
sample.push_back(2.2);

v[i]

push_back

 Vectors
Vectors are used very much like arrays, but a vector does not have a fixed size. If it needs
more capacity to store another element, its capacity is automatically increased. Vectors are
defined in the library vector, which places them in the std namespace. Thus, a file that
uses vectors would include the following lines:

#include <vector>
using namespace std;

The vector class for a given Base_Type is written vector<Base_Type>. Two sample
vector declarations are as follows:

vector<int> v; //default constructor producing an empty vector.
vector<AClass> record(20); //vector constructor uses the

//default constructor for AClass to initialize 20 elements.

Elements are added to a vector using the member function push_back, as illustrated here:

v.push_back(42);

Once an element position has received its first element, either with push_back or with a
constructor initialization, that element position can then be accessed using square bracket
notation, just like an array element.

www.itpub.net

 The number of elements in a vector is called the size of the vector. The member
function size can be used to determine how many elements are in a vector. For
example, after the previously shown code is executed, sample.size() returns 3 . You
can write out all the elements currently in the vector sample as follows:

for (int i = 0; i < sample.size(); i++)
cout << sample[i] << endl;

 The function size returns a value of type unsigned int , not a value of type int .
This returned value should be automatically converted to type int when it needs to be
of type int , but some compilers may warn you that you are using an unsigned int
where an int is required. If you want to be very safe, you can always apply a type cast
to convert the returned unsigned int to an int , or in cases like this for loop, use a
loop control variable of type unsigned int as follows:

for (unsigned int i = 0; i < sample.size(); i++)
cout << sample[i] << endl;

 A simple demonstration illustrating some basic vector techniques is given in
 Display 7.7 .

 There is a vector constructor that takes one integer argument and will initialize the
number of positions given as the argument. For example, if you declare v as follows,

vector<int> v(10);

 then the first ten elements are initialized to 0 and v.size() would return 10 . You can
then set the value of the i th element using v[i] for values of i equal to 0 through 9 . In
particular, the following could immediately follow the declaration:

for (unsigned int i = 0; i < 10; i++)
v[i] = i;

 To set the i th element for i greater than or equal to 10 , you would use push_back .

size

size
unsigned

int

 PITFALL: Using Square Brackets beyond the Vector Size

 If v is a vector and i is greater than or equal to v.size() , then the element v[i]
does not yet exist and needs to be created by using push_back to add elements up
to and including position i . If you try to set v[i] for i greater than or equal to
v.size() , as in

v[i] = n;

 then you may or may not get an error message, but your program will undoubtedly
misbehave at some point. ■

Vectors—A Preview of the Standard T emplate Library 309

310 CHAPTER 7 Constructors and Other Tools

 Display 7.7 Using a Vector

 1 #include <iostream>
 2 #include <vector>
 3 using namespace std;

 4 int main()
 5 {
 6 vector< int> v;
 7 cout << "Enter a list of positive numbers.\n"
 8 << "Place a negative number at the end.\n";

 9 int next;
10 cin >> next;
11 while (next > 0)
12 {
13 v.push_back(next);
14 cout << next << " added. ";
15 cout << "v.size() = " << v.size() << endl;
16 cin >> next;
17 }

18 cout << "You entered:\n";
19 for (unsigned int i = 0; i < v.size(); i++)
20 cout << v[i] << " ";
21 cout << endl;

22 return 0;
23 }

 Sample Dialogue

Enter a list of positive numbers.

Place a negative number at the end.

2 4 6 8 -1

2 added. v.size = 1

4 added. v.size = 2

6 added. v.size = 3

8 added. v.size = 4

You entered:

2 4 6 8

 When you use the constructor with an integer argument, vectors of numbers are
initialized to the zero of the number type. If the vector base type is a class type, the
default constructor is used for initialization.

www.itpub.net

 The vector definition is given in the library vector , which places it in the std
namespace. Thus, a file that uses vectors would include the following (or something
similar):

#include <vector>
using namespace std;

 Efficiency Issues

 At any point in time a vector has a capacity , which is the number of elements for
which it currently has memory allocated. The member function capacity() can be
used to find out the capacity of a vector. Do not confuse the capacity of a vector with
the size of a vector. The size is the number of elements in a vector, whereas the capacity
is the number of elements for which there is memory allocated. Typically the capacity
is larger than the size, and the capacity is always greater than or equal to the size.

 Whenever a vector runs out of capacity and needs room for an additional member, the
capacity is automatically increased. The exact amount of the increase is implementation
dependent, but always allows for more capacity than is immediately needed. A
commonly used implementation scheme is for the capacity to double whenever it needs
to increase. Because increasing capacity is a complex task, this approach of reallocating
capacity in large chunks is more efficient than allocating numerous small chunks.

 You can completely ignore the capacity of a vector and that will have no effect on
what your program does. However, if efficiency is an issue, you may want to manage
capacity yourself and not simply accept the default behavior of doubling capacity
whenever more is needed. You can use the member function reserve to explicitly
increase the capacity of a vector. For example,

v.reserve(32);

 sets the capacity to at least 32 elements, and

v.reserve(v.size() + 10);

 TIP: Vector Assignment Is Well Behaved

 The assignment operator with vectors does an element-by-element assignment to the
vector on the left-hand side of the assignment operator (increasing capacity if needed
and resetting the size of the vector on the left-hand side of the assignment operator).
Thus, provided the assignment operator on the base type makes an independent
copy of an element of the base type, then the assignment operator on the vector will
make an independent copy, not an alias, of the vector on the right-hand side of the
assignment operator.

 Note that for the assignment operator to produce a totally independent copy
of the vector on the right-hand side of the assignment operator requires that the
assignment operator on the base type make completely independent copies. The
assignment operator on a vector is only as good (or bad) as the assignment operator
on its base type. ■

capacity

Vectors—A Preview of the Standard T emplate Library 311

312 CHAPTER 7 Constructors and Other Tools

 sets the capacity to at least 10 more than the number of elements currently in the
vector. Note that you can rely on v.reserve to increase the capacity of a vector, but it
does not necessarily decrease the capacity of a vector if the argument is smaller than the
current capacity.

 You can change the size of a vector using the member function resize . For
example, the following resizes a vector to 24 elements:

v.resize(24);

 If the previous size were less than 24, then the new elements are initialized as we
described for the constructor with an integer argument. If the previous size were
greater than 24, then all but the first 24 elements are lost. The capacity is automatically
increased if need be. Using resize and reserve , you can shrink the size and capacity
of a vector when there is no longer any need for some elements or some capacity.

 Size and Capacity
The size of a vector is the number of elements in the vector. The capacity of a vector is the
number of elements for which it currently has memory allocated. For a vector v, the size and
capacity can be recovered with the member functions v.size() and v.capacity().

 Self-Test Exercises

 9. Is the following program legal? If so, what is the output?

#include <iostream>
#include <vector>
using namespace std;

int main()
{

vector<int> v(10);
int i;

for (i = 0; i < v.size(); i++)
 v[i] = i;
 vector< int> copy;
 copy = v;
 v[0] = 42;

for (i = 0; i < copy.size(); i++)
 cout << copy[i] << " ";
 cout << endl;

return 0;
}

 10. What is the difference between the size and the capacity of a vector?

www.itpub.net

 Chapter Summary

• A constructor is a member function of a class that is called automatically when an
object of the class is declared. A constructor must have the same name as the class of
which it is a member.

• A default constructor is a constructor with no parameters. You should always define a
default constructor for your classes.

• A member variable for a class may itself be of a class type. If a class has a class member
variable, then the member variable constructor can be invoked in the initialization
section of the outer class constructor.

• A constant call-by-reference parameter is more efficient than a call-by-value parameter
for class type parameters.

• Making very short function definitions inline can improve the efficiency of your code.

• Static member variables are variables that are shared by all objects of a class.

• Vector classes have objects that behave very much like arrays whose capacity to hold
elements will automatically increase if more capacity is needed.

 Answers to Self-Test Exercises

 1. YourClass anObject(42, 'A'); //LEGAL
 YourClass anotherObject; //LEGAL

 YourClass yetAnotherObject(); //PROBLEM

 anObject = YourClass(99, 'B'); //LEGAL

 anObject = YourClass(); //LEGAL

 anObject = YourClass; //ILLEGAL

 The statement marked //PROBLEM is not strictly illegal, but it does not mean
what you might think it means. If you mean this to be a declaration of an object
called yetAnotherObject, then it is wrong. It is a correct declaration for a func-
tion called yetAnotherObject that takes zero arguments and that returns a value
of type YourClass, but that is not usually the intended meaning. As a practical
matter, you can probably consider it illegal. The correct way to declare an object
called yetAnotherObject so that it will be initialized with the default constructor
is as follows:

 YourClass yetAnotherObject;

 2. A default constructor is a constructor that takes no arguments. Not every class
has a default constructor. If you define absolutely no constructors for a class, then
a default constructor will be automatically provided. On the other hand, if you
define one or more constructors but do not define a default constructor, then your
class will have no default constructor.

Answers to Self-Test Exercises 313

 3. The definition is easier to give if you also add a private helping function named
BankAccount::digitToInt , as shown, to the class BankAccount .

 //Uses iostream:

 void BankAccount::input()

 {

 int dollars;

 char point, digit1, digit2;

 cout <<

 "Enter account balance (include cents even if .00) $";

 cin >> dollars;

 cin >> point >> digit1 >> digit2;

 accountDollars = dollars;

 accountCents = digitToInt(digit1)*10 + digitToInt(digit2);

 if (accountDollars < 0)

 accountCents = -accountCents;

 cout << "Enter interest rate (NO percent sign): ";

 cin >> rate;

 setRate(rate);

 }

int BankAccount::digitToInt(char digit)

 {

 return (static_cast<int>(digit) - static_cast<int>('0'));

 }

 4. The member function input changes the value of its calling object, and so the
compiler will issue an error message if you add the const modifier.

 5. Similarities: Each parameter call method protects the caller’s argument from
change. Differences: If the type is a large structure or class object, a call by value
makes a copy of the caller’s argument and thus uses more memory than a call by
constant reference.

 6. In const int x = 17; , the const keyword promises the compiler that code writ-
ten by the author will not change the value of x .

 In the int f() const ; declaration, the const keyword is a promise to the com-
piler that code written by the author to implement function f will not change
anything in the calling object.

 In int g(const A& x); , the const keyword is a promise to the compiler that
code written by the class author will not change the argument plugged in for x .

 7. class DayOfYear

{
public:

DayOfYear(int monthValue, int dayValue);
DayOfYear(int monthValue);
DayOfYear();

314 CHAPTER 7 Constructors and Other Tools

www.itpub.net

void input();
void output();
int getMonthNumber() { return month; }
int getDay() { return day; }

private:
int month;
int day;
void testDate();

};

 8. No, it cannot be a static member function because it requires a calling object for
the member variable name .

 9. The program is legal. The output is

0 1 2 3 4 5 6 7 8 9

 Note that changing v does not change copy . A true independent copy is made with
the assignment.

copy = v;

 10. The size is the number of elements in a vector, while the capacity is number of
elements for which there is memory allocated. Typically the capacity is larger than
the size.

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Define a class called Month that is an abstract data type for a month. Your class will
have one member variable of type int to represent a month (1 for January, 2 for
February, and so forth). Include all the following member functions: a construc-
tor to set the month using the first three letters in the name of the month as three
arguments, a constructor to set the month using an integer as an argument (1 for
January, 2 for February, and so forth), a default constructor, an input function that
reads the month as an integer, an input function that reads the month as the first
three letters in the name of the month, an output function that outputs the month
as an integer, an output function that outputs the month as the first three letters
in the name of the month, and a member function that returns the next month as
a value of type Month . Embed your class definition in a test program.

 2. Redefine the implementation of the class Month described in Programming
P roject 7.1 (or do the definition for the first time, but do the implementation as
described here). This time the month is implemented as three member variables of
type char that store the first three letters in the name of the month. Embed your
definition in a test program.

Programming Projects 315

www.myprogramminglab.com

 3. My mother always took a little red counter to the grocery store. The counter was
used to keep tally of the amount of money she would have spent so far on that visit
to the store if she bought everything in the basket. The counter had a four-digit
display, increment buttons for each digit, and a reset button. An overflow indicator
came up red if more money was entered than the $99.99 it would register. (This
was a long time ago.)

 Write and implement the member functions of a class Counter that simulates and
slightly generalizes the behavior of this grocery store counter. The constructor should
create a Counter object that can count up to the constructor’s argument. That is,
Counter(9999) should provide a counter that can count up to 9999 . A newly con-
structed counter displays a reading of 0 . The member function void reset();
sets the counter’s number to 0 . The member function void incr1(); increments
the units digits by 1 , void incr10(); increments the tens digit by 1 , and void

incr100(); and void incr1000(); increment the next two digits, respectively.
Accounting for any carrying when you increment should require no further action than
adding an appropriate number to the private data member. A member function bool

overflow(); detects overflow. (Overflow is the result of incrementing the counter’s
private data member beyond the maximum entered at counter construction.)

 Use this class to provide a simulation of my mother’s little red clicker. Even though the
display is an integer, in the simulation, the rightmost (lower order) two digits are always
thought of as cents and tens of cents, the next digit is dollars, and the fourth digit is tens
of dollars.

 Provide keys for cents, dimes, dollars, and tens of dollars. Unfortunately, no choice of
keys seems particularly mnemonic. One choice is to use the keys asdfo: a for cents,
followed by a digit 1 to 9 ; s for dimes, followed by a digit 1 to 9 ; d for dollars, followed
by a digit 1 to 9 ; and f for tens of dollars, again followed by a digit 1 to 9 . Each entry
(one of asdf followed by 1 to 9) is followed by pressing the Return key. Any overflow
is reported after each operation. Overflow can be requested by pressing the o key.

 4 . You operate several hot dog stands distributed throughout town. Define a class named
HotDogStand that has a member variable for the hot dog stand’s ID number and a
member variable for how many hot dogs the stand sold that day. Create a construc-
tor that allows a user of the class to initialize both values.

 Also create a function named JustSold that increments the number of hot dogs
the stand has sold by one. This function will be invoked each time the stand sells a
hot dog so that you can track the total number of hot dogs sold by the stand. Add
another function that returns the number of hot dogs sold.

 Finally, add a static variable that tracks the total number of hot dogs sold by all
hot dog stands and a static function that returns the value in this variable. Write
a main function to test your class with at least three hot dog stands that each sell a
variety of hot dogs.

 5. In an ancient land, the beautiful princess Eve had many suitors. She decided on
the following procedure to determine which suitor she would marry. First, all of
the suitors would be lined up one after the other and assigned numbers. The first

316 CHAPTER 7 Constructors and Other Tools

Solution to
Programming
Project 7.4

VideoNote

www.itpub.net

suitor would be number 1, the second number 2, and so on up to the last suitor,
number n. Starting at the first suitor she would then count three suitors down
the line (because of the three letters in her name) and the third suitor would be
eliminated from winning her hand and removed from the line. Eve would then
continue, counting three more suitors, and eliminating every third suitor. When
she reached the end of the line she would continue counting from the beginning.

 For example, if there were six suitors then the elimination process would proceed
as follows:

 123456 initial list of suitors, start counting from 1

 12456 suitor 3 eliminated, continue counting from 4

 1245 suitor 6 eliminated, continue counting from 1

 125 suitor 4 eliminated, continue counting from 5

 15 suitor 2 eliminated, continue counting from 5

 1 suitor 5 eliminated, 1 is the lucky winner

 Write a program that uses a vector to determine which position you should stand
in to marry the princess if there are n suitors. You will find the following function
from the Vector class useful:

v.erase(iter);
// Removes element at position iter

 For example, to use this function to erase the fourth element from the beginning
of a vector variable named theVector , use

theVector.erase(theVector.begin() + 3);

 The number 3 is used because the first element in the vector is at index position 0.

 6. This Programming Project requires you to first complete Programming
Project 6.7 from Chapter 6 , which is an implementation of a Pizza class. Add
an Order class that contains a private vector of type Pizza . This class represents
a customer’s entire order, where the order may consist of multiple pizzas. Include
appropriate functions so that a user of the Order class can add pizzas to the order
(type is deep dish, hand tossed, or pan; size is small, medium, or large; number
of pepperoni or cheese toppings). You can use constants to represent the type and
size. Also write a function that outputs everything in the order along with the total
price. Write a suitable test program that adds multiple pizzas to an order(s).

 7. Do Programming Project 6.8 , the definition of a Money class, except create a
 default constructor that sets the monetary amount to 0 dollars and 0 cents, and
create a second constructor with input parameters for the amount of the dollars
and cents variables. Modify your test code to invoke the constructors.

Programming Projects 317

Solution to
Programming
Project 7.7

VideoNote

 8. Write a program that outputs a histogram of grades for an assignment given to
a class of students. The program should input each student’s grade as an integer
and store the grade in a vector. Grades should be entered until the user enters -1
for a grade. The program should then scan through the vector and compute the
histogram. In computing the histogram, the minimum value of a grade is 0, but
your program should determine the maximum value entered by the user. Output
the histogram to the console. See Programming Project 5.7 for information on how
to compute a histogram.

 9. Prior to 2009 the bar code on an envelope used by the U.S. Postal Service repre-
sented a five (or more) digit zip code using a format called POSTNET. The bar
code consists of long and short bars as shown here:

 For this program, we will represent the bar code as a string of digits. The digit 1
represents a long bar, and the digit 0 represents a short bar. Therefore, the bar code
shown would be represented in our program as follows:

 110100101000101011000010011

 The first and last digits of the bar code are always 1. Removing these leave 25 digits.
If these 25 digits are split into groups of five digits each then we have the following:

 10100 10100 01010 11000 01001

 Next, consider each group of five digits. There always will be exactly two 1’s in
each group of digits. Each digit stands for a number. From left to right, the digits
encode the values 7, 4, 2, 1, and 0. Multiply the corresponding value with the digit
and compute the sum to get the final encoded digit for the zip code. The following
table shows the encoding for 10100.

Bar Code Digits 1 0 1 0 0

Value 7 4 2 1 0

Product of
Digit * Value

7 0 2 0 0

Zip Code Digit = 7 + 0 + 2 + 0 + 0 = 9

318 CHAPTER 7 Constructors and Other Tools

www.itpub.net

 Repeat this for each group of five digits and concatenate to get the complete zip
code. There is one special value. If the sum of a group of five digits is 11, then this
represents the digit 0 (this is necessary because with two digits per group it is not
possible to represent zero). The zip code for the sample bar code decodes to 99504.
While the POSTNET scheme may seem unnecessarily complex, its design allows
machines to detect if errors have been made in scanning the zip code.

 Write a zip code class that encodes and decodes five-digit bar codes used by the
U.S. Postal Service on envelopes. The class should have two constructors. The first
constructor should input the zip code as an integer, and the second constructor
should input the zip code as a bar code string consisting of 0’s and 1’s as described
above. Although you have two ways to input the zip code, internally, the class
should only store the zip code using one format. (You may choose to store it as a
bar code string or as a zip code number.) The class also should have at least two
public member functions: one to return the zip code as an integer and the other
to return the zip code in bar code format as a string. All helper functions should be
declared private. Embed your class definition in a suitable test program.

 10. First, complete Programming Project 6.12 . Modify the main function with a loop
so that the user determines how many BoxOfProduce objects are created. Each box
should contain three bundles of fruits or vegetables selected randomly from this
list: tomatillo, broccoli, tomato, kiwi, and kale. Add a menu so the user can decide
when to stop creating boxes. The menu should allow the user to make substitutions
for the randomly selected items in a box.

 You would like to throw in a free recipe flyer for salsa verde if the box contains
tomatillos. However, there are only 5 recipe flyers. Add a static member variable
to the BoxOfProduce class that counts the number of recipe flyers remaining and
initialize it to 5. Also add a member variable that indicates whether or not the box
contains a recipe flyer and modify the output function to also print “salsa verde
recipe” if the box contains a recipe flyer. Finally, add logic inside the class so that if
the box contains at least one order of tomatillos then it automatically gets a recipe
flyer until all of the recipe flyers are gone. Note that a box should only get one
recipe flyer even if there are multiple orders of tomatillos.

 Test your class by creating boxes with tomatillos from your menu until all of the
flyers are gone.

Programming Projects 319

This page intentionally left blank

www.itpub.net

 8.3 REFERENCES AND MORE OVERLOADED
OPERATORS 343

 References 344
 Tip: Returning Member Variables of a Class Type 345
 Overloading >> and << 346
 Tip: What Mode of Returned Value to Use 352
 The Assignment Operator 355
 Overloading the Increment and Decrement

Operators 355
 Overloading the Array Operator [] 358
 Overloading Based on L-Value versus R-Value 360

 8.1 BASIC OPERATOR OVERLOADING 322
 Overloading Basics 323
 Tip: A Constructor Can Return an Object 328
 Returning by const Value 329
 Overloading Unary Operators 332
 Overloading as Member Functions 332
 Tip: A Class Has Access to All Its Objects 335
 Overloading Function Application () 335

 8.2 FRIEND FUNCTIONS AND AUTOMATIC
TYPE CONVERSION 336

 Constructors for Automatic Type Conversion 336
 Pitfall: Overloading && , || , and the Comma

Operator 336
 Pitfall: Member Operators and Automatic Type

Conversion 337
 Friend Functions 338
 Friend Classes 341
 Pitfall: Compilers without Friends 342

 8 Operator Overloading,
Friends, and References

 Chapter Summary 360 Answers to Self-Test Exercises 361 Programming Projects 363

 Eternal truths will be neither true nor eternal unless they have fresh

meaning for every new social situation.

 FRANKLIN D. ROOSEVELT, Address at the University of Pennsylvania

[September 20, 1940]

 Introduction
 This chapter discusses a number of tools to use when defining classes. The first tool
is operator overloading, which allows you to overload operators, such as + and == , so
that they apply to objects of the classes you define. The second tool is the use of friend
functions which are functions that are not members of a class but still have access to the
private members of the class. This chapter also discusses how to provide automatic type
conversion from other data types to the classes you define.

 If you have not yet covered arrays (Chapter 5) you should skip the subsection of
8.3 entitled “Overloading the Array Operator []”. It covers a topic that may not make
sense unless you know about array basics.

 8.1 Basic Operator Overloading

 He’s a smooth operator.

 Line from a song by Sade (written by Sade Adu and Ray St. John)

 Operators such as + , - , % , == , and so forth are nothing but functions that are used with
a slightly different syntax. We write x + 7 rather than +(x, 7) , but the + operator
is a function that takes two arguments (often called operands rather than arguments)
and returns a single value. As such, operators are not really necessary. We could make
do with +(x, 7) or even add(x, 7) . Operands are an example of what is often called
syntactic sugar , meaning a slightly different syntax that people like. However, people
are very comfortable with the usual operator syntax, x + 7 , that C++ uses for types
such as int and double . And one way to view a high-level language, such as C++, is as
a way to make people comfortable with programming computers. Thus, this syntactic
sugar is probably a good idea; at the least, it is a well-entrenched idea. In C++ you can
overload the operators, such as + and == , so that they work with operands in the classes
you define. The way to overload an operator is very similar to the way you overload a
function name. The details are best explained through an example.

8 Operator Overloading, Friends, and References

operators and
functions

operand

syntactic sugar

www.itpub.net

Basic Operator Overloading 323

 Overloading Basics

 Display 8.1 contains the definition of a class whose values are amounts of U.S. money,
such as $9.99 or $1567.29. The class has a lot in common with the BankAccount
class we defined in Display 7.2 . It represents amounts of money in the same way, as
two ints for the dollars and cents parts. It has the same private helping functions .
Its constructors and accessor and mutator functions are similar to those of the class
BankAccount . What is truly new about this Money class is that we have overloaded
the plus sign and the minus sign so they can be used to add or subtract two objects of
the class Money , and we have overloaded the == sign so it can be used to compare two
objects of the class Money to see if they represent the same amount of money. Let us
look at these overloaded operators.

 You can overload the operator + (and many other operators) so that it will accept
arguments of a class type. The difference between overloading the + operator and
defining an ordinary function involves only a slight change in syntax: You use the
symbol + as the function name and precede the + with the keyword operator . The
operator declaration (function declaration) for the plus sign is as follows:

const Money operator +(const Money& amount1, const Money& amount2);

 The operands (arguments) are both constant reference parameters of type Money . The
operands can be of any type, as long as at least one is a class type. In the general case,
operands may be call-by-value or call-by-reference parameters and may have the const
modifier or not. However, for efficiency reasons, constant call by reference is usually
used in place of call by value for classes. In this case the value returned is of type Money ,
but in the general case the value returned can be of any type, including void . The
const before the returned type Money will be explained later in this chapter. For now,
you can safely ignore that const .

 Note that the overloaded binary operators + and - are not member operators
(member functions) of the class Money and therefore do not have access to the private
members of the class Money . That is why the definition for the overloaded operators
uses accessor and mutator functions. Later in this chapter we will see other ways of
overloading an operand, including overloading it as a member operator. Each of the
different ways of overloading an operator has its advantages and disadvantages.

 The definitions of the overloaded binary operators + and - are perhaps a bit more
complicated than you might expect. The extra details are there to cope with the fact
that amounts of money can be negative.

 The unary minus sign operator - is discussed in the subsection “Overloading Unary
Operators,” later in this chapter.

 The operator == is also overloaded so that it can be used to compare two objects of
the class Money . Note that the type returned is bool so that == can be used to make
comparisons in the usual ways, such as in an if-else statement.

 If you look at the main function in the demonstration program in Display 8.1 , you
will see that the overloaded binary operators + , - , and == are used with objects of the
class Money in the same way that + , - , and == are used with the predefined types, such
as int and double .

how to
overload an

operator

324 CHAPTER 8 Operator Overloading, Friends, and References

 Display 8.1 Operator Overloading (part 1 of 5)

 1 #include <iostream>
 2 #include <cstdlib>
 3 #include <cmath>
 4 using namespace std;

 5 //Class for amounts of money in U.S. currency
 6 class Money
 7 {
 8 public:
 9 Money();
10 Money(double amount);
11 Money(int theDollars, int theCents);
12 Money(int theDollars);
13 double getAmount() const;
14 int getDollars() const;
15 int getCents() const;
16 void input(); //Reads the dollar sign as well as the amount number.
17 void output() const;
18 private:
19 int dollars; //A negative amount is represented as negative

 //dollars and
20 int cents; //negative cents. Negative $4.50 is represented

 //as -4 and -50.

21 int dollarsPart(double amount) const;
22 int centsPart(double amount) const;
23 int round(double number) const;
24 };

25 const Money operator +(const Money& amount1, const Money& amount2);

26 const Money operator -(const Money& amount1, const Money& amount2);

27 bool operator ==(const Money& amount1, const Money& amount2);

28 const Money operator -(const Money& amount);

29 int main()
30 {
31 Money yourAmount, myAmount(10, 9);
32 cout << "Enter an amount of money: ";
33 yourAmount.input();
34 cout << "Your amount is ";
35 yourAmount.output();
36 cout << endl;
37 cout << "My amount is ";
38 myAmount.output();
39 cout << endl;

 This is a unary operator and is
discussed in the subsection
“Overloading Unary Operators.”

 For an explanation of a const
on a returned type see the
subsection “Returning by
const Value.”

www.itpub.net

Basic Operator Overloading 325

40 if (yourAmount == myAmount)
41 cout << "We have the same amounts.\n";
42 else
43 cout << "One of us is richer.\n";

44 Money ourAmount = yourAmount + myAmount;
45 yourAmount.output(); cout << " + "; myAmount.output();
46 cout << " equals "; ourAmount.output(); cout << endl;

47 Money diffAmount = yourAmount - myAmount;
48 yourAmount.output(); cout << " - "; myAmount.output();
49 cout << " equals "; diffAmount.output(); cout << endl;

50 return 0;
51 }

52 const Money operator +(const Money& amount1, const Money& amount2)
53 {
54 int allCents1 = amount1.getCents() + amount1.getDollars()*100;
55 int allCents2 = amount2.getCents() + amount2.getDollars()*100;
56 int sumAllCents = allCents1 + allCents2;
57 int absAllCents = abs(sumAllCents); //Money can be negative.
58 int finalDollars = absAllCents / 100;
59 int finalCents = absAllCents % 100;

60 if (sumAllCents < 0)

61 {
62 finalDollars = -finalDollars;
63 finalCents = -finalCents;
64 }

65 return Money(finalDollars, finalCents);

66 }

67 //Uses cstdlib:

68 const Money operator -(const Money& amount1, const Money& amount2)
69 {
70 int allCents1 = amount1.getCents() + amount1.getDollars()*100;
71 int allCents2 = amount2.getCents() + amount2.getDollars()*100;
72 int diffAllCents = allCents1 - allCents2;
73 int absAllCents = abs(diffAllCents);
74 int finalDollars = absAllCents / 100;
75 int finalCents = absAllCents % 100;

76 if (diffAllCents < 0)
77 {
78 finalDollars = -finalDollars;

Display 8.1 Operator Overloading (part 2 of 5)

 Note that we need to
use accessor and
mutator functions.

 If the return
statements
puzzle you, see
the tip entitled
“A Constructor
Can Return an
Object.”

(continued)

326 CHAPTER 8 Operator Overloading, Friends, and References

79 finalCents = -finalCents;
80 }

81 return Money(finalDollars, finalCents);
82 }

83 bool operator ==(const Money& amount1, const Money& amount2)
84 {
85 return ((amount1.getDollars() == amount2.getDollars())
86 && (amount1.getCents() == amount2.getCents()));
87 }

88 const Money operator -(const Money& amount)
89 {
90 return Money(-amount.getDollars(), -amount.getCents());
91 }

92 Money::Money(): dollars(0), cents(0)
93 { /*Body intentionally empty.*/}

94 Money::Money(double amount)
95 : dollars(dollarsPart(amount)), cents(centsPart(amount))
96 { /*Body intentionally empty*/ }

97 Money::Money(int theDollars)
98 : dollars(theDollars), cents(0)
99 { /*Body intentionally empty*/}
100
101 //Uses cstdlib:
102 Money::Money(int theDollars, int theCents)
103 {
104 if ((theDollars < 0 && theCents > 0) ||

 (theDollars > 0 && theCents < 0))
105 {
106 cout << "Inconsistent money data.\n";
107 exit(1);
108 }
109 dollars = theDollars;
110 cents = theCents;
111 }

112 double Money::getAmount() const
113 {
114 return (dollars + cents*0.01);
115 }

 If you prefer, you could make these
short constructor definitions
inline function definitions as
discussed in Chapter 7 .

Display 8.1 Operator Overloading (part 3 of 5)

www.itpub.net

Basic Operator Overloading 327

116 int Money::getDollars() const
117 {
118 return dollars;
119 }

120 int Money::getCents() const
121 {
122 return cents;
123 }

124 //Uses iostream and cstdlib:
125 void Money::output() const
126 {
127 int absDollars = abs(dollars);
128 int absCents = abs(cents);
129 if (dollars < 0 || cents < 0)

//accounts for dollars == 0 or cents == 0
130 cout << "$-";
131 else
132 cout << '$';
133 cout << absDollars;
134
135 if (absCents >= 10)
136 cout << '.' << absCents;
137 else
138 cout << '.' << '0' << absCents;
139 }

140 //Uses iostream and cstdlib:
141 void Money::input()
142 {
143 char dollarSign;
144 cin >> dollarSign; //hopefully
145 if (dollarSign != '$')
146 {
147 cout << "No dollar sign in Money input.\n";
148 exit(1);
149 }

150 double amountAsDouble;
151 cin >> amountAsDouble;
152 dollars = dollarsPart(amountAsDouble);
153 cents = centsPart(amountAsDouble);
154 }

155 int Money::dollarsPart(double amount) const
 156 <The rest of the definition is the same as BankAccount::dollarsPart in Display 7.2 .>

 For a better definition of the input
function, see Self-Test Exercise 3 in
 Chapter 7 .

Display 8.1 Operator Overloading (part 4 of 5)

(continued)

328 CHAPTER 8 Operator Overloading, Friends, and References

 You can overload most but not all operators. One major restriction on overloading
an operator is that at least one operand must be of a class type. So, for example, you can
overload the % operator to apply to two objects of type Money or to an object of type
Money and a double , but you cannot overload % to combine two doubles.

157 int Money::centsPart(double amount) const
158 <The rest of the definition is the same as BankAccount::centsPart in Display 7.2 .>

159 int Money::round(double number) const
160 <The rest of the definition is the same as BankAccount::round in Display 7.2 .>

 Sample Dialogue

Enter an amount of money: $123.45

Your amount is $123.45

My amount is $10.09.

One of us is richer.

$123.45 + $10.09 equals $133.54

$123.45 - $10.09 equals $113.36

Display 8.1 Operator Overloading (part 5 of 5)

 Operator Overloading
A (binary) operator, such as +, -, /, %, and so forth, is simply a function that is called using
a different syntax for listing its arguments. With a binary operator, the arguments are listed
before and after the operator; with a function the arguments are listed in parentheses after
the function name. An operator definition is written similar to a function definition, except
that the operator definition includes the reserved word operator before the operator
name. The predefined operators, such as +, -, and so forth, can be overloaded by giving
them a new definition for a class type. An example of overloading the +, -, and == operators
is given in Display 8.1.

 TIP: A Constructor Can Return an Object

 We often think of a constructor as if it were a void function. However, constructors
are special functions with special properties, and sometimes it makes more sense to
think of them as returning a value. Notice the return statement in the definition of
the overloaded + operator in Display 8.1 , which we repeat here:

return Money(finalDollars, finalCents);

www.itpub.net

Basic Operator Overloading 329

 Returning by const Value

 Notice the returned types in the declarations for overloaded operators for the class
Money in Display 8.1 . For example, the following is the declaration for the overloaded
plus operator as it appears in Display 8.1 :

const Money operator +(const Money& amount1,
const Money& amount2);

 This subsection explains the const at the start of the line. But before we discuss that
first const , let us make sure we understand all the other details about returning a
value. So, let us first consider the case where that const does not appear in either
the declaration or definition of the overloaded plus operator. Let us suppose that the
declaration reads as follows:

Money operator +(const Money& amount1, const Money& amount2);

 and let us see what we can do with the value returned.

TIP: (continued)

 The expression that is returned is an invocation of the constructor for Money . Although
we sometimes think of a constructor as a void function, a constructor constructs
an object and can also be thought of as returning an object of the class. If you feel
uncomfortable with this use of the constructor, it may help to know that this return
statement is equivalent to the following, more cumbersome and less efficient, code:

Money temp;
temp = Money(finalDollars, finalCents);
return temp;

 An expression, such as Money(finalDollars, finalCents) , is sometimes called
an anonymous object , since it is not named by any variable. However, it is still
a full-fl edged object. You can even use it as a calling object, as in the following:

Money(finalDollars, finalCents).getDollars()

 The previous expression returns the int value of finalDollars . ■

anonymous
object

 Self-Test Exercises

 1. What is the difference between a (binary) operator and a function?

 2. Suppose you wish to overload the operator < so that it applies to the type Money
defi ned in Display 8.1 . What do you need to add to the defi nition of Money
given in Display 8.1 ?

 3. Is it possible using operator overloading to change the behavior of + on integers?
Why or why not?

330 CHAPTER 8 Operator Overloading, Friends, and References

 When an object is returned, for example, (m1 + m2) , where m1 and m2 are of type
Money , the object can be used to invoke a member function, which may or may not
change the value of the member variables in the object (m1 + m2) . For example,

(m1 + m2).output();

 is perfectly legal. In this case, it does not change the object (m1 + m2) . However,
if we omitted the const before the type returned for the plus operator, then the
following would be legal and would change the values of the member variables of the
object (m1 + m2) :

(m1 + m2).input();

 So, objects can be changed, even when they are not associated with any variable. One
way to make sense of this is to note that objects have member variables and thus have
some kinds of variables that can be changed.

 Now let us assume that everything is as shown in Display 8.1 ; that is, there is a
const before the returned type of each operator that returns an object of type Money .
For example, following is the declaration for the overloaded plus operator as it appears
in Display 8.1 :

const Money operator +(const Money& amount1, const Money& amount2);

 The first const on the line is a new use of the const modifier. This is called returning
a value as const or returning by const value or returning by constant value . What
the const modifier means in this case is that the returned object cannot be changed.
For example, consider the following code:

Money m1(10.99), m2(23.57);
(m1 + m2).output();

 The invocation of output is perfectly legal because it does not change the object (m1 +
m2) . However, with that const before the returned type, the following will produce a
compiler error message:

(m1 + m2).input();

 Why would you want to return by cons t value? It provides a kind of automatic error
checking. When you construct (m1 + m2) , you normally do not want to inadvertently
change it. In this case changing the object (m1 + m2) probably does not matter, but
if the returned object is a reference to an existing object then this can cause problems.
References are covered in Section 8.3 .

 At first this protection from changing an object may seem like too much protection,
since you can have

Money m3;
m3 = (m1 + m2);

 and you very well may want to change m3 . No problem—the following is perfectly legal:

m3 = (m1 + m2);
m3.input();

return by
constant value

www.itpub.net

Basic Operator Overloading 331

 The values of m3 and (m1 + m2) are two different objects. The assignment operator
does not make m3 the same as the object (m1 + m2) . Instead, it copies the values of the
member variables of (m1 + m2) into the member variables of m3 . With objects of a class,
the default assignment operator does not make the two objects the same object, it only copies
values of member variables from one object to another object.

 This distinction is subtle but important. It may help you understand the details if
you recall that a variable of a class type and an object of a class type are not the same
thing. An object is a value of a class type and may be stored in a variable of a class type,
but the variable and the object are not the same thing. In the code

m3 = (m1 + m2);

 the variable m3 and its value (m1 + m2) are different things, just as n and 5 are different
things in

int n = 5;

 or in

int n = (2 + 3);

 It may take you a while to become comfortable with this notion of return by const
value. In the meantime, a good rule of thumb is to always return class types by const

value unless you have an explicit reason not to do so. For most simple programs this
will have no effect on your program other than to flag some subtle errors.

 Note that although it is legal, it is pointless to return basic types, such as int , by
const value. The const has no effect in the case of basic types. When a function or
operator returns a value of one of the basic types, such as int , double , or char , it
returns the value, such as 5 , 5.5 , or 'A' . It does not return a variable or anything
like a variable. Unlike a variable, the value cannot be changed—you cannot change 5 .
Values of a basic type cannot be changed whether there is a const before the returned
type or not. On the other hand, values of a class type—that is, objects—can be
changed, since they have member variables, and so the const modifier has an effect
on the object returned.

 Self-Test Exercise

 4. Suppose you omit the const at the beginning of the declaration and defi nition
of the overloaded plus operator for the class Money , so that the value is not
returned by const value. Is the following legal?

Money m1(10.99), m2(23.57), m3(12.34);
(m1 + m2) = m3;

 Is it legal if the defi nition of the class Money is as shown in Display 8.1 , so that
the plus operator returns its value by const value?

332 CHAPTER 8 Operator Overloading, Friends, and References

 Overloading Unary Operators

 In addition to the binary operators, such as + in x + y , C++ has unary operators, such
as the operator - when it is used to mean negation. A unary operator is an operator
that takes only one operand (one argument). In the following statement, the unary
operator - is used to set the value of a variable x equal to the negative of the value of
the variable y :

x = -y;

 The increment and decrement operators, ++ and -- , are other examples of unary
operators.

 You can overload unary operators as well as binary operators. For example, we have
overloaded the minus operator - for the type Money (Display 8.1) so that it has both
a unary and a binary operator version of the subtraction/negation operator - . For
example, suppose your program contains this class definition and the following code:

Money amount1(10), amount2(<), amount3;

 Then the following sets the value of amount3 to amount1 minus amount2 :

amount3 = amount1 - amount2;

 The following will, then, output $4.00 to the screen:

amount3.output();

 On the other hand, the following will set amount3 equal to the negative of amount1 :

amount3 = -amount1;
amount3.output();

 You can overload the ++ and -- operators in ways similar to how we overloaded the
negation operator in Display 8.1 . If you overload the ++ and -- operators following
the example of the minus sign - in Display 8.1 , then the overloading definition will
apply to the operator when it is used in prefix position, as in ++x and --x . Later in this
chapter we will discuss overloading ++ and -- more fully and will then explain how to
overload these operators for use in the postfix position.

 Overloading as Member Functions

 In Display 8.1 we overloaded operators as standalone functions defined outside the
class. It is also possible to overload an operator as a member operator (member
function). This is illustrated in Display 8.2 .

 Note that when a binary operator is overloaded as a member operator, there is only
one parameter, not two. The calling object serves as the first parameter. For example,
consider the following code:

Money cost(1, 50), tax(0, 15), total;
total = cost + tax;

 When + is overloaded as a member operator, then in the expression cost + tax the
variable cost is the calling object and tax is the single argument to + .

unary operator

++ and --

www.itpub.net

Basic Operator Overloading 333

 The definition of the member operator + is given in Display 8.2 . Notice the
following line from that definition:

int allCents1 = cents + dollars * 100;

 The expressions cents and dollars are member variables of the calling object, which
in this case is the first operand. If this definition is applied to

cost + tax

 then cents means cost.cents and dollars means cost.dollars .
 Note that since the first operand is the calling object, you should, in most cases,

add the const modifier to the end of the operator declaration and to the end of the
operator definition. Whenever the operator invocation does not change the calling
object (which is the first operand), good style dictates that you add the const to the
end of the operator declaration and to the end of the operator definition, as illustrated
in Display 8.2 .

 Overloading an operator as a member variable can seem strange at first, but it
is easy to get used to the new details. Many experts advocate always overloading
operators as member operators rather than as nonmembers (as in Display 8.1): It is
more in the spirit of object-oriented programming and is a bit more efficient, since
the definition can directly reference member variables and need not use accessor and
mutator functions. However, as we will discover in Section 8.2, overloading an operator
as a member also has a significant disadvantage.

 Display 8.2 Overloading Operators as Members (part 1 of 2)

 1 #include <iostream>
 2 #include <cstdlib>
 3 #include <cmath>
 4 using namespace std;

 5 //Class for amounts of money in U.S. currency
 6 class Money
 7 {
 8 public:
 9 Money();
10 Money(double amount);
11 Money(int dollars, int cents);
12 Money(int dollars);
13 double getAmount() const;
14 int getDollars() const;
15 int getCents() const;
16 void input(); //Reads the dollar sign as well as the amount number.
17 void output() const;
18 const Money operator +(const Money& amount2) const;
19 const Money operator -(const Money& amount2) const;
20 bool operator ==(const Money& amount2) const;
21 const Money operator -() const;

 This is Display 8.1 redone with the
overloaded operators as member
functions.

(continued)

 The calling object is
the first operand.

334 CHAPTER 8 Operator Overloading, Friends, and References

22 private:
23 int dollars; //A negative amount is represented as negative

 //dollars and
24 int cents; //negative cents. Negative $4.50 is represented as

 //-4 and -50.

25 int dollarsPart(double amount) const;
26 int centsPart(double amount) const;
27 int round(double number) const;
28 };

29 int main()
30 {
31 < If the main function is the same as in Display 8.1 , then the screen dialogue

 will be the same as shown in Display 8.1 .>
32 }
33
34 const Money Money:: operator +(const Money& secondOperand) const
35 {
36 int allCents1 = cents + dollars * 100;
37 int allCents2 = secondOperand.cents + secondOperand.dollars * 100;
38 int sumAllCents = allCents1 + allCents2;
39 int absAllCents = abs(sumAllCents); //Money can be negative.
40 int finalDollars = absAllCents / 100;
41 int finalCents = absAllCents % 100;
42 if (sumAllCents < 0)
43 {
44 finalDollars = -finalDollars;
45 finalCents = -finalCents;
46 }

47 return Money(finalDollars, finalCents);
48 }

49 const Money Money:: operator -(const Money& secondOperand) const
50 <The rest of this definition is Self-Test Exercise 5 .>

51 bool Money:: operator ==(const Money& secondOperand) const
52 {
53 return ((dollars == secondOperand.dollars)
54 && (cents == secondOperand.cents));
55 }

56 const Money Money:: operator -() const
57 {
58 return Money(-dollars, -cents);
59 }

60 <Definitions of all other member functions are the same as in Display 8.1 .>

Display 8.2 Overloading Operators as Members (part 2 of 2)

www.itpub.net

Basic Operator Overloading 335

 Overloading Function Application ()

 The function call operator () must be overloaded as a member function. It allows you
to use an object of the class as if it were a function. If class AClass has overloaded the
function application operator to have one argument of type int and anObject is an
object of AClass , then anObject(42) invokes the overloaded function call operator ()
with calling object anObject and argument 42 . The type returned may be void or any
other type.

 The function call operator () is unusual in that it allows any number of arguments.
So, you can define several overloaded versions of the function call operator () .

 Self-Test Exercise

 5. Complete the defi nition of the member binary operator in Display 8.2 .

 TIP: A Class Has Access to All Its Objects

 When defining a member function or operator, you may access any private member
variable (or function) of the calling object. However, you are allowed even more than
that. You may access any private member variable (or private member function) of
any object of the class being defined.

 For example, consider the following few lines that begin the defi nition of the plus
operator for the class Money in Display 8.2 :

const Money Money:: operator +(const Money& secondOperand) const
{

int allCents1 = cents + dollars*100;
int allCents2 = secondOperand.cents + secondOperand.dollars

* 100

 In this case, the plus operator is being defi ned as a member operator, so the variables
cents and dollars , in the fi rst line of the function body, are the member variables
of the calling object (which happens to be the fi rst operand). However, it is also
legal to access by name the member variables of the object secondOperand , as in
the following line:

int allCents2 = secondOperand.cents + secondOperand.dollars * 100;

 This is legal because secondOperand is an object of the class Money and this line is in
the defi nition of a member operator for the class Money . Many novice programmers
mistakenly think they only have direct access to the private members of the calling object
and do not realize that they have direct access to all objects of the class being defi ned. ■

336 CHAPTER 8 Operator Overloading, Friends, and References

 8.2 Friend Functions and Automatic Type
 Conversion

 Trust your friends.

 Common advice

 Friend functions are nonmember functions that have all the privileges of member
functions. Before we discuss friend functions in any detail, we discuss automatic
type conversion via constructors, since that helps to explain one of the advantages of
overloading operators (or any functions) as friend functions.

 Constructors for Automatic Type Conversion

 If your class definition contains the appropriate constructors, the system will perform
certain type conversions automatically. For example, if your program contains the
definition of the class Money either as given in Display 8.1 or as given in Display 8.2 ,
you could use the following in your program:

Money baseAmount(100, 60), fullAmount;
fullAmount = baseAmount + 25;
fullAmount.output();

 The output would be

$125.60

 The previous code may look simple and natural enough, but there is one subtle
point. The 25 (in the expression baseAmount + 25) is not of the appropriate type.
In Display 8.1 we only overloaded the operator + so that it could be used with two
values of type Money . We did not overload + so that it could be used with a value of
type Money and an integer. The constant 25 can be considered to be of type int , but
25 cannot be used as a value of type Money unless the class definition somehow tells
the system how to convert an integer to a value of type Money . The only way that the

 PITFALL: Overloading &&, ||, and the Comma Operator

 The predefined versions of && and || that work for the type bool use short-
circuit evaluation. However, when overloaded these operators perform complete
evaluation. This is so contrary to what most programmers expect that it inevitably
causes problems. It is best to just not overload these two operators.

 The comma operator also presents problems. In its normal use the comma opera-
tor guarantees left-to-right evaluations. When overloaded no such guarantee is given.
The comma operator is another operator it is safest to avoid overloading. ■

www.itpub.net

Friend Functions and Automatic Type Conversion 337

system knows that 25 means $25.00 is that we included a constructor that takes a
single argument of type int . When the system sees the expression

baseAmount + 25

 it first checks to see if the operator + has been overloaded for the combination of a value
of type Money and an integer. Since there is no such overloading, the system next looks
to see if there is a constructor that takes a single argument that is an integer. If it finds a
constructor that takes a single integer argument, it uses that constructor to convert the
integer 25 to a value of type Money . The one-argument constructor says that 25 should
be converted to an object of type Money whose member variable dollars is equal to
25 and whose member variable cents is equal to 0. In other words, the constructor
converts 25 to an object of type Money that represents $25.00. (The definition of the
constructor is in Display 8.1 .)

 Note that this type conversion will not work unless there is a suitable constructor.
If the class Money did not contain a constructor with one parameter of type int (or of
some other number type, such as long or double), then the expression

baseAmount + 25

 would produce an error message.
 These automatic type conversions (produced by constructors) seem most common

and compelling with overloaded numeric operators such as + and - . However, these
automatic conversions apply in exactly the same way to arguments of ordinary functions,
arguments of member functions, and arguments of other overloaded operators.

 PITFALL: Member Operators and Automatic Type Conversion

 When you overload a binary operator as a member operator, the two arguments are
no longer symmetric. One is a calling object, and only the second “argument” is a
true argument. This is not only unaesthetic but also has a very practical shortcoming.
Any automatic type conversion will only apply to the second argument. So, for
example, as we noted in the previous subsection, the following would be legal:

Money baseAmount(100, 60), fullAmount;
fullAmount = baseAmount + 25;

 This is because Money has a constructor with one argument of type int , and so the
value 25 will be considered an int value that is automatically converted to a value of
type Money .

 However, if you overload + as a member operator (as in Display 8.2), then you
cannot reverse the two arguments to + . The following is illegal,

fullAmount = 25 + baseAmount;

 because 25 cannot be a calling object. Conversion of int values to type Money works
for arguments but not for calling objects.

(continued)

338 CHAPTER 8 Operator Overloading, Friends, and References

 Friend Functions

 If your class has a full set of accessor and mutator functions, you can use the accessor
and mutator functions to define nonmember overloaded operators (as in Display 8.1
as opposed to Display 8.2). However, although this may give you access to the private
member variables, it may not give you efficient access to them. Look again at the
definition of the overloaded addition operator + given in Display 8.1 . Rather than
just reading four member variables, it must incur the overhead of two invocations of
getCents and two invocations of getDollars . This adds a bit of inefficiency and also
can make the code harder to understand. The alternative of overloading + as a member
gets around this problem at the price of losing automatic type conversion of the first
operand. Overloading the + operator as a friend will allow us to both directly access
member variables and have automatic type conversion for all operands.

 A friend function of a class is not a member function of the class, but it has access to
the private members of that class (to both private member variables and private member
functions) just as a member function does. To make a function a friend function,
you must name it as a friend in the class definition. For example, in Display 8.3 we
have rewritten the definition of the class Money yet another time. This time we have
overloaded the operators as friends. You make an operator or function a friend of a class
by listing the operator or function declaration in the definition of the class and placing
the keyword friend in front of the operator or function declaration.

 A friend operator or friend function has its declaration listed in the class definition,
just as you would list the declaration of a member function, except that you precede
the declaration by the keyword friend . However, a friend is not a member function;
rather, it really is an ordinary function with extraordinary access to the data members
of the class. The friend is defined exactly like the ordinary function it is. In particular,
the operator definitions shown in Display 8.3 do not include the qualifier Money::
in the function heading. Also, you do not use the keyword friend in the function
definition (only in the function declaration). The friend operators in Display 8.3
are invoked just like the nonfriend, nonmember operators in Display 8.1 , and they
have automatic type conversion of all arguments just like the nonfriend, nonmember
operators in Display 8.1 .

PITFALL: (continued)

 On the other hand, if you overload + as a nonmember (as in Display 8.1), then the
following is perfectly legal:

fullAmount = 25 + baseAmount;

 This is the biggest advantage of overloading an operator as a nonmember.
 Overloading an operator as a nonmember gives you automatic type conversion

of all arguments. Overloading an operator as a member gives you the efficiency of
bypassing accessor and mutator functions and directly accessing member variables.
There is a way to overload an operator (and certain functions) that offers both of
these advantages. It is called overloading as a friend function and is our next topic. ■

friend function

www.itpub.net

Friend Functions and Automatic Type Conversion 339

 The most common kinds of friend functions are overloaded operators. However,
any kind of function can be made a friend function.

 A function (or overloaded operator) can be a friend of more than one class. To make
it a friend of multiple classes, just give the declaration of the friend function in each
class for which you want it to be a friend.

 Many experts consider friend functions (and operators) to be in some sense not
“pure.” They feel that in the true spirit of object-oriented programming all operators
and functions should be member functions. On the other hand, overloading operators
as friends provides the pragmatic advantage of automatic type conversion in all
arguments, and since the operator declaration is inside the class definitions, it provides
at least a bit more encapsulation than nonmember, nonfriend operators. We have
shown you three ways to overload operators: as nonmember nonfriends, as members,
and as friends. You can decide for yourself which technique you prefer.

 Display 8.3 Overloading Operators as Friends (part 1 of 2)

 1 #include <iostream>
 2 #include <cstdlib>
 3 #include <cmath>
 4 using namespace std;

 5 //Class for amounts of money in U.S. currency
 6 class Money
 7 {
 8 public:
 9 Money();
10 Money(double amount);
11 Money(int dollars, int cents);
12 Money(int dollars);
13 double getAmount() const;
14 int getDollars() const;
15 int getCents() const;
16 void input(); //Reads the dollar sign as well as the amount number.
17 void output() const;
18 friend const Money operator +(const Money& amount1,

const Money& amount2);
19 friend const Money operator -(const Money& amount1,

const Money& amount2);
20 friend bool operator ==(const Money& amount1, const Money& amount2);
21 friend const Money operator -(const Money& amount);
22 private:
23 int dollars; //A negative amount is represented as negative

 //dollars and
24 int cents; //negative cents. Negative $4.50 is represented

 //as -4 and -50.

(continued)

340 CHAPTER 8 Operator Overloading, Friends, and References

25 int dollarsPart(double amount) const;
26 int centsPart(double amount) const;
27 int round(double number) const;
28 };

29 int main()
30 {
31 < If the main function is the same as in Display 8.1 , then the screen dialogue

will be the same as shown in Display 8.1 .>
32 }
33
34 const Money operator +(const Money& amount1, const Money& amount2)
35 {
36 int allCents1 = amount1.cents + amount1.dollars*100;
37 int allCents2 = amount2.cents + amount2.dollars*100;
38 int sumAllCents = allCents1 + allCents2;
39 int absAllCents = abs(sumAllCents); //Money can be negative.
40 int finalDollars = absAllCents/100;
41 int finalCents = absAllCents%100;

42 if (sumAllCents < 0)
43 {
44 finalDollars = -finalDollars;
45 finalCents = -finalCents;
46 }

47 return Money(finalDollars, finalCents);
48 }

49 const Money operator -(const Money& amount1, const Money& amount2)
50 <The complete definition is Self-Test Exercise 7 .>

51 bool operator ==(const Money& amount1, const Money& amount2)
52 {
53 return ((amount1.dollars == amount2.dollars)
54 && (amount1.cents == amount2.cents));
55 }

56 const Money operator -(const Money& amount)
57 {
58 return Money(-amount.dollars, -amount.cents);
59 }

 <Definitions of all other member functions are the same as in Display 8.1 .>
 60

Display 8.3 Overloading Operators as Friends (part 2 of 2)

 Note that friends have
direct access to
member variables.

www.itpub.net

Friend Functions and Automatic Type Conversion 341

 Friend Classes

 A class can be a friend of another class in the same way that a function can be a friend
of a class. If the class F is a friend of the class C , then every member function of the class
F is a friend of the class C . To make one class a friend of another, you must declare the
friend class as a friend within the other class.

 When one class is a friend of another class, it is typical for the classes to reference each
other in their class definitions. This requires that you include a forward declaration to
the class defined second, as illustrated in the outline that follows this paragraph. Note
that the forward declaration is just the heading of the class definition followed by a
semicolon.

friend class

forward
declaration

 Friend Functions
A friend function of a class is an ordinary function except that it has access to the private
members of objects of that class. To make a function a friend of a class, you must list the
function declaration for the friend function in the class defi nition. The function declaration
is preceded by the keyword friend. The function declaration may be placed in either the
private section or the public section, but it will be a public function in either case, so it is
clearer to list it in the public section.

 SYNTAX OF A CLASS DEFINITION WITH FRIEND FUNCTIONS

class Class_Name
{
public:

friend Declaration_for_Friend_Function_1
friend Declaration_for_Friend_Function_2

.

.

.
Member_Function_Declarations

private:
Private_Member_Declarations

};

 EXAMPLE

class FuelTank
{
public:

friend void fillLowest(FuelTank& t1, FuelTank& t2);
//Fills the tank with the lowest fuel level, or t1 if a tie.

FuelTank(double theCapacity, double theLevel);
FuelTank();

 You need not list the
friend functions first.
You can intermix the
order of these
declarations.

(continued)

342 CHAPTER 8 Operator Overloading, Friends, and References

 If you want the class F to be a friend of the class C , the general outline of how you
set things up is as follows:

class F; //forward declaration

class C
{
public:

. . .
friend class F;
. . .

};
class F
{

. . .

Complete examples using friend classes are given in Chapter 17 . We will not be
using friend classes until then.

void input();
void output() const;

private:
double capacity;//in liters
double level;

};

A friend function is not a member function. A friend function is defined and called the same
way as an ordinary function. You do not use the dot operator in a call to a friend function, and
you do not use a type qualifier in the definition of a friend function.

 PITFALL: Compilers without Friends

 On some C++ compilers friend functions simply do not work as they are supposed
to work. Worst of all, they may work sometimes and not work at other times.
On these compilers friend functions do not always have access to private members
of the class as they are supposed to. Presumably, this will be fixed in later releases of
these compilers. In the meantime, you will have to work around this problem. If you
have one of these compilers for which friend functions do not work, you must either
use accessor functions to define nonmember functions and overloaded operators or
you must overload operators as members. ■

www.itpub.net

References and More Overloaded Operators 343

 8.3 References and More Overloaded Operators

 Do not mistake the pointing finger for the moon.

 Zen saying

 This section covers some specialized, but important, overloading topics, including
overloading the assignment operator and the << , >>, [], ++ , and -- operators. Because
you need to understand returning a reference to correctly overload some of these
operators, we also discuss this topic.

 Rules on Overloading Operators

 ■ When overloading an operator, at least one parameter (one operand) of the resulting
overloaded operator must be of a class type.

 ■ Most operators can be overloaded as a member of the class, a friend of the class, or a
nonmember, nonfriend.

 ■ The following operators can only be overloaded as (nonstatic) members of the class: =,
[], ->, and ().

 ■ You cannot create a new operator. All you can do is overload existing operators such as
+, -, *, /, %, and so forth.

 ■ You cannot change the number of arguments that an operator takes. For example, you
cannot change % from a binary to a unary operator when you overload %; you cannot
change ++ from a unary to a binary operator when you overload it.

 ■ You cannot change the precedence of an operator. An overloaded operator has the
same precedence as the ordinary version of the operator. For example, x*y + z
always means (x*y) + z, even if x, y, and z are objects and the operators + and *
have been overloaded for the appropriate classes.

 ■ The following operators cannot be overloaded: the dot operator (.), the scope resolution
operator (::), sizeof, ?:, and the operator .*, which is not discussed in this book.

 ■ An overloaded operator cannot have default arguments.

 Self-Test Exercises

 6. What is the difference between a friend function for a class and a member
function for a class?

 7. Complete the definition of the friend subtraction operator - in Display 8.3 .

 8. Suppose you wish to overload the operator < so that it applies to the type Money
defined in Display 8.3 . What do you need to add to the definition of Money
given in Display 8.3 ?

344 CHAPTER 8 Operator Overloading, Friends, and References

 References

 A reference is the name of a storage location 1 . You can have a standalone reference, as
in the following:

int robert;
int& bob = robert;

 This makes bob a reference to the storage location for the variable robert , which
makes bob an alias for the variable robert . Any change made to bob will also be
made to robert . Stated this way, it sounds like a standalone reference is just a way
to make your code confusing and get you in trouble. In most instances, a standalone
reference is just trouble, although there a few cases where it can be useful. We will not
discuss standalone references anymore, nor will we use them.

 As you may suspect, references are used to implement the call-by-reference
parameter mechanism. So, the concept is not completely new to this chapter , although
the phrase a reference is new.

 We are interested in references here because returning a reference will allow you to
overload certain operators in a more natural way. Returning a reference can be viewed
as something like returning a variable or, more precisely, an alias to a variable. The
syntactic details are simple. You add an & to the return type. For example,

double& sampleFunction(double& variable);

 Since a type like double& is a different type from double , you must use the & in both
the function declaration and the function definition. The return expression must
be something with a reference, such as a variable of the appropriate type. It cannot
be an expression, such as X + 5 . Although many compilers will let you do it (with
unfortunate results), you also should not return a local variable because you would
be generating an alias to a variable and immediately destroying the variable. A trivial
example of the function definition is

double& sampleFunction(double& variable)
{

return variable;
}

 Of course, this is a pretty useless, even troublesome, function, but it illustrates the
concept. For example, the following code will output 99 and then 42 :

double m = 99;

cout << sampleFunction(m) << endl;

sampleFunction(m) = 42;

cout << m << endl;

1If you know about pointers, you will notice that a reference sounds like a pointer. A reference is
essentially, but not exactly, a constant pointer. There are differences between pointers and references,
and they are not completely interchangeable.

reference

www.itpub.net

References and More Overloaded Operators 345

 We will only be returning a reference when defining certain kinds of overloaded
operators.

 L-Values and R-Values
The term l-value is used for something that can appear on the left-hand side of an assignment
operator. The term r-value is used for something that can appear on the right-hand side of an
assignment operator.

If you want the object returned by a function to be an l-value, it must be returned by
reference.

(continued)

 TIP: Returning Member Variables of a Class Type

 When returning a member variable of a class type, in almost all cases it is important
to return the member value by const value. To see why, suppose you do not, as in
the example outlined in what follows:

class Employee
{
public:
 Money& getSalary() { return salary; }
 ...
private:
 Money salary;
 ...
};

 In this example, salary is a private member variable that should not be changeable
except by using some accessor function of the class Employee . The getSalary
function returns the variable salary which is of type Money . If we do not return
salary by reference then a new, temporary copy of salary will be created and
returned. We might wish to avoid this overhead by returning a reference to salary

as indicated in the example. However, even though salary is declared as private, this
privateness is easily circumvented as follows:

Employee joe;
(joe.getSalary()).input();

 The lucky employee named joe can now enter any salary she wishes!
 On the other hand, suppose getSalary returns its value by const value, as follows:

class Employee
{
public:

const Money& getSalary() { return salary; }
. . .

346 CHAPTER 8 Operator Overloading, Friends, and References

 Overloading >> and <<

 The operators >> and << can be overloaded so that you can use them to input and
output objects of the classes you define. The details are not that different from what we
have already seen for other operators, but there are some new subtleties.

 The insertion operator << that we used with cout is a binary operator very much
like + or - . For example, consider the following:

cout << "Hello out there.\n";

 The operator is << , the first operand is the predefined object cout (from the library
iostream), and the second operand is the string value "Hello out there.\n" .
The predefined object cout is of type ostream , and so when you overload << , the
parameter that receives cout will be of type ostream . You can change either of the
two operands to << . When we cover file I/O in Chapter 12 you will see how to create
an object of type ostream that sends output to a file. (These file I/O objects as well
as the objects cin and cout are called streams , which is why the library name is
ostream .) The overloading that we create, with cout in mind, will turn out to also
work for file output without any changes in the definition of the overloaded << .

 In our previous definitions of the class Money (Display 8.1 through Display 8.3) we
used the member function output to output values of type Money . This is adequate,
but it would be nicer if we could simply use the insertion operator << to output values
of type Money , as in the following,

Money amount(100);

cout << "I have " << amount << " in my purse.\n";

 TIP: (continued)
private:

Money salary;
. . .

};

 In this case, the following will give a compiler error message.

(joe.getSalary()).input();

 (The declaration for getSalary should ideally be

const Money& getSalary() const { return salary; }

 but we did not want to confuse the issue with another kind of const .)
 In general, when a member function returns a member variable and that member

variable is of some class type, then it should normally not be returned by reference to
avoid external access to a private member variable. If you want to return by reference
for effi ciency reasons then adding const to the return value can help protect access to
the member variable. ■

<< is an
operator

streams

overloading
<<

www.itpub.net

References and More Overloaded Operators 347

 instead of having to use the member function output as shown here:

Money amount(100);

cout << "I have ";
amount.output();

cout << " in my purse.\n";

 One problem in overloading the operator << is deciding what value, if any, should
be returned when << is used in an expression like the following:

cout << amount

 The two operands in the previous expression are cout and amount , and evaluating the
expression should cause the value of amount to be written to the screen. But if << is an
operator like + or - , then the previous expression should also return some value. After
all, expressions with other operands, such as n1 + n2 , return values. But what does
cout << amount return? To obtain the answer to that question, we need to look at a
more complicated expression involving << .

 Let us consider the following expression, which involves evaluating a chain of
expressions using << :

cout << "I have " << amount << " in my purse.\n";

 If you think of the operator << as being analogous to other operators, such as + , then
the latter expression should be (and in fact is) equivalent to the following:

((cout << "I have ") << amount) << " in my purse.\n";

 What value should << return to make sense of the previous expression? The first thing
evaluated is the subexpression:

(cout << "I have ")

 If things are to work out, then the previous subexpression had better return cout so
that the computation can continue as follows:

(cout << amount) << " in my purse.\n";

 And if things are to continue to work out, (cout << amount) had better also return
cout so that the computation can continue as follows:

cout << " in my purse.\n";

 This is illustrated in Display 8.4 . The operator << should return its first argument,
which is of type ostream (the type of cout).

 Thus, the declaration for the overloaded operator << (to use with the class Money)
should be as follows:

class Money
{
public:

. . .

friend ostream& operator <<(ostream& outs,
const Money& amount);

<< returns
a stream

chains of <<

348 CHAPTER 8 Operator Overloading, Friends, and References

}
}

The string "I have" is output.

The string "in my purse.\n" is output.
 Once we have overloaded the insertion (output) operator << , we will no longer need

the member function output and will delete output from our definition of the class
Money . The definition of the overloaded operator << is very similar to the member
function output . In outline form, the definition for the overloaded operator is as follows:

ostream& operator <<(ostream& outputStream, const Money& amount)
{

/*This part is the same as the body of
Money::output which is given in Display 8.1 (except that
 dollars is replaced with amount.dollars
and cents is replaced by amount.cents).*/

return outputStream;

}

}

 Display 8.4 << as an Operator

cout << "I have " << amount << " in my purse.\n";

 means the same as

((cout << "I have ") << amount) << " in my purse.\n";

 and is evaluated as follows:

 First evaluate (cout << "I have "), which returns cout:
((cout << "I have ") << amount) << " in my purse.\n";

(cout << amount) << " in my purse.\n";

 Then evaluate (cout << amount), which returns cout:

(cout << amount) << " in my purse.\n";

cout << " in my purse.\n";

 Then evaluate cout << " in my purse.\n", which returns cout:

cout << " in my purse.\n";

cout;

The value of amount is output.

Since there are no more << operators, the process ends.

www.itpub.net

References and More Overloaded Operators 349

 Note that the operator returns a reference.
 The extraction operator >> is overloaded in a way that is analogous to what we

described for the insertion operator << . However, with the extraction (input) operator
>> , the second argument will be the object that receives the input value, so the
second parameter must be an ordinary call-by-reference parameter. In outline form the
definition for the overloaded extraction operator >> is as follows:

istream& operator >>(istream& inputStream, Money& amount)
{

/*This part is the same as the body of
Money::input, which is given in Display 8.1 (except that
 dollars is replaced with amount.dollars
and cents is replaced by amount.cents).*/

return inputStream;
}

 The complete definitions of the overloaded operators << and >> are given in
 Display 8.5 , where we have rewritten the class Money yet again. This time we have
rewritten the class so that the operators << and >> are overloaded to allow us to use
these operators with values of type Money .

 Note that you cannot realistically overload >> or << as member operators. If << and
>> are to work as we want, then the first operand (first argument) must be cout or cin
(or some file I/O stream). But if we want to overload the operators as members of, say,
the class Money , then the first operand would have to be the calling object and so would
have to be of type Money , and that will not allow you to define the operators so they
behave in the normal way for >> and << .

<< and >>
return a

reference

 Display 8.5 Overloading << and >> (part 1 of 3)

 1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath>
4 using namespace std;

5 //Class for amounts of money in U.S. currency
6 class Money
7 {
8 public:
9 Money();
10 Money(double amount);
11 Money(int theDollars, int theCents);
12 Money(int theDollars);
13 double getAmount() const;
14 int getDollars() const;
15 int getCents() const;

(continued)

350 CHAPTER 8 Operator Overloading, Friends, and References

16 friend const Money operator +(const Money& amount1,
const Money& amount2);

17 friend const Money operator -(const Money& amount1,
const Money& amount2);

18 friend bool operator = =(const Money& amount1,
const Money& amount2);

19 friend const Money operator -(const Money& amount);
20 friend ostream& operator <<(ostream& outputStream,

const Money& amount);
21 friend istream& operator >>(istream& inputStream, Money& amount);
22 private:
23 //A negative amount is represented as negative dollars
 //and negative cents. Negative $4.50 is represented as
 //-4 and -50.
24 int dollars, cents;

25 int dollarsPart(double amount) const;
26 int centsPart(double amount) const;
27 int round(double number) const;
28 };

29 int main()
30 {
31 Money yourAmount, myAmount(10, 9);
32 cout << "Enter an amount of money: ";
33 cin >> yourAmount;
34 cout << "Your amount is " << yourAmount << endl;
35 cout << "My amount is " << myAmount << endl;
36
37 if (yourAmount == myAmount)
38 cout << "We have the same amounts.\n";
39 else
40 cout << "One of us is richer.\n";

41 Money ourAmount = yourAmount + myAmount;
42 cout << yourAmount << " + " << myAmount
43 << " equals " << ourAmount << endl;

44 Money diffAmount = yourAmount - myAmount;
45 cout << yourAmount << " - " << myAmount
46 << " equals " << diffAmount << endl;

47 return 0;
48 }

Since << returns a
reference, you can chain
<< like this. You can chain
>> in a similar way.

<Definitions of other member functions are as in Display 8.1.
Definitions of other overloaded operators are as in Display 8.3.>

Display 8.5 Overloading << and >> (part 2 of 3)

www.itpub.net

References and More Overloaded Operators 351

In the main function, cout is plugged
in for outputStream.

49 ostream& operator <<(ostream& outputStream, const Money& amount)
50 {
51 int absDollars = abs(amount.dollars);
52 int absCents = abs(amount.cents);
53 if (amount.dollars < 0 || amount.cents < 0)
54 //accounts for dollars == 0 or cents == 0
55 outputStream << "$-";
56 else
57 outputStream << '$';
58 outputStream << absDollars;

59 if (absCents >= 10)
60 outputStream << '.' << absCents;
61 else
62 outputStream << '.' << '0' << absCents;

63 return outputStream;
64 }
65
66 //Uses iostream and cstdlib:
67 istream& operator >>(istream& inputStream, Money& amount)
68 {
69 char dollarSign;
70 inputStream >> dollarSign; //hopefully
71 if (dollarSign != '$')
72 {
73 cout << "No dollar sign in Money input.\n";
74 exit(1);
75 }

76 double amountAsDouble;
77 inputStream >> amountAsDouble;
78 amount.dollars = amount.dollarsPart(amountAsDouble);
79 amount.cents = amount.centsPart(amountAsDouble);

80 return inputStream;
81 }

 Sample Dialogue

Enter an amount of money: $123.45

Your amount is $123.45

My amount is $10.09.

One of us is richer.

$123.45 + $10.09 equals $133.54

$123.45 - $10.09 equals $113.36

For an alternate input
algorithm, see Self-Test
Exercise 3 in Chapter 7.

Returns a reference

In the main function, cin is
plugged in for inputStream.

Since this is not a member operator,
you need to specify a calling object
for member functions of Money.

Returns a reference

Display 8.5 Overloading << and >> (part 3 of 3)

352 CHAPTER 8 Operator Overloading, Friends, and References

 Self-Test Exercises

 9. In Display 8.5 , the definition of the overloaded operator << contains lines like
the following:

outputStream << "$-";

 Is this not circular? Are we not defining << in terms of <<?

 10. Why can we not overload << or >> as member operators?

 11. Following is the definition for a class called Percent . Objects of type Percent
represent percentages such as 10% or 99% . Give the definitions of the overloaded
operators >> and << so that they can be used for input and output with objects
of the class Percent . Assume that input always consists of an integer followed
by the character '%' , such as 25% . All percentages are whole numbers and are
stored in the int member variable named value . You do not need to define
the other overloaded operators and do not need to define the constructor. You
only have to define the overloaded operators >> and << .

#include <iostream>
using namespace std;
class Percent
{
public:

friend bool operator ==(const Percent& first,
const Percent& second);

friend bool operator <(const Percent& first,
const Percent& second);

Percent();
friend istream& operator >>(istream& inputStream,

Percent& aPercent);

friend ostream& operator <<(ostream& outputStream,
const Percent& aPercent);

 //There would normally also be other members and friends.
private:

int value;
};

 TIP: What Mode of Returned Value to Use

 A function can return a value of type T in four different ways:

■ By plain old value, as in the function declaration T f();
■ By constant value, as in the function declaration const T f();

■ By reference, as in the function declaration T& f();
■ By const reference, as in the function declaration const T& f();

www.itpub.net

References and More Overloaded Operators 353

TIP: (continued)

 There is not unanimous agreement on which to use when. So, do not expect too
much consistency in usage. Even when an author or programmer has a clear policy,
they seldom manage to follow it without exception. Still, some points are clear.

 If you are returning a simple type, like int or char , there is no point in using
a const when returning by value or by reference. So programmers typically do not
use a const on the return type when it is a simple type. If you want the simple value
returned to be allowed as an l-value, that is to be allowed on the left-hand side of an
assignment statement, then return by reference; otherwise return the simple type by
plain old value. Class types are not so simple. The rest of this discussion applies to
returning an object of a class type.

 The decision on whether or not to return by reference has to do with whether or
not you want to be able to use the returned object as an l-value. If you want to return
something that can be used as an l-value, that is, that can be used on the left-hand
side of an assignment operator, you must return by reference and so must use an
ampersand & on the returned type.

 Returning a local variable (or other short-lived object) by reference, with or with-
out a const , can produce problems and should be avoided.

 For class types, the two returned type specifi cations const T and const T& are very
similar. They both mean that you cannot change the returned object by invoking some
mutator function directly on the returned object, as in

f().mutator();

 The returned value can still be copied to another variable with an assignment operator
and that other variable can have the mutator function applied to it. If you cannot
decide between the const T& and const T , use const T (without the ampersand).
A const T& is perhaps a bit more efficient than a const T. 2 However, the difference
is not typically that important and most programmers use const T rather than const
T& as a returned type specification. As noted earlier, const T& can sometimes cause
problems.

 The following summary may be of help. T is assumed to be a class type. Copy
constructors are not covered until Chapter 10 , but we include details about them here
for reference value. If you have not yet read Chapter 10 , simply ignore all references
to copy constructors.

 If a public member function returns a private class member variable, it should
always have a const on the returned type, as we explained in the Tip section of this
chapter entitled “Returning Member Variables of a Class Type.” (One exception to
this rule is that programmers normally always return a value of type string by ordi-
nary value, not by const value. This is presumably because the type string is thought
of as a simple type like int and char , even though string is a class type.)

2 This is because const T& does not call the copy constructor while const T does call the copy
constructor. Copy constructors are discussed in Chapter 10 .

(continued)

354 CHAPTER 8 Operator Overloading, Friends, and References

TIP: (continued)

 The following summary may be of help. T is assumed to be a class type.

 Simple returning by value, as in the function declaration T f(); Cannot be
used as an l-value, and the returned value can be changed directly as in
f().mutator(). Calls the copy constructor.

 Returning by constant value, as in const T f(); This case is the same as the
previous case, but the returned value cannot be changed directly as in
f().mutator() .

 Returning by reference as in T& f(); Can be used as an l-value, and the
returned value can be changed directly as in f().mutator() . Does not call
the copy constructor.

 Returning by constant reference, as in const T& f(); Cannot be used
as an l-value, and the returned value cannot be changed directly as in
f().mutator(). Does not call the copy constructor. ■

 Overloading >> and <<

The input and output operators >> and << can be overloaded just like any other operators.
If you want the operators to behave as expected for cin, cout, and fi le I/O, then the value
returned should be of type istream for input and ostream for output, and the value should
be returned by reference.

 DECLARATIONS

class Class_Name
{

. . .
public:

. . .

friend istream& operator >>(istream& Parameter_1,
Class_Name& Parameter_2);

friend ostream& operator <<(ostream& Parameter_3,
const Class_Name& Parameter_4);

. . .

The operators do not need to be friends but cannot be members of the class being input or
output.

www.itpub.net

References and More Overloaded Operators 355

 The Assignment Operator

 If you overload the assignment operator =, you must overload it as a member operator.
If you do not overload the assignment operator = , then you automatically get an
assignment operator for your class. This default assignment operator copies the values
of member variables from one object of the class to the corresponding member variables
of another object of the class. For simple classes, that is usually what you want. When
we discuss pointers, this default assignment operator will not be what we want, and we
will discuss overloading the assignment operator at that point.

 Overloading the Increment and Decrement Operators

 The increment and decrement operators ++ and -- each have two versions. They
can do different things depending on whether they are used in prefix notation, ++x ,
or postfix (suffix) notation, x++ . Thus, when overloading these operators, you need
to somehow distinguish between the prefix and postfix versions so that you can have
two versions of the overloaded operator. In C++ this distinction between prefix and
postfix versions is handled in a way that at first reading (and maybe even on second
reading) seems a bit contrived. If you overload the ++ operator in the regular way
(as a nonmember operator with one parameter or as a member operator with no
parameters), then you have overloaded the prefix form. To obtain the postfix version,
x++ or x-- , you add a second parameter of type int . This is just a marker for the
compiler; you do not give a second int argument when you invoke x++ or x-- .

 For example, Display 8.6 contains the definition of a class whose data is pairs of
integers. The increment operator ++ is defined so it works in both prefix and postfix
notation. We have defined ++ so that it has the intuitive spirit of ++ on int variables.
This is the best way to define ++, but you are free to define it to return any kind of type
and perform any kind of action.

 DEFINITIONS

istream& operator >>(istream& Parameter_1,
Class_Name& Parameter_2)

{
. . .

}
ostream& operator <<(ostream& Parameter_3,

const Class_Name& Parameter_4)
{

. . .
}

If you have enough accessor and mutator functions, you can overload >> and << as
nonfriend functions. However, it is natural and more efficient to define them as friends.

prefix and
postfix

356 CHAPTER 8 Operator Overloading, Friends, and References

 The definition of the postfix version ignores that int parameter, as shown
in Display 8.6 . When the compiler sees a++ , it treats it as an invocation of
IntPair::operator++(int) , with a as the calling object.

 The increment and decrement operator on simple types, such as int and char , return
by reference in the prefix form and by value in the postfix form. If you want to emulate
what happens with simple types when you overload these operators for your class types,
then you would return by reference for the prefix form and by value for the postfix
form. However, we find it opens the door to too many problems to return by reference
with increment or decrement operators, and so we always simply return by value for all
versions of the increment and decrement operators.

return by
reference

 Self-Test Exercise

 12. Is the following legal? Explain your answer. (The definition of IntPair is given
in Display 8.6 .)

IntPair a(1,2);
(a++)++;

 Display 8.6 Overloading ++ (part 1 of 3)

 1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4 class IntPair
5 {
6 public:
7 IntPair(int firstValue, int secondValue);
8 IntPair operator++(); //Prefix version
9 IntPair operator++(int); //Postfix version
10 void setFirst(int newValue);
11 void setSecond(int newValue);
12 int getFirst() const;
13 int getSecond() const;
14 private:
15 int first;
16 int second;
17 };

18 int main()
19 {
20 IntPair a(1,2);
21 cout << "Postfix a++: Start value of object a: ";

You need not give a parameter name
in a function or operator declaration.
For ++ it makes sense to give no
parameter since the parameter is
not used.

www.itpub.net

References and More Overloaded Operators 357

22 cout << a.getFirst() << " " << a.getSecond() << endl;
23 IntPair b = a++;
24 cout << "Value returned: ";
25 cout << b.getFirst() << " " << b.getSecond() << endl;
26 cout << "Changed object: ";
27 cout << a.getFirst() << " " << a.getSecond() << endl;

28 a = IntPair(1, 2);
29 cout << "Prefix ++a: Start value of object a: ";
30 cout << a.getFirst() << " " << a.getSecond() << endl;
31 IntPair c = ++a;
32 cout << "Value returned: ";
33 cout << c.getFirst() << " " << c.getSecond() << endl;
34 cout << "Changed object: ";
35 cout << a.getFirst() << " " << a.getSecond() << endl;
36 return 0;
37 }
38

39 IntPair::IntPair(int firstValue, int secondValue)
40 : first(firstValue), second(secondValue)
41 {/*Body intentionally empty*/}
42 IntPair IntPair:: operator++(int ignoreMe) //Postfix version
43 {
44 int temp1 = first;
45 int temp2 = second;
46 first++;
47 second++;
48 return IntPair(temp1, temp2);
49 }

50 IntPair IntPair:: operator++() //Prefix version
51 {
52 first++;
53 second++;
54 return IntPair(first, second);
55 }

56 void IntPair::setFirst(int newValue)
57 {
58 first = newValue;
59 }

60 void IntPair::setSecond(int newValue)
61 {
62 second = newValue;
63 }

Display 8.6 Overloading ++ (part 2 of 3)

(continued)

358 CHAPTER 8 Operator Overloading, Friends, and References

 Overloading the Array Operator []

 You can overload the square brackets, [] , for a class so that they can be used with
objects of the class. If you want to use [] in an expression on the left-hand side of an
assignment operator, then the operator must be defined to return a reference. When
overloading [] , the operator [] must be a member function.

 It may help to review the syntax for the operator [] , since it is different from
any other operator we have seen. Remember that [] is overloaded as a member
operator; therefore one thing in an expression using [] must be the calling object.
In the expression a[2] , a is the calling object and 2 is the argument to the member
operator [] . When overloading [] , this “index” parameter must be an integer type, that
is, enum , char , short , int , long , or an unsigned version of one of these types.

 For example, in Display 8.7 we define a class called CharPair whose objects behave like
arrays of characters with the two indexes 1 and 2 (not 0 and 1). Note that the expressions
a[1] and a[2] behave just like array indexed variables. If you look at the definition of the
overloaded operator [] , you will see that a reference is returned and that it is a reference
to a member variable, not to the entire CharPair object. This is because the member
variable is analogous to an indexed variable of an array. When you change a[1] (in the
sample code in Display 8.7), you want that to be a change to the member variable first .
 Note that this gives access to the private member variables to any program, for example,
via a[1] and a[2] in the sample main function in Display 8.7 . Although first and
second are private members, the code is legal because it does not reference first and
second by name but indirectly using the names a[1] and a[2] .

64 int IntPair::getFirst() const
65 {
66 return first;
67 }

68 int IntPair::getSecond() const
69 {
70 return second;

71 }

 Sample Dialogue

Postfix a++: Start value of object a: 1 2

Value returned: 1 2

Changed object: 2 3

Prefix ++a: Start value of object a: 1 2

Value returned: 2 3

Changed object: 2 3

Display 8.6 Overloading ++ (part 3 of 3)

www.itpub.net

References and More Overloaded Operators 359

 Display 8.7 Overloading [] (part 1 of 2)

 1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4 class CharPair
5 {
6 public:
7 CharPair(){ /*Body intentionally empty*/ }
8 CharPair(char firstValue, char secondValue)
9 : first(firstValue), second(secondValue)
10 { /*Body intentionally empty*/}
11
12 char& operator[](int index);
13 private:
14 char first;
15 char second;
16 };

17 int main()
18 {
19 CharPair a;
20 a[1] = 'A';
21 a[2] = 'B';
22 cout << "a[1] and a[2] are:\n";
23 cout << a[1] << a[2] << endl;

24 cout << "Enter two letters (no spaces):\n";
25 cin >> a[1] >> a[2];
26 cout << "You entered:\n";
27 cout << a[1] << a[2] << endl;

28 return 0;
29 }
30
31 //Uses iostream and cstdlib:
32 char& CharPair:: operator[](int index)
33 {
34 if (index == 1)
35 return first;
36 else if (index == 2)
37 return second;
38 else
39 {
40 cout << "Illegal index value.\n";
41 exit(1);
42 }
43 }

Note that you return the member variable,
not the entire Pair object, because the
member variable is analogous to an indexed
variable of an array.

(continued)

360 CHAPTER 8 Operator Overloading, Friends, and References

 Overloading Based on L-Value versus R-Value

 Although we will not be doing it in this book , you can overload a function name (or
operator) so that it behaves differently when used as an l-value and when it is used
as an r-value. (Recall that an l-value means it can be used on the left-hand side of an
assignment statement.) For example, if you want a function f to behave differently
depending on whether it is used as an l-value or an r-value, you can do so as follows:

class SomeClass

{

public:

int& f(); // will be used in any l-value invocation

const int& f() const ; // used in any r-value invocation
. . .

};

 The two parameter lists need not be empty, but they should be the same (or else you
just get simple overloading). Be sure to notice that the second declaration of f has two
occurrences of const . You must include both occurrences of const . The ampersand
signs & are of course also required.

 Sample Dialogue

a[1] and a[2] are:
AB
Enter two letters (no spaces):
CD
You entered:
CD

Display 8.7 Overloading [] (part 2 of 2)

 Chapter Summary

• Operators, such as + and == , can be overloaded so that they can be used with objects
of a class type that you define.

• An operator is just a function that uses a different syntax for invocations.

• A friend function of a class is an ordinary function except that it has access to the
private members of the class, just like member functions do.

• When an operator is overloaded as a member of a class, the first operand is the
calling object.

www.itpub.net

Answers to Self-Test Exercises 361

• If your classes each have a full set of accessor functions, then the only reason to make
a function a friend is to make the definition of the friend function simpler and more
efficient, but that is often reason enough.

• A reference is a way of naming a variable. It is essentially an alias for the variable.

• When overloading the >> or << operators, the type returned should be a stream type
and should be a reference, which is indicated by appending an & to the name of the
returned type.

 Answers to Self-Test Exercises

 1. The difference between a (binary) operator (such as + , * , or /) and a function
involves the syntax of how they are called. In a function call, the arguments are
given in parentheses after the function name. With an operator the arguments are
given before and after the operator. Also, you must use the reserved word operator
in the operator declaration and in the definition of an overloaded operator.

 2. Add the following declaration and function definition:

bool operator <(const Money& amount1, const Money& amount2);

bool operator <(const Money& amount1, const Money& amount2)
{

int dollars1 = amount1.getDollars();
int dollars2 = amount2.getDollars();
int cents1 = amount1.getCents();
int cents2 = amount2.getCents();
return ((dollars1 < dollars2) ||

((dollars1 == dollars2) && (cents1 < cents2)));
}

 3. When overloading an operator, at least one of the arguments to the operator must
be of a class type. This prevents changing the behavior of + for integers.

 4. If you omit the const at the beginning of the declaration and definition of the
overloaded plus operator for the class Money , then the following is legal:

(m1 + m2) = m3;

 If the definition of the class Money is as shown in Display 8.1 , so that the plus
operator returns by const value, then it is not legal.

 5. const Money
Money::operator –(const Money& secondOperand) const

{
int allCents1 = cents + dollars*100;
int allCents2 = secondOperand.cents

+ secondOperand.dollars*100;
int diffAllCents = allCents1 - allCents2;
int absAllCents = abs(diffAllCents);

362 CHAPTER 8 Operator Overloading, Friends, and References

int finalDollars = absAllCents/100;
int finalCents = absAllCents%100;

if (diffAllCents < 0)
{

finalDollars = -finalDollars;
finalCents = -finalCents;

}

return Money(finalDollars, finalCents);
}

 6. A friend function and a member function are alike in that they both can use any
member of the class (either public or private) in their function definition. However,
a friend function is defined and used just like an ordinary function; the dot operator
is not used when you call a friend function and no type qualifier is used when you
define a friend function. A member function, on the other hand, is called using an
object name and the dot operator. Also, a member function definition includes a
type qualifier consisting of the class name and the scope resolution operator, :: .

 7. //Uses cstdlib :
const Money operator -(const Money& amount1,

const Money& amount2)
{

int allCents1 = amount1.cents + amount1.dollars*100;
int allCents2 = amount2.cents + amount2.dollars*100;
int diffAllCents = allCents1 - allCents2;
int absAllCents = abs(diffAllCents);

int finalDollars = absAllCents/100;
int finalCents = absAllCents%100;
if (diffAllCents < 0)
{

finalDollars = -finalDollars;
finalCents = -finalCents;

}

return Money(finalDollars, finalCents);
}

 8. Add the following declaration and function definition:

friend bool operator <(const Money& amount1,
const Money& amount2);

bool operator <(const Money& amount1,
const Money& amount2)

{
return ((amount1.dollars < amount2.dollars) ||

((amount1.dollars == amount2.dollars) &&
(amount1.cents < amount2.cents)));

}

www.itpub.net

Programming Projects 363

 9. To understand why it is not circular, you need to think about the basic message of
overloading: A single function or operator name can have two or more definitions.
That means that two or more different operators (or functions) can share a single
name. In the line

outputStream << "$-";

 the operator << is the name of an operator defined in the library iostream to be
used when the second argument is a quoted string. The operator named << that we
define in Display 8.5 is a different operator that works when the second argument
is of type Money .

 10. If << and >> are to work as we want, then the first operand (first argument) must
be cout or cin (or some file I/O stream). But if we want to overload the operators
as members of, say, the class Money , then the first operand would have to be the
calling object and so would have to be of type Money , and that is not what we want.

 11. //Uses iostream:
istream& operator >>(istream& inputStream,

Percent& aPercent)
{

char percentSign;

inputStream >> aPercent.value;

inputStream >> percentSign;//Discards the % sign.
return inputStream;

}

//Uses iostream:
ostream& operator <<(ostream& outputStream,

const Percent& aPercent)
{

outputStream << aPercent.value << '%';
return outputStream;

}

 12. It is legal, but the meaning is not what you might want. (a++) increases the value
of the member variables in a by one, but (a++)++ raises the value of the member
variables in a++ by one, and a++ is a different object from a . (It is possible to
define the increment operator so that (a++)++ will increase the value of the mem-
ber variables by two but that requires use of the this pointer which is not discussed
 until Chapter 10 .)

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
 feedback.
 1. Modify the definition of the class Money shown in Display 8.5 so that the following

are added:

 a. The operators < , <=, > , and >= have each been overloaded to apply to the type
Money . (Hint: See Self-Test Exercise 8 .)

www.myprogramminglab.com

364 CHAPTER 8 Operator Overloading, Friends, and References

 b. The following member function has been added to the class definition. (We
show the function declaration as it should appear in the class definition. The
definition of the function itself will include the qualifier Money ::.)

const Money percent(int percentFigure) const;
//Returns a percentage of the money amount in the calling
//object. For example, if percentFigure is 10, then the value
//returned is 10% of the amount of money represented by the
//calling object.

 For example, if purse is an object of type Money whose value represents the
amount $100.10, then the call

purse.percent(10);

 returns 10% of $100.10; that is, it returns a value of type Money that represents
the amount $10.01.

 2. Define a class for rational numbers. A rational number is a number that can be
represented as the quotient of two integers. For example, 1/2, 3/4, 64/2, and so
forth are all rational numbers. (By 1/2 and so on we mean the everyday fraction, not
the integer division this expression would produce in a C++ program.) Represent
rational numbers as two values of type int , one for the numerator and one for
the denominator. Call the class Rational . Include a constructor with two argu-
ments that can be used to set the member variables of an object to any legitimate
values. Also include a constructor that has only a single parameter of type int ;
call this single parameter wholeNumber and define the constructor so that the
object will be initialized to the rational number wholeNumber /1. Include a default
constructor that initializes an object to 0 (that is, to 0/1). Overload the input and
output operators >> and << . Numbers are to be input and output in the form
1/2 , 15/32 , 300/401 , and so forth. Note that the numerator, the denominator, or
both may contain a minus sign, so -1/2 , 15/-32 , and -300/-401 are also possible
inputs. Overload all the following operators so that they correctly apply to the type
Rational : == , < , <= , > , >= , + , - , * , and / . Write a test program to test your class.
Hints: Two rational numbers a/b and c/d are equal if a*d equals c*b. If b and d are
positive rational numbers, a/b is less than c/d provided a*d is less than c*b . You
should include a function to normalize the values stored so that, after normaliza-
tion, the denominator is positive and the numerator and denominator are as small
as possible. For example, after normalization 4/-8 would be represented the same
as -1/2.

 3. Define a class for complex numbers. A complex number is a number of the form

a + b*i

 where for our purposes, a and b are numbers of type double , and i is a number

that represents the quantity 2-1 . Represent a complex number as two values

www.itpub.net

Programming Projects 365

 of type double . Name the member variables real and imaginary . (The vari-
able for the number that is multiplied by i is the one called imaginary .) Call
the class Complex . Include a constructor with two parameters of type double
that can be used to set the member variables of an object to any values. Include a
constructor that has only a single parameter of type double ; call this parameter
realPart and define the constructor so that the object will be initialized to
realPart + 0*i . Include a default constructor that initializes an object to 0 (that is, to
0 + 0*i). Overload all the following operators so that they correctly apply to the
type Complex : == , + , - , * , >> , and << . You should also write a test program to test
your class. Hints: To add or subtract two complex numbers, add or subtract the
two member variables of type double . The product of two complex numbers is
given by the following formula:

(a + b*i)*(c + d*i) = = (a*c - b*d) + (a*d + b*c)*i

 In the interface file, you should define a constant i as follows:

const Complex i(0, 1);

 This defined constant i will be the same as the i discussed above.

 4. Cumulatively modify the example from Display 8.7 as follows.

 a. In Display 8.7 , replace the private char members first and second with an
array of char of size 100 and a private data member named size .

 Provide a default constructor that initializes size to 10 and sets the first 10 of the
char positions to '#'. (This only uses 10 of the possible 100 slots.)

 Provide an accessor function that returns the value of the private member size .

 Test.

 b. Add an operator[] member that returns a char& that allows the user to access
or to set any member of the private data array using a non-negative index that
is less than size .

 Test.

 c. Add a constructor that takes an int argument, sz , that sets the first sz members
of the char array to '#' .

 Test.

 d. Add a constructor that takes an int argument, sz , and an array of char of size
sz . The constructor should set the first sz members of the private data array to
the sz members of the argument array of char .

 Test.

 NOTES: When you test, you should test with known good values, with data on
boundaries and with deliberately bad values. You are not required to put checks
for index out of bounds errors in your code, but that would be a nice touch. Error
handling alternatives: Issue an error message then die (that is, call exit(1)) or give
the user another chance to make a correct entry.

366 CHAPTER 8 Operator Overloading, Friends, and References

 5. Write the definition for a class named Vector2D that stores information about a
two-dimensional vector. The class should have functions to get and set the x and
y components, where x and y are integers.

 Next, overload the * operator so that it returns the dot product of two vectors. The
dot product of two-dimensional vectors A and B is equal to

 (A x * B x) + (A y * B y).
 Finally, write a main subroutine that tests the * operation.

 6. Define a class named MyInteger that stores an integer and has functions to get and
set the integer’s value. Then, overload the [] operator so that the index returns the
digit in position i , where i = 0 is the least-significant digit. If no such digit exists
then –1 should be returned.

 For example, if x is of type MyInteger and is set to 418, then x [0] should return 8,
x [1] should return 1, x [2] should return 4, and x [3] should return –1.

 7. Define a class named PrimeNumber that stores a prime number. The default con-
structor should set the prime number to 1. Add another constructor that allows
the caller to set the prime number. Also, add a function to get the prime num-
ber. Finally, overload the prefix and postfix ++ and -- operators so they return a
PrimeNumber object that is the next largest prime number (for ++) and the next
smallest prime number (for --). For example, if the object's prime number is set
to 13, then invoking ++ should return a PrimeNumber object whose prime number
is set to 17. Create an appropriate test program for the class.

 8. Do Programming Project 6.10, the definition of a Temperature class, except over-
load ==, << and >> as member operators. The == operator should return true if the
two temperature values are identical, while << should output the temperature in
Fahrenheit and >> should input the temperature in Fahrenheit. Create appropriate
tests for the overloaded operators.

 9. Programming Project 6.12 asked you to write a BoxOfProduce class that stored
three bundles of fruits or vegetables (stored in an array of strings of size 3) to
ship to a customer. Rewrite this class to use a vector instead of an array and add
appropriate constructors, mutators, and accessors. The class should have a func-
tion to add additional fruits or vegetables to the box so there could be more
than three bundles in one box. The output function should output all items
in the box. Overload the + operator to return a new BoxOfProduce object that
combines the vector contents of both operand BoxOfProduce objects. Test your
functions and + operator from the main function. You do not have to implement
the rest of Programming Project 6.12 for this Programming Project, only the
changes to the BoxOfProduce class.

Solution to
Programming
Project 8.7

VideoNote

www.itpub.net

 9.3 THE STANDARD CLASS string 393
 Introduction to the Standard Class string 393
 I/O with the Class string 396
 Tip: More Versions of getline 399
 Pitfall: Mixing cin >> variable ;

and getline 399
 String Processing with the Class string 401
 Example: Palindrome Testing 404
 Converting between string Objects

and C-Strings 408

 9.1 AN ARRAY TYPE FOR STRINGS 368
 C-String Values and C-String Variables 369
 Pitfall: Using = and == with C-strings 372
 Other Functions in <cstring> 374
 Example: Command-Line Arguments 376
 C-String Input and Output 379

 9.2 CHARACTER MANIPULATION TOOLS 381
 Character I/O 381
 The Member Functions get and put 382
 Example: Checking Input Using a Newline

Function 384
 Pitfall: Unexpected '\n' in Input 386
 The putback , peek , and ignore Member

Functions 387
 Character-Manipulating Functions 389
 Pitfall: toupper and tolower Return

 int Values 391

 9 Strings

Chapter Summary 409 Answers to Self-Test Exercises 409 Programming Projects 413

 Polonius: What do you read my lord? Hamlet: Words, words, words

 WILLIAM SHAKESPEARE, Hamlet

 Introduction
 This chapter discusses two types whose values represent strings of characters, such as
"Hello" . One type is just an array with base type char that stores strings of characters
in the array and marks the end of the string with the null character, '\0' . This is
the older way of representing strings, which C++ inherited from the C programming
language. These sorts of strings are called C-strings . Although C-strings are an older
way of representing strings, it is difficult to do any sort of string processing in C++
without at least passing contact with C-strings. For example, quoted strings, such as
"Hello" , are implemented as C-strings in C++.

 The ANSI/ISO C++ standard includes a more modern string handling facility in
the form of the class string . The class string is the second string type that we will
discuss in this chapter. If you have the choice between using a C-string or the class
string then the general recommendation is to use the class string because it offers
greater functionality and checks for error conditions that results in a more secure
application. The full class string uses templates and so is similar to the template
classes in the Standard Template Library (STL). Templates are covered in Chapter 16
and the STL is covered in Chapter 19 . This chapter covers basic uses of the class
string that do not require a knowledge of templates.

 This material does not require extensive knowledge of arrays, but you should be
familiar with basic array notation, such as a[i] . Section 5.1 of Chapter 5 covers more
than enough material about arrays to allow you to read the material of this chapter. This
material also does not require extensive knowledge of classes. Section 9.1 on C-strings
and Section 9.2 on character manipulation can be covered before Chapters 6 , 7 , and 8 ,
which cover classes. However, before reading Section 9.3 on the standard class string ,
you should read Chapter 6 and the following parts of Chapter 7 : Section 7.1 and the
subsection of Section 7.2 entitled “The const Parameter Modifier” along with its
accompanying pitfall section .

 9.1 An Array Type for Strings
 In everything one must consider the end.

 JEAN DE LA FONTAINE, Fables, book III (1668)

 This section describes one way to represent strings of characters, which C++ inherited
from the C language. Section 9.3 describes a string class that is a more modern way to
represent strings. Although the string type described here may be a bit “old fashioned,”
it is still widely used and is an integral part of the C++ language.

9 Strings

www.itpub.net

An Array Type for Strings 369

 C-String Values and C-String Variables

 One way to represent a string is as an array with base type char . However, if the
string is "Hello" , it is handy to represent it as an array of characters with six indexed
variables: five for the five letters in "Hello" plus one for the character '\0' , which
serves as an end marker. The character '\0' is called the null character and is used
as an end marker because it is distinct from all the “real” characters. The end marker
allows your program to read the array one character at a time and know that it
should stop reading when it reads the '\0' . A string stored in this way (as an array of
characters terminated with '\0') is called a C-string .

 We spell '\0' with two symbols when we write it in a program, but just like the
newline character '\n' , the character '\0' is really only a single character value. Like
any other character value, '\0' can be stored in one variable of type char or one
indexed variable of an array of characters.

null
character,

'\0'

C-string

 The Null Character, '\0'

The null character, '\0', is used to mark the end of a C-string that is stored in an array of
characters. When an array of characters is used in this way, the array is often called a C-string
variable. Although the null character '\0' is written using two symbols, it is a single character
that fits in one variable of type char or one indexed variable of an array of characters.

 You have already been using C-strings. In C++, a literal string, such as "Hello" is
stored as a C-string, although you seldom need to be aware of this detail.

 A C-string variable is just an array of characters. Thus, the following array
declaration provides us with a C-string variable capable of storing a C-string value with
nine or fewer characters:

char s[10];

 The 10 is for the nine letters in the string plus the null character '\0' to mark the end
of the string.

 A C-string variable is a partially filled array of characters. Like any other partially
filled array, a C-string variable uses positions starting at indexed variable 0 through as
many as are needed. However, a C-string variable does not use an int variable to keep
track of how much of the array is currently being used. Instead, a string variable places
the special symbol '\0' in the array immediately after the last character of the C-string.
Thus, if s contains the string "Hi Mom!" , the array elements are filled as shown next:

C-string
variables

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

H i M o m ! \0 ? ?

370 CHAPTER 9 Strings

 The character '\0' is used as a sentinel value to mark the end of the C-string. If you
read the characters in the C-string starting at indexed variable s[0] , proceed to s[1] ,
then to s[2] , and so forth, you know that when you encounter the symbol '\0' you
have reached the end of the C-string. Since the symbol '\0' always occupies one
element of the array, the length of the longest string that the array can hold is one less
than the size of the array.

 The thing that distinguishes a C-string variable from an ordinary array of characters
is that a C-string variable must contain the null character '\0' at the end of the
C-string value. This is a distinction regarding how the array is used rather than a
distinction regarding what the array is. A C-string variable is an array of characters, but
it is used in a different way.

C-string
variables

vs. arrays of
characters

 C-String Variable Declaration
A C-string variable is the same thing as an array of characters, but it is used differently. A
C-string variable is declared to be an array of characters in the usual way.

 SYNTAX

char Array_Name[Maximum_C-string_Size + 1];

 EXAMPLE

char myCstring[11];

The + 1 allows for the null character '\0', which terminates any C-string stored in the array.
For example, the C-string variable myCstring in the previous example can hold a C-string
that is ten or fewer characters long.

 You can initialize a C-string variable when you declare it, as illustrated by the
following example:

char myMessage[20] = "Hi there.";

 Notice that the C-string assigned to the C-string variable need not fill the entire array.
 When you initialize a C-string variable, you can omit the array size and C++ will

automatically make the size of the C-string variable one more than the length of the
quoted string. (The one extra indexed variable is for '\0' .) For example,

char shortString[] = "abc";

 is equivalent to

char shortString[4] = "abc";

 Be sure you do not confuse the following initializations:

char shortString[] = "abc";

initializing
C-string
variables

www.itpub.net

An Array Type for Strings 371

 and

char shortString[] = {'a', 'b', 'c'};

 They are not equivalent . The first of these two possible initializations places the null
character '\0' in the array after the characters 'a' , 'b' , and 'c' . The second one does
not put a '\0' anyplace in the array.

 Initializing a C-String Variable
A C-string variable can be initialized when it is declared, as illustrated by the following example:

char yourString[11] = "Do Be Do";

Initializing in this way automatically places the null character, '\0', in the array at the end of
the C-string specified.

If you omit the number inside the square brackets, [], then the C-string variable will be
given a size one character longer than the length of the C-string. For example, the following
declares myString to have nine indexed variables (eight for the characters of the C-string
"Do Be Do" and one for the null character '\0'):

char myString[] = "Do Be Do";

 A C-string variable is an array, so it has indexed variables that can be used just like
those of any other array. For example, suppose your program contains the following
C-string variable declaration:

char ourString[5] = "Hi";

 With ourString declared as shown, your program has the following indexed variables:
ourString[0] , ourString[1] , ourString[2] , ourString[3] , and ourString[4] .
For example, the following will change the C-string value in ourString to a C-string
of the same length consisting of all 'X' characters:

int index = 0;

while (ourString[index] != "\0")

{

 ourString[index] = "X";
 index++;
}

 When manipulating these indexed variables you should be very careful not to
replace the null character '\0' with some other value. If the array loses the value '\0'
it will no longer behave like a C-string variable. For example, the following will change
the array happyString so that it no longer contains a C-string:

char happyString[7] = "DoBeDo";
happyString[6] = "Z";

indexed
variables

for C-string
variables

Do not destroy
the '\0'.

372 CHAPTER 9 Strings

 After the previous code is executed, the array happyString will still contain the six
letters in the C-string "DoBeDo" , but happyString will no longer contain the null
character '\0' to mark the end of the C-string. Many string-manipulating functions
depend critically on the presence of '\0' to mark the end of the C-string value.

 As another example, consider the above while loop that changes characters in the
C-string variable ourString . That while loop changes characters until it encounters
a '\0' . If the loop never encounters a '\0' , then it could change a large chunk of
memory to some unwanted values, which could make your program do strange things.
As a safety feature, it would be wise to rewrite the previous while loop as follows, so
that if the null character '\0' is lost, the loop will not inadvertently change memory
locations beyond the end of the array:

int index = 0;
while ((ourString[index] != "\0") && (index < SIZE))
{

ourString[index] = "X";
index++;

}

SIZE is a defined constant equal to the declared size of the array ourString .

 The <cstring> Library

You do not need any include directive or using statement to declare and initialize
C-strings. However, when processing C-strings you inevitably will use some of the
predefined string functions in the library <cstring>. Thus, when using C-strings, you will
normally give the following include directive near the beginning of the file containing
your code:

#include <cstring>

The definitions in <cstring> are placed in the global namespace, not in the std
namespace, and so no using statement is required.

 PITFALL: Using = and == with C-strings

 C-string values and C-string variables are not like values and variables of other data
types, and many of the usual operations do not work for C-strings. You cannot use a
C-string variable in an assignment statement using = . If you use == to test C-strings
for equality, you will not get the result you expect. The reason for these problems is
that C-strings and C-string variables are arrays.

 Assigning a value to a C-string variable is not as simple as it is for other kinds of
variables. The following is illegal:

char aString[10];
aString = "Hello";

assigning a
C-string value

 Illegal!

www.itpub.net

An Array Type for Strings 373

 Although you can use the equal sign to assign a value to a C-string variable when the
variable is declared, you cannot do it anywhere else in your program. Technically, the
use of the equal sign in a declaration, as in

char happyString[7] = "DoBeDo";

 is an initialization, not an assignment. If you want to assign a value to a C-string
variable, you must do something else.

 There are a number of different ways to assign a value to a C-string variable. The
easiest way is to use the predefi ned function strcpy as shown here:

strcpy(aString, "Hello");

 This will set the value of aString equal to "Hello" . Unfortunately, this version of
the function strcpy does not check to make sure the copying does not exceed the
size of the string variable that is the first argument. Many, but not all, versions of
C++ also have a version of strcpy called strncpy (note the extra 'n') that takes a
third argument which gives the maximum number of characters to copy. If this third
parameter is set to one less than the size of the array variable in the first argument
position, then you obtain a safe version of strncpy (provided your version of C++
allows this third argument). For example,

char anotherString[10];
strncpy(anotherString, aStringVariable, 9);

 With this version of strncpy , at most nine characters (leaving room for '\0') will be
copied from the C-string variable aStringVariable no matter how long the string
in aStringVariable may be.

 You also cannot use the operator == in an expression to test whether two
C-strings are the same. (Things are actually much worse than that. You can use == with
C-strings, but it does not test for the C-strings being equal. So if you use == to test
two C-strings for equality, you are likely to get incorrect results, but no error message!)

 To test whether two C-strings are the same, you can use the predefi ned function
strcmp . For example,

if (strcmp(cString1, cString2))
 cout << "The strings are NOT the same.";
else
 cout << "The strings are the same.";

 Note that the function strcmp works differently than you might guess. The
comparison is true if the strings do not match. The function strcmp compares
the characters in the C-string arguments a character at a time. If at any point the
numeric encoding of the character from cString1 is less than the numeric encoding
of the corresponding character from cString2 , the testing stops at that point and
a negative number is returned. If the character from cString1 is greater than the

testing
C-strings

for equality

PITFALL: (continued)

(continued)

374 CHAPTER 9 Strings

character from cString2 , a positive number is returned. (Some implementations of
strcmp return the difference of the character encoding, but you should not depend
on that.) If the C-strings are the same, a 0 is returned. The ordering relationship used
for comparing characters is called lexicographic order . The important point to note
is that if both strings are in all uppercase or all lowercase, then lexicographic order is
just alphabetic order.

 We see that strcmp returns a negative value, a positive value, or zero depending on
whether the C-strings compare lexicographically as lesser, greater, or equal. If you use
strcmp as a Boolean expression in an if or a looping statement to test C-strings for
equality, then the nonzero value will be converted to true if the strings are different,
and the zero will be converted to false . Be sure that you remember this inverted logic
in your testing for C-string equality.

 C++ compilers that are compliant with the standard have a safer version of strcmp
that has a third argument that gives the maximum number of characters to compare.

 The functions strcpy and strcmp are in the library with the header fi le <cstring> ,
so to use them you must insert the following near the top of the fi le:

#include <cstring>

 The definitions of strcpy and strcmp are placed in the global namespace, not in the
std namespace, and so no using directive is required. ■

lexicographic
order

PITFALL: (continued)

 Other Functions in <cstring>

 Display 9.1 contains a few of the most commonly used functions from the library with
the header file <cstring> . To use them, insert the following near the top of the file:

#include <cstring>

 Note that <cstring> places all these definitions in the global namespace, not in the
std namespace, and so no using statement is required.

 We have already discussed strcpy and strcmp . The function strlen is easy to
understand and use. For example, strlen("dobedo") returns 6 because there are six
characters in "dobedo" .

 The function strcat is used to concatenate two C-strings; that is, to form a longer
string by placing the two shorter C-strings end-to-end. The first argument must be a
C-string variable. The second argument can be anything that evaluates to a C-string
value, such as a quoted string. The result is placed in the C-string variable that is the
first argument. For example, consider the following:

char stringVar[20] = "The rain";
strcat(stringVar, "in Spain");

 This code will change the value of stringVar to "The rainin Spain" . As this
example illustrates, you need to be careful to account for blanks when concatenating

www.itpub.net

An Array Type for Strings 375

C-strings. If you look at the table in Display 9.1 you will see that there is a safer,
three-argument version of the function strcat that is available in many, but not all,
versions of C++.

 C-String Arguments and Parameters
A C-string variable is an array, so a C-string parameter to a function is simply an array
parameter.

As with any array parameter, whenever a function changes the value of a C-string
parameter, it is safest to include an additional int parameter given the declared size of
the C-string variable.

On the other hand, if a function only uses the value in a C-string argument but does not
change that value, then there is no need to include another parameter to give either the
declared size of the C-string variable or the amount of the C-string variable array that is filled.
The null character, '\0', can be used to detect the end of the C-string value that is stored
in the C-string variable.

 Display 9.1 Some Predefi ned C-String Functions in <cstring> (part 1 of 2)

 FUNCTION DESCRIPTION CAUTIONS

strcpy
(Target_
String_Var,
Src_String)

Copies the C-string value Src_
String into the C-string variable
Target_String_Var.

Does not check to make sure
Target_String_Var is large
enough to hold the value Src_
String.

strncpy
(Target_
String_Var,
Src_String,
Limit)

The same as the two-argument
strcpy except that at most
Limit characters are copied.

If Limit is chosen carefully,
this is safer than the two-
argument version of strcpy.
Not implemented in all versions
of C++.

strcat
(Target_
String_Var,
Src_String)

Concatenates the C-string value
Src_String onto the end of the
C-string in the C-string variable
Target_String_Var.

Does not check to see that
Target_String_Var is large
enough to hold the result of the
concatenation.

strncat
(Target_
String_Var,
Src_String,
Limit)

The same as the two-argument
strcat except that at most
Limit characters are appended.

If Limit is chosen carefully,
this is safer than the two-
argument version of strcat.
Not implemented in all versions
of C++.

strlen (Src_
String)

Returns an integer equal to the
length of Src_String. (The null
character, '\0', is not counted in
the length.)

(continued)

376 CHAPTER 9 Strings

 FUNCTION DESCRIPTION CAUTIONS

 strcmp
(String_1,
String_2)

 Returns 0 if String_1 and
 String_2 are the same. Returns
a value < 0 if String_1 is less
than String_2 . Returns a value
> 0 if String_1 is greater than
 String_2 (that is, returns a
nonzero value if String_1 and
 String_2 are different). The
order is lexicographic.

 If String_1 equals String_2 ,
this function returns 0, which
converts to false . Note that
this is the reverse of what you
might expect it to return when
the strings are equal.

 strncmp
(String_1,
String_2,
Limit)

The same as the two-argument
 strcat except that at most
 Limit characters are compared.

 If Limit is chosen carefully,
this is safer than the two-
argument version of strcmp. Not
implemented in all versions of C++.

Display 9.1 Some Predefi ned C-String Functions in <cstring> (part 2 of 2)

 EXAMPLE: Command-Line Arguments

 So far, we have not specified any parameters for the main function. However, it
is possible to specify input parameters for main . The input parameters match up
with arguments given to the program when it is invoked from a command line. For
example, on a UNIX machine the command

 ls /home

 invokes the ls program with the command-line argument of /home to list the
contents of the /home directory. To access the command-line arguments input to a
C++ program, use the following header for main :

 int main(int argc, char *argv[])

 The argc parameter is an integer that specifies how many arguments are given to the
program. The name of the program counts, so argc will be at least 1.

 The argv parameter is an array of C-strings. argv[0] holds the name of the
program. argv[1] holds the name of the first parameter, argv[2] holds the name of
the second parameter, and so on up to argv[argc-1] .

 For example, if the program is named getPalindromes and is invoked from the
command line as

 getPalindromes string1 string2

 then inside main, argc = 3, argv[0] = “getPalindromes”, argv[1] = “string1”, and
argv[2] = “string2”.

www.itpub.net

An Array Type for Strings 377

 Self-Test Exercises

 1. Which of the following declarations are equivalent?

 char stringVar[10] = "Hello";

 char stringVar[10] = {'H', 'e', 'l', 'l', 'o', '\0'};

 char stringVar[10] = {'H', 'e', 'l', 'l', 'o'};

 char stringVar[6] = "Hello";
 char stringVar[] = "Hello";

 2. What C-string will be stored in singingString after the following code is run?

 char singingString[20] = "DoBeDo";
 strcat(singingString, " to you");

 Assume that the code is embedded in a complete and correct program and that
an include directive for <cstring> is in the program fi le.

 3. What (if anything) is wrong with the following code?

 char stringVar[] = "Hello";
 strcat(stringVar, " and Good-bye.");
 cout << stringVar;

 Assume that the code is embedded in a complete program and that an include
directive for <cstring> is in the program fi le.

 4. Suppose the function strlen (which returns the length of its string argument)
was not already defi ned for you. Give a function defi nition for strlen . Note
that strlen has only one argument, which is a C-string. Do not add additional
arguments; they are not needed.

 5. What is the length (maximum) of a string that can be placed in the string
variable declared by the following declaration? Explain.

 char s[6];

 6. How many characters are in each of the following character and string constants?
 a. '\n'

 b. "n"

 c. "Mary"
 d. "M"
 e. "Mary\n"

(continued)

EXAMPLE: (continued)

 If your program intends to use the contents of argv , then it should verify that
arguments were actually input by ensuring that argc is appropriately set. Otherwise,
your program may produce incorrect results when accessing argv .

378 CHAPTER 9 Strings

 7. Since character strings are just arrays of char , why does the text caution you not
to confuse the following declaration and initialization?

char shortString[] = "abc";
char shortString[] = { 'a', 'b', 'c'};

 8. Given the following declaration and initialization of the string variable, write a loop
to assign 'X' to all positions of this string variable, keeping the length the same.

char ourString[15] = "Hi there!";

 9. Consider the following declaration of a C-string variable, where SIZE is a defi ned
constant:

char ourString[SIZE];

 The C-string variable ourString has been assigned in code not shown here. For
correct C-string variables, the following loop reassigns all positions of ourString
the value 'X' , leaving the length the same as before. Assume this code fragment
is embedded in an otherwise complete and correct program. Answer the
questions following this code fragment.

int index = 0;
while (ourString[index] != '\0')
{

ourString[index] = 'X';
index++;

}

 a. Explain how this code can destroy the contents of memory beyond the end of
the array.

 b. Modify this loop to protect against inadvertently changing memory beyond
the end of the array.

 10. Write code using a library function to copy the string constant "Hello" into the
string variable declared next. Be sure to #include the necessary header fi le to get
the declaration of the function you use.

char aString[10];

 11. What string will be output when this code is run? (Assume, as always, that this
code is embedded in a complete, correct program.)

char song[10] = "I did it";
char franksSong[20];
strcpy (franksSong, song);
strcat (franksSong, "my way!");
cout << franksSong << endl;

 12. What is the problem (if any) with this code?

char aString[20] = "How are you?";
strcat(aString, "Good, I hope.");

Self-Test Exercises (continued)

www.itpub.net

An Array Type for Strings 379

 C-String Input and Output

 C-strings can be output using the insertion operator, << . In fact, we have already been
doing so with quoted strings. You can use a C-string variable in the same way. For
example,

cout << news << "Wow.\n";

 where news is a C-string variable.
 It is possible to fill a C-string variable using the input operator >> , but there is one

thing to keep in mind. As for all other types of data, all whitespace (blanks, tabs, and
line breaks) are skipped when C-strings are read this way. Moreover, each reading of
input stops at the next space or line break. For example, consider the following code:

char a[80], b[80];

cout << "Enter some input:\n";

cin >> a >> b;
cout << a << b << "END OF OUTPUT\n";

 When embedded in a complete program, this code produces a dialogue like the
following:

Enter some input:

Do be do to you!
DobeEND OF OUTPUT

 The C-string variables a and b each receive only one word of the input: a receives the
C-string value "Do" because the input character following Do is a blank; b receives "be"
because the input character following be is a blank.

 If you want your program to read an entire line of input, you can use the extraction
operator, >> , to read the line one word at a time. This can be tedious and it still will
not read the blanks in the line. There is an easier way to read an entire line of input and
place the resulting C-string into a C-string variable: Just use the predefined member
function getline , which is a member function of every input stream (such as cin or
a file input stream). The function getline has two arguments. The first argument is a
C-string variable to receive the input and the second is an integer that typically is the
declared size of the C-string variable. The second argument specifies the maximum
number of array elements in the C-string variable that getline will be allowed to fill
with characters. For example, consider the following code:

char a[80];

cout << "Enter some input:\n";

cin.getline(a, 80);
cout << a << "END OF OUTPUT\n";

 When embedded in a complete program, this code produces a dialogue like the
following:

Enter some input:
Do be do to you!
Do be do to you!END OF OUTPUT

getline

380 CHAPTER 9 Strings

 With the function cin.getline , the entire line is read. The reading ends when the
line ends, even though the resulting C-string may be shorter than the maximum
number of characters specified by the second argument.

 When getline is executed, the reading stops after the number of characters given
by the second argument has been filled in the C-string array, even if the end of the line
has not been reached. For example, consider the following code:

char shortString[5];
cout << "Enter some input:\n";
cin.getline(shortString, 5);
cout << shortString << "END OF OUTPUT\n";

 When embedded in a complete program, this code produces a dialogue like the
following:

Enter some input:
dobedowap
dobeEND OF OUTPUT

 Notice that four, not five, characters are read into the C-string variable shortString ,
even though the second argument is 5 . This is because the null character '\0' fills one
array position. Every C-string is terminated with the null character when it is stored in
a C-string variable, and this always consumes one array position.

 The C-string input and output techniques we illustrated for cout and cin work the
same way for input and output with files. The input stream cin can be replaced by an
input stream that is connected to a file. The output stream cout can be replaced by an
output stream that is connected to a file. (File I/O is discussed in Chapter 12 .)

input/output
with files

getline

The member function getline can be used to read a line of input and place the string of
characters on that line into a C-string variable.

 SYNTAX

cin.getline (String_Var, Max_Characters + 1);

One line of input is read from the stream Input_Stream and the resulting C-string is
placed in String_Var. If the line is more than Max_Characters long, only the first Max_
Characters on the line are read. (The +1 is needed because every C-string has the null
character '\0' added to the end of the C-string and thus the string stored in String_Var
is one longer than the number of characters read in.)

 EXAMPLE

char oneLine[80];
cin.getline(oneLine, 80);

As you will see in Chapter 12, you can use an input stream connected to a text file in place
of cin.

www.itpub.net

Character Manipulation Tools 381

 9.2 Character Manipulation Tools

 They spell it Vinci and pronounce it Vinchy; foreigners always spell better than
they pronounce.

MARK TWAIN, The Innocents Abroad

 Any form of string is ultimately composed of individual characters. Thus, when doing
string processing it is often helpful to have tools at your disposal to test and manipulate
individual values of type char . This section is about such tools.

 Character I/O

 All data is input and output as character data. When your program outputs the
number 10 , it is really the two characters '1' and '0' that are output. Similarly,
when the user wants to type in the number 10, he or she types in the character
'1' followed by the character '0' . Whether the computer interprets this "10" as
two characters or as the number 10 depends on how your program is written. But,
however your program is written, the computer hardware is always reading the

 Self-Test Exercises

 13. Consider the following code (and assume it is embedded in a complete and
correct program and then run):

char a[80], b[80];
cout << "Enter some input:\n";
cin >> a >> b;
cout << a << '-' << b << "END OF OUTPUT\n";

 If the dialogue begins as follows, what will be the next line of output?

Enter some input:
The

time is now.

 14. Consider the following code (and assume it is embedded in a complete and
correct program and then run):

char myString[80];
cout << "Enter a line of input:\n";
cin.getline(myString, 6);
cout << myString << "<END OF OUTPUT";

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
May the hair on your toes grow long and curly.

382 CHAPTER 9 Strings

characters '1' and '0' , not the number 10. This conversion between characters and
numbers is usually done automatically so that you need not think about such details;
however, sometimes all this automatic help gets in the way. Therefore, C++ provides
some low-level facilities for input and output of character data. These low-level
facilities include no automatic conversions. This allows you to bypass the automatic
facilities and do input/output in absolutely any way you want. You could even write
input and output functions that can read and write int values in Roman numeral
notation, if you wanted to be so perverse.

 The Member Functions get and put

 The function get allows your program to read in one character of input and store it
in a variable of type char . Every input stream, whether it is an input-file stream or the
stream cin , has get as a member function. We will describe get here as a member
function of the object cin . (When we discuss file I/O in Chapter 12 we will see that it
 behaves exactly the same for input-file streams as it does for cin .)

 Before now, we have used cin with the extraction operator, >> , in order to read a
character of input (or any other input, for that matter). When you use the extraction
operator >> , some things are done for you automatically, such as skipping over
whitespace. But sometimes you do not want to skip over whitespace. The member
function cin.get reads the next input character no matter whether the character is
whitespace or not.

 The member function get takes one argument, which should be a variable of type
char . That argument receives the input character that is read from the input stream.
For example, the following will read in the next input character from the keyboard and
store it in the variable nextSymbol :

char nextSymbol;
cin.get(nextSymbol);

 It is important to note that your program can read any character in this way. If the next
input character is a blank, this code will read the blank character. If the next character
is the newline character '\n' (that is, if the program has just reached the end of an
input line), then the previous call to cin.get will set the value of nextSymbol equal to
'\n' . For example, suppose your program contains the following code,

char c1, c2, c3;
cin.get(c1);
cin.get(c2);
cin.get(c3);

 and suppose you type in the following two lines of input to be read by this code:

AB
CD

 The value of c1 is set to 'A' , the value of c2 is set to 'B' , and the value of c3 is set to
'\n' . The variable c3 is not set equal to 'C' .

cin.get

reading blanks
and '\n'

www.itpub.net

Character Manipulation Tools 383

 One thing you can do with the member function get is to have your program detect
the end of a line. The following loop will read a line of input and stop after passing the
newline character '\n' . Any subsequent input will be read from the beginning of the
next line. For this first example, we have simply echoed the input, but the same technique
would allow you to do whatever you want with the input.

cout << "Enter a line of input and I will echo it:\n";
char symbol;
do
{

cin.get(symbol);
cout << symbol;

} while (symbol != '\n');
cout << "That's all for this demonstration.\n";

 This loop will read any line of input and echo it exactly, including blanks. The
following is a sample dialogue produced by this code:

Enter a line of input and I will echo it:
Do Be Do 1 2 34
Do Be Do 1 2 34
That's all for this demonstration.

 Notice that the newline character '\n' is both read and output. Since '\n' is output,
the string that begins with the word "That's" is on a new line.

detecting
the end of an

input line

 '\n' and "\n"

'\n' and "\n" sometimes seem like the same thing. In a cout statement, they produce
the same effect, but they cannot be used interchangeably in all situations. '\n' is a value of
type char and can be stored in a variable of type char. On the other hand, "\n" is a string
that happens to be made up of exactly one character. Thus, "\n" is not of type char and
cannot be stored in a variable of type char.

 The member function put is analogous to the member function get except that it
is used for output rather than input. The function put allows your program to output
one character. The member function cout.put takes one argument, which should be
an expression of type char , such as a constant or a variable of type char . The value
of the argument is output to the screen when the function is called. For example, the
following will output the letter 'a' to the screen:

cout.put("a");

 The function cout.put does not allow you to do anything you could not do with
the insertion operator << , but we include it for completeness. (When we discuss file
I/O in Chapter 12 , we will see that put can be used with an output stream connected
to a text file and is not restricted to being used only with cout .)

put

384 CHAPTER 9 Strings

 If your program uses cin.get or cout.put , then just as with other uses of cin and
cout , your program should include one of the following (or something similar):

#include <iostream>
using namespace std;

 or

#include <iostream>
using std::cin;

using std::cout;

 The Member Function get
The function get can be used to read one character of input. Unlike the extraction operator,
>>, get reads the next input character, no matter what that character is. In particular,
get will read a blank or the newline character, '\n', if either of these are the next input
character. The function get takes one argument, which should be a variable of type char.
When get is called, the next input character is read and the argument variable has its value
set equal to this input character.

 EXAMPLE

char nextSymbol;
cin.get(nextSymbol);

As we will see in Chapter 12, if you wish to use get to read from a file, you use an input-file
stream in place of the stream cin.

 EXAMPLE: Checking Input Using a Newline Function

 The function getInt in Display 9.2 asks the user if the input is correct and asks for
a new value if the user says the input is incorrect. The program in Display 9.2 is just
a driver program to test the function getInt , but the function, or one very similar
to it, can be used in just about any kind of program that takes its input from the
keyboard.

 Notice the call to the function newLine(). The function newL ine reads all the
characters on the remainder of the current line but does nothing with them. This
amounts to discarding the remainder of the line. Thus, if the user types in No , then
the program reads the first letter, which is N , and then calls the function newLine ,
which discards the rest of the input line. This means that if the user types 75 on the
next input line, as shown in the sample dialogue, the program will read the number
75 and will not attempt to read the letter o in the word No . If the program did not
include a call to the function newLine , then the next item read would be the o in the
line containing No instead of the number 75 on the following line.

www.itpub.net

Character Manipulation Tools 385

 Display 9.2 Checking Input (part 1 of 2)

1 //Program to demonstrate the functions newLine and getInput
2 #include <iostream>
3 using namespace std;

4 void newLine();
5 //Discards all the input remaining on the current input line.
6 //Also discards the '\n' at the end of the line.

7 void getInt(int& number);
8 //Sets the variable number to a
9 //value that the user approves of.

10 int main()
11 {
12 int n;

13 getInt(n);
14 cout << "Final value read in = " << n << endl
15 << "End of demonstration.\n";

16 return 0;
17 }

18 //Uses iostream:
19 void newLine()
20 {
21 char symbol;
22 do
23 {
24 cin.get(symbol);
25 } while (symbol != '\n');

26 }
27 //Uses iostream:
28 void getInt(int& number)
29 {
30 char ans;
31 do
32 {
33 cout << "Enter input number: ";
34 cin >> number;
35 cout << "You entered " << number
36 << " Is that correct? (yes/no): ";
37 cin >> ans;
38 newLine();
39 } while ((ans == 'N') || (ans == 'n'));
40 }

(continued)

386 CHAPTER 9 Strings

 Display 9.2 Checking Input (part 2 of 2)

 Sample Dialogue

Enter input number: 57
You entered 57 Is that correct? (yes/no): No No No!
Enter input number: 75
You entered 75 Is that correct? (yes/no): yes
Final value read in = 75
End of demonstration.

 PITFALL: Unexpected '\n' in Input

 When using the member function get you must account for every character of
input, even the characters you do not think of as being symbols, such as blanks and
the newline character, '\n' . A common problem when using get is forgetting to
dispose of the '\n' that ends every input line. If there is a newline character in the
input stream that is not read (and usually discarded), then when your program next
expects to read a “real” symbol using the member function get , it will instead read
the character '\n' . To clear the input stream of any leftover '\n' , you can use the
function newLine , which we defined in Display 9.2 (or you can use the function
ignore , which we discuss in the next subsection). Let us look at a concrete example.

 It is legal to mix the different forms of cin . For example, the following is legal:

cout << "Enter a number:\n";
int number;
cin >> number;
cout << "Now enter a letter:\n";
char symbol;
cin.get(symbol);

 However, this can produce problems, as illustrated by the following dialogue:

Enter a number:
21
Now enter a letter:
A

 With this dialogue, the value of number will be 21 as you expect. However, if you
expect the value of the variable symbol to be 'A' , you will be disappointed. The
value given to symbol is '\n' . After reading the number 21 , the next character in the
input stream is the newline character, '\n' , and so that is read next. Remember, get
does not skip over line breaks and spaces. (In fact, depending on what is in the rest
of the program, you may not even get a chance to type in the A. Once the variable
symbol is filled with the character '\n' , the program proceeds to whatever statement
is next in the program. If the next statement sends output to the screen, the screen
will be filled with output before you get a chance to type in the A.)

www.itpub.net

Character Manipulation Tools 387

 The putback, peek , and ignore Member Functions

 Sometimes your program needs to know the next character in the input stream.
However, after reading the next character, it might turn out that you do not want to
process that character and so would like to “put it back.” For example, if you want your
program to read up to but not include the first blank it encounters, then your program
must read that first blank in order to know when to stop reading—but then that blank
is no longer in the input stream. Some other part of your program might need to
read and process this blank. One way to deal with this situation is to use the member
function cin.putback . The function cin.putback takes one argument of type char
and places the value of that argument back in the input stream so that it will be the
next character to be read. The argument can be any expression that evaluates to a value
of type char . The character that is put back into the input stream with the member
function putback need not be the last character read; it can be any character you wish.

 The peek member function does what you might expect from its name. cin.peek()
returns the next character to be read by cin , but it does not use up that character; the next
read starts with that character. In other words, the peek function peeks ahead to tell your
program what the next character to be read will be.

 PITFALL: (continued)

 The following rewriting of the previous code will cause the previous dialogue to fi ll the
variable number with 21 and fi ll the variable symbol with 'A' :

cout << "Enter a number:\n";
int number;
cin >> number;
cout << "Now enter a letter:\n";
char symbol;
cin >> symbol;

 Alternatively, you can use the function newLine , defined in Display 9.2 , as follows:

cout << "Enter a number:\n";
int number;
cin >> number;
newLine();
cout << "Now enter a letter:\n";
char symbol;
cin.get(symbol);

 As this second rewrite indicates, you can mix the two forms of cin and have your
program work correctly, but it does require some extra care.

 As a third alternative, you could use the function ignore , which we discuss in the
next subsection. ■

putback

peek

388 CHAPTER 9 Strings

 If you want to skip over input up to some designated character, such as the newline
character '\n' , you can use the ignore member function. For example, the following
will skip over all input characters up to and including the newline character, '\n' :

cin.ignore(1000, '\n');

 The 1000 is the maximum number of characters to ignore. If the delimiter, in this case
'\n' , has not been found after 1000 characters, then no more characters are ignored.
Of course, a different int argument can be used in place of 1000 and a different
character argument can be used in place of '\n' .

 As we will see in Chapter 12 , the member functions putback , peek , and ignore
can be used with cin replaced by a file input stream object for text file input.

 Self-Test Exercises

 15. Consider the following code (and assume that it is embedded in a complete and
correct program and then run):

char c1, c2, c3, c4;
cout << "Enter a line of input:\n";
cin.get(c1);
cin.get(c2);
cin.get(c3);
cin.get(c4);
cout << c1 << c2 << c3 << c4 << "END OF OUTPUT";

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
a b c d e f g

 16. Consider the following code (and assume that it is embedded in a complete and
correct program and then run):

char next;
int count = 0;
cout << "Enter a line of input:\n";
cin.get(next);
while (next != '\n')
{

if ((count % 2) == 0)
cout << next;

count++;
cin.get(next);

}

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
abcdef gh

 True if count is even

ignore

www.itpub.net

Character Manipulation Tools 389

 Character-Manipulating Functions

 In text processing you often want to convert lowercase letters to uppercase or vice versa.
The predefined function toupper can be used to convert a lowercase letter to an uppercase
letter. For example, toupper('a') returns 'A' . If the argument to the function toupper
is anything other than a lowercase letter, toupper simply returns the argument unchanged.
So toupper('A') returns 'A' , and toupper('?') returns '?' . The function tolower is
similar except that it converts an uppercase letter to its lowercase version.

 The functions toupper and tolower are in the library with the header file
<cctype> , so any program that uses these functions, or any other functions in this
library, must contain the following:

#include <cctype>

 Note that <cctype> places all these definitions in the global namespace, and so
no using directive is required. Display 9.3 contains descriptions of some of the most
commonly used functions in the library <cctype> .

 The function isspace returns true if its argument is a whitespace character.
Whitespace characters are all the characters that are displayed as blank space on the
screen, including the blank character, the tab character, and the newline character,
'\n' . If the argument to isspace is not a whitespace character, then isspace returns
false . Thus, isspace(' ') returns true and isspace('a') returns false .

whitespace

 Self-Test Exercises (continued)

17. Suppose that the program described in Self-Test Exercise 16 is run and the
dialogue begins as follows (instead of beginning as shown in Self-Test Exercise 16).
What will be the next line of output?

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11

 18. Consider the following code (and assume that it is embedded in a complete and
correct program and then run):

char next;
int count = 0;
cout << "Enter a line of input:\n";
cin >> next;
while (next != '\n')
{

if ((count % 2) == 0)
cout << next;

count++;
cin >> next;

}

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11

390 CHAPTER 9 Strings

 Display 9.3 Some Functions in <cctype> (part 1 of 2)

 FUNCTION DESCRIPTION EXAMPLE

toupper
(Char_Exp)

Returns the uppercase
version of Char_Exp (as
a value of type int).

char c = toupper('a');
cout << c;
Outputs: A

tolower
(Char_Exp)

Returns the lowercase
version of Char_Exp (as
a value of type int).

char c = tolower ('A');
cout << c;
Outputs: a

isupper
(Char_Exp)

Returns true provided
Char_Exp is an uppercase
letter; otherwise, returns
false.

if (isupper(c))
 cout << "Is uppercase.";
else
 cout << "Is not uppercase.";

islower
(Char_Exp)

Returns true provided
Char_Exp is a lowercase
letter; otherwise, returns
false.

char c = 'a';
if (islower(c))
 cout << c << " is lowercase.";
Outputs: a is lowercase.

isalpha
(Char_Exp)

Returns true provided
Char_Exp is a letter of
the alphabet; otherwise,
returns false.

char c = '$';
if (isalpha(c))
 cout << "Is a letter.";
else

cout << "Is not a letter.";
Outputs: Is not a letter.

isdigit
(Char_Exp)

Returns true provided
Char_Exp is one of the
digits '0' through '9';
otherwise, returns false.

if (isdigit('3'))
 cout << "It's a digit.";
else
 cout << "It's not a digit.";
Outputs: It's a digit.

isalnum
(Char_Exp)

Returns true provided
Char_Exp is either a
letter or a digit; otherwise,
returns false.

if (isalnum('3') && isalnum('a'))
 cout << "Both alphanumeric.";
else
 cout << "One or more are not.";
Outputs: Both alphanumeric.

isspace
(Char_Exp)

Returns true provided
Char_Exp is a whitespace
character, such as the
blank or newline character;
otherwise, returns false.

//Skips over one "word" and sets c
//equal to the first whitespace
//character after the "word":
do
{
 cin.get(c);
}
while (! isspace(c));

ispunct
(Char_Exp)

Returns true provided
Char_Exp is a printing
character other than
whitespace, a digit, or a
letter; otherwise, returns
false.

if (ispunct('?'))
 cout << "Is punctuation.";
else
 cout << "Not punctuation.";

www.itpub.net

Character Manipulation Tools 391

 For example, the following will read a sentence terminated with a period and echo
the string with all whitespace characters replaced with the symbol '-' :

char next;
do
{

cin.get(next);
if (isspace(next))

cout << '-';
else

cout << next;
} while (next != '.');

 For example, if the previous code is given the following input,

Ahh do be do.

 it will produce the following output:

Ahh---do-be-do.

 FUNCTION DESCRIPTION EXAMPLE

isprint
(Char_Exp)

Returns true provided
Char_Exp is a printing
character; otherwise,
returns false.

isgraph
(Char_Exp)

Returns true provided
Char_Exp is a printing
character other than
whitespace; otherwise,
returns false.

isctrl
(Char_Exp)

Returns true provided
Char_Exp is a control
character; otherwise,
returns false.

Display 9.3 Some Functions in <cctype> (part 2 of 2)

 PITFALL: toupper and tolower Return int Values

 In many ways C++ considers characters to be whole numbers, similar to the numbers
of type int . Each character is assigned a number. When the character is stored in a
variable of type char , it is this number that is placed in the computer’s memory. In
C++ you can use a value of type char as a number, for example, by placing it in a
variable of type int . You can also store a number of type int in a variable of type

(continued)

392 CHAPTER 9 Strings

PITFALL: (continued)

char (provided the number is not too large). Thus, the type char can be used as
the type for characters or as a type for small whole numbers. Usually you need not
be concerned with this detail and can simply think of values of type char as being
characters without worrying about their use as numbers. However, when using some
of the functions in <cctype> , this detail can be important. The functions toupper
and tolower actually return values of type int rather than values of type char ;
that is, they return the number corresponding to the character we think of them as
returning, rather than the character itself. Thus, the following will not output the
letter 'A' but will instead output the number that is assigned to 'A' :

cout << toupper('A');

 To get the computer to treat the value returned by toupper or tolower as a value of
type char (as opposed to a value of type int), you need to indicate that you want a
value of type char . One way to do this is to place the value returned in a variable of
type char . The following will output the character 'A' , which is usually what we want.

char c = toupper('a');
cout << c;

 Another way to get the computer to treat the value returned by toupper or tolower
as a value of type char is to use a type cast, as follows:

cout << static_cast<char>(toupper('a')); ■

 Self-Test Exercises

 19. Consider the following code (and assume that it is embedded in a complete and
correct program and then run):

cout << "Enter a line of input:\n";
char next;
do
{

cin.get(next);
 cout << next;
} while ((! isdigit(next)) && (next != '\n'));
cout << "<END OF OUTPUT";

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
I'll see you at 10:30 AM.

 20. Write some C++ code that will read a line of text and echo the line with all
uppercase letters deleted.

 21. Rewrite the defi nition of the newLine function in Display 9.2 but this time use
the ignore member function.

www.itpub.net

The Standard Class string 393

 9.3 The Standard Class string

 I try to catch every sentence, every word you and I say, and quickly lock all
these sentences and words away in my literary storehouse because they might
come in handy.

 ANTON CHEKHOV, The Seagull

 Section 9.1 introduced C-strings. These C-strings are simply arrays of characters
terminated with the null character, ' \0 '. To manipulate these C-strings you need to
worry about all the details of handling arrays. For example, when you want to add
characters to a C-string and there is not enough room in the array, you must create
another array to hold this longer string of characters. In short, C-strings require that
you the programmer keep track of all the low-level details of how the C-strings are
stored in memory. This is a lot of extra work and a source of programmer errors. The
ANSI/ISO standard for C++ specified that C++ must now also have a class string that
allows the programmer to treat strings as a basic data type without needing to worry
about implementation details. This section introduces you to this string type.

 Introduction to the Standard Class string

 The class string is defined in the library whose name is also <string> , and the
definitions are placed in the std namespace. To use the class string , therefore, your
code must contain the following (or something more or less equivalent):

#include <string>
using namespace std;

 The class string allows you to treat string values and string expressions very much
like values of a simple type. You can use the = operator to assign a value to a string
variable, and you can use the + sign to concatenate two strings. For example, suppose
s1 , s2 , and s3 are objects of type string and both s1 and s2 have string values. Then
s3 can be set equal to the concatenation of the string value in s1 followed by the
string value in s2 as follows:

s3 = s1 + s2;

 There is no danger of s3 being too small for its new string value. If the sum of the
lengths of s1 and s2 exceeds the capacity of s3 , then more space is automatically
allocated for s3 .

 As we noted earlier in this chapter, quoted strings are really C-strings and so they are
not literally of type string . However, C++ provides automatic type casting of quoted
strings to values of type string . Thus, you can use quoted strings as if they were literal
values of type string , and we (and most others) will often refer to quoted strings as if
they were values of type string . For example,

s3 = "Hello Mom!";

 sets the value of the string variable s3 to a string object with the same characters as
in the C-string "Hello Mom!" .

+ does
concatenation

394 CHAPTER 9 Strings

 The class string has a default constructor that initializes a string object to the
empty string. The class string also has a second constructor that takes one argument
that is a standard C-string and so can be a quoted string. This second constructor
initializes the string object to a value that represents the same string as its C-string
argument. For example,

string phrase;
string noun("ants");

 The first line declares the string variable phrase and initializes it to the empty string.
The second line declares noun to be of type string and initializes it to a string value
equivalent to the C-string "ants" . Most programmers when talking loosely would
say that “ noun is initialized to "ants" ,” but there really is a type conversion here. The
quoted string "ants" is a C-string, not a value of type string . The variable noun
receives a string value that has the same characters as "ants" in the same order
as "ants" , but the string value is not terminated with the null character '\0' . In
theory, at least, you do not need to know or care whether the string value of noun is
even stored in an array, as opposed to some other data structure.

 There is an alternate notation for declaring a string variable and invoking the
default constructor. The following two lines are exactly equivalent:

string noun("ants");
string noun = "ants";

 These basic details about the class string are illustrated in Display 9.4 . Note that, as
illustrated there, you can output string values using the operator << .

constructors

 Display 9.4 Program Using the Class string

1 //Demonstrates the standard class string.
2 #include <iostream>
3 #include <string>
4 using namespace std;

5 int main()
6 {
7 string phrase;
8 string adjective("fried"), noun("ants");
9 string wish = "Bon appetite!";

10 phrase = "I love" + adjective + " " + noun + "!";
11 cout << phrase << endl
12 << wish << endl;

13 return 0;
14 }

 Sample Dialogue

I love fried ants!
Bon appetite!

 Initialized to the
empty string

 Two equivalent
ways of initializing a
string variable

www.itpub.net

 Consider the following line from Display 9.4 :

phrase = "I love " + adjective + " " + noun + "!";

 C++ must do a lot of work to allow you to concatenate strings in this simple and natural
fashion. The string constant "I love " is not an object of type string . A string
constant like "I love " is stored as a C-string (in other words, as a null-terminated
array of characters). When C++ sees "I love " as an argument to + , it finds the
definition (or overloading) of + that applies to a value such as "I love " . There are
overloadings of the + operator that have a C-string on the left and a string on the right,
as well as the reverse of this positioning. There is even a version that has a C-string on
both sides of the + and produces a string object as the value returned. Of course, there
is also the overloading you expect, with the type string for both operands.

 C++ did not really need to provide all those overloading cases for + . If these
overloadings were not provided, C++ would look for a constructor that can perform a
type conversion to convert the C-string "I love" to a value for which + did apply. In
this case, the constructor with the one C-string parameter would perform just such a
conversion. However, the extra overloadings are presumably more efficient.

 The class string is often thought of as a modern replacement for C-strings.
However, in C++ you cannot easily avoid also using C-strings when you program with
the class string .

converting
C-string

constants
to the type

string

 The Class string

The class string can be used to represent values that are strings of characters. The
class string provides more versatile string representation than the C-strings discussed in
Section 9.1.

The class string is defined in the library that is also named <string>, and its definition
is placed in the std namespace. Programs that use the class string should therefore
contain one of the following (or something more or less equivalent):

#include <string>
using namespace std;

or

#include <string>
using std::string;

The class string has a default constructor that initializes the string object to the empty
string, and a constructor that takes a C-string as arguments and initializes the string
object to a value that represents the string given as the argument. For example,

string s1, s2("Hello");

The Standard Class string 395

396 CHAPTER 9 Strings

 I/O with the Class string

 You can use the insertion operator >> and cout to output string objects just as
you do for data of other types. This is illustrated in Display 9.4 . Input with the class
string is a bit more subtle.

 The extraction operator, >> , and cin work the same for string objects as for other
data, but remember that the extraction operator ignores initial whitespace and stops
reading when it encounters more whitespace. This is as true for strings as it is for other
data. For example, consider the following code:

string s1, s2;
cin >> s1;
cin >> s2;

 If the user types in

May the hair on your toes grow long and curly!

 then s1 will receive the value "May" with any leading (or trailing) whitespace deleted. The
variable s2 receives the string "the" . Using the extraction operator, >> , and cin , you
can only read in words; you cannot read in a line or other string that contains a blank.
Sometimes this is exactly what you want, but sometimes it is not at all what you want.

 If you want your program to read an entire line of input into a variable of type
string , you can use the function getline . The syntax for using getline with
string objects is a bit different from what we described for C-strings in Section 9.1 .
You do not use cin.getline ; instead, you make cin the first argument to getline . 1

(So, this version of getline is not a member function.)

string line;
cout << "Enter a line of input:\n";
getline(cin, line);
cout << line << "END OF OUTPUT\n";

 When embedded in a complete program, this code produces a dialogue like the
following:

Enter some input:
Do be do to you!
Do be do to you!END OF OUTPUT

 If there were leading or trailing blanks on the line, they too would be part of the
string value read by getline . This version of getline is in the library <string> .
(As we will see in Chapter 12 , you can use a stream object connected to a text file in
place of cin to do input from a file using getline .)

1 This is a bit ironic, since the class string was designed using more modern object-oriented tech-
niques, and the notation it uses for getline is the old fashioned, less object-oriented notation. This is
an accident of history. This getline function was defined after the <iostream> library was already
in use, so the designers had little choice but to make this getline a standalone function.

getline

www.itpub.net

 You cannot use cin and >> to read in a blank character. If you want to read
one character at a time, you can use cin.get , which we discussed in Section 9.2 .
The function cin.get reads values of type char , not of type string , but it can be
helpful when handling string input. Display 9.5 contains a program that illustrates
both getline and cin.get used for string input. The significance of the function
newline is explained in the Pitfall entitled “Mixing cin >> variable ; and getline .”

 I/O with string Objects
You can use the insertion operator << with cout to output string objects. You can input a
string with the extraction operator >> and cin. When using >> for input, the code reads
in a string delimited with whitespace. You can use the function getline to input an entire
line of text into a string object.

 EXAMPLES

string greeting("Hello"), response, nextLine;
cout << greeting;
cin >> response;
getline(cin, nextLine);

 Display 9.5 Program Using the Class string (part 1 of 2)

1 //Demonstrates getline and cin.get.
2 #include <iostream>
3 #include <string>
4 using namespace std;

5 void newLine();
6 int main()
7 {
8 string firstName, lastName, recordName;
9 string motto = "Your records are our records.";
10 cout << "Enter your first and last name:\n";
11 cin >> firstName >> lastName;
12 newLine();

13 recordName = lastName + ", " + firstName;
14 cout << "Your name in our records is: ";
15 cout << recordName << endl;
16 cout << "Our motto is\n"
17 << motto << endl;
18 cout << "Please suggest a better (one line) motto:\n";
19 getline(cin, motto);
20 cout << "Our new motto will be:\n";
21 cout << motto << endl;

(continued)

The Standard Class string 397

398 CHAPTER 9 Strings

Display 9.5 Program Using the Class string (part 2 of 2)

22 return 0;
23 }
24 //Uses iostream:
25 void newLine()
26 {
27 char nextChar;
28 do
29 {
30 cin.get(nextChar);
31 } while (nextChar != '\n');
32 }

 Sample Dialogue

Enter your first and last names:
B'Elanna Torres

Your name in our records is: Torres, B'Elanna
Our motto is
Your records are our records.
Please suggest a better (one-line) motto:
Our records go where no records dared to go before.
Our new motto will be:
Our records go where no records dared to go before.

 Self-Test Exercises

 22. Consider the following code (and assume that it is embedded in a complete and
correct program and then run):

string s1, s2;
cout << "Enter a line of input:\n";
cin >> s1 >> s2;
cout << s1 << "*" << s2 << "<END OF OUTPUT";

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
A string is a joy forever!

 23. Consider the following code (and assume that it is embedded in a complete and
correct program and then run):

string s;
cout << "Enter a line of input:\n";
getline(cin, s);
cout << s << "<END OF OUTPUT";

www.itpub.net

 Self-Test Exercises (continued)

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
A string is a joy forever!

 TIP: More Versions of getline

 So far, we have described the following way of using getline :

string line;
cout << "Enter a line of input:\n";
getline(cin, line);

 This version stops reading when it encounters the end-of-line marker, '\n'. There is
a version that allows you to specify a different character to use as a stopping signal.
For example, the following will stop when the first question mark is encountered:

string line;
cout << "Enter some input:\n";
getline(cin, line, '?');

 It makes sense to use getline as if it were a void function, but it actually returns a
reference to its first argument, which is cin in the previous code. Thus, the following
will read in a line of text into s1 and a string of non-whitespace characters into s2 :

string s1, s2;
getline(cin, s1) >> s2;

 The invocation getline(cin, s1) returns a reference to cin , so that after the
invocation of getline , the next thing to happen is equivalent to

cin >> s2;

 This kind of use of getline seems to have been designed for use in a C++ quiz
show rather than to meet any actual programming need, but it can come in handy
sometimes. ■

 PITFALL: Mixing cin >> variable ; and getline

 Take care in mixing input using cin >> variable ; with input using getline . For
example, consider the following code:

int n;
string line;
cin >> n;
getline(cin, line);

(continued)

The Standard Class string 399

Using cin
and getline
with the
string class

VideoNote

400 CHAPTER 9 Strings

 PITFALL: (continued)

When this code reads the following input, you might expect the value of n to be
set to 42 and the value of line to be set to a string value representing "Hello
hitchhiker.":

42
Hello hitchhiker.

 However, while n is indeed set to the value of 42 , line is set equal to the empty
string. What happened?

 Using cin >> n skips leading whitespace on the input but leaves the rest of the
line, in this case just '\n' , for the next input. A statement like

cin >> n;

 always leaves something on the line for a following getline to read (even if it is just
the '\n'). In this case, the getline sees the '\n' and stops reading, so getline
reads an empty string. If you find your program appearing to mysteriously ignore
input data, see if you have mixed these two kinds of input. You may need to use
either the newLine function from Display 9.5 or the function ignore from the
library iostream . For example,

cin.ignore(1000, '\n');

 With these arguments, a call to the ignore member function will read and discard the
entire rest of the line up to and including the '\n' (or until it discards 1000 characters
if it does not find the end of the line after 1000 characters).

 Other baffl ing problems can appear with programs that use cin with both >> and
getline . Moreover, these problems can come and go as you move from one C++
compiler to another. When all else fails, or if you want to be certain of portability, you
can resort to character-by-character input using cin.get .

 These problems can occur with any of the versions of getline that we discuss in
this chapter. ■

 getline for Objects of the Class string
The getline function for string objects has two versions:

 istream& getline(istream& ins, string& strVar, char delimiter);

and

 istream& getline(istream& ins, string& strVar);

The first version of this function reads characters from the istream object given as the first
argument (always cin in this chapter), inserting the characters into the string variable
strVar until an instance of the delimiter character is encountered. The delimiter

www.itpub.net

 String Processing with the Class string

 The class string allows you to perform the same operations that you can perform with
the C-strings we discussed in Section 9.1 and more. (A lot more! There are well over
100 members and other functions associated with the standard s tring class.)

 You can access the characters in a string object in the same way that you access
array elements, so string objects have the advantages of arrays of characters plus
a number of advantages that arrays do not have, such as automatically increasing
their capacity.

 If lastName is the name of a string object, then lastName[i] gives access to the
ith character in the string represented by lastName . This use of array square brackets is
illustrated in Display 9.6 .

 Display 9.6 also illustrates the member function length . Every string object has a
member function named length that takes no arguments and returns the length of the
string represented by the string object. Thus, a string object not only can be used
like an array, but the length member function makes it behave like a partially filled
array that automatically keeps track of how many positions are occupied.

 The array square brackets when used with an object of the class string do not
check for illegal indexes. If you use an illegal index (that is, an index that is greater than
or equal to the length of the string in the object), the results are unpredictable but are
bound to be bad. You may just get strange behavior without any error message that
tells you that the problem is an illegal index value. There is a member function named
at that does check for an illegal index value. The member function named at behaves
basically the same as the square brackets, except for two points:

character is removed from the input and discarded. The second version uses '\n' for the
default value of delimiter ; otherwise, it works the same.

These getline functions return their first argument (always cin in this chapter), but they
are usually used as if they were void functions.

 length

 Display 9.6 A string Object Can Behave Like an Array (part 1 of 2)

 1 //Demonstrates using a string object as if it were an array.
2 #include <iostream>
3 #include <string>
4 using namespace std;

5 int main()
6 {
7 string firstName, lastName;

8 cout << "Enter your first and last name:\n";
9 cin >> firstName >> lastName;

 10 cout << "Your last name is spelled:\n";
 11 int i;

(continued)

The Standard Class string 401

402 CHAPTER 9 Strings

 12 for (i = 0; i < lastName.length(); i++)
 13 {
 14 cout << lastName[i] << " ";
 15 lastName[i] = '-';
 16 }
 17 cout << endl;
 18 for (i = 0; i < lastName.length(); i++)
 19 cout << lastName[i] << " "; //Places a "-" under each letter.
 20 cout << endl;

 21 cout << "Good day " << firstName << endl;
 22 return 0;
 23 }

 Sample Dialogue

 Enter your first and last names:
 John Crichton
 Your last name is spelled:
 C r i c h t o n
 - - - - - - - -
 Good day John

Display 9.6 A string Object Can Behave Like an Array (part 2 of 2)

 You use function notation with at , so instead of a[i] , you use a.at(i) , and the at
member function checks to see if i evaluates to an illegal index. If the value of i in
a.at(i) is an illegal index, you should get a runtime error message telling you what
is wrong. In the following code fragment, the attempted access is out of range, yet, it
probably will not produce an error message, although it will be accessing a nonexistent
indexed variable:

 string str("Mary");
 cout << str[6] << endl;

 The next example, however, will cause the program to terminate abnormally, so that
you at least know something is wrong:

 string str("Mary");
 cout << str.at(6) << endl;

 But, be warned that some systems give very poor error messages when a.at(i) has an
illegal index i .

 You can change a single character in the string by assigning a char value to the
indexed variable, such as str[i] . Since the member function at returns a reference,
this may also be done with the member function at . For example, to change the
third character in the string object str to 'X' , you can use either of the following
code fragments:

 str.at(2)='X';

www.itpub.net

 or

str[2]='X';

 As in an ordinary array of characters, character positions for objects of type string are
indexed starting with 0 , so that the third character in a string is in index position 2.

 Display 9.7 gives a partial list of the member functions of the class string .
 In many ways objects of the class string are better behaved than the C-strings we

introduced in Section 9.1 . In particular, the == operator on objects of the string class
returns a result that corresponds to our intuitive notion of strings being equal; namely, it
returns true if the two strings contain the same characters in the same order and returns
false otherwise. Similarly, the comparison operators <, > , <= , and >= compare string
objects using lexicographic ordering. (Lexicographic ordering is alphabetic ordering
using the order of symbols given in the ASCII character set in Appendix 3 . If the strings
consist of all letters and are both either all uppercase or all lowercase letters, then for this
case lexicographic ordering is the same as everyday alphabetical ordering.).

 Display 9.7 Member Functions of the Standard Class string (part 1 of 2)

 EXAMPLE REMARKS

Constructors

string str; Default constructor; creates empty string object str.

string str("string"); Creates a string object with data "string".

string str(aString); Creates a string object str that is a copy of aString.
aString is an object of the class string.

Element access

str[i] Returns read/write reference to character in str at index i.

str.at(i) Returns read/write reference to character in str at index i.

str.substr(position,
length)

Returns the substring of the calling object starting at position
and having length characters.

Assignment/Modifiers

str1 = str2; Allocates space and initializes it to str2's data, releases
memory allocated for str1, and sets str1's size to that
of str2.

str1 += str2; Character data of str2 is concatenated to the end of str1;
the size is set appropriately.

str.empty() Returns true if str is an empty string; returns false
otherwise.

(continued)

The Standard Class string 403

404 CHAPTER 9 Strings

 EXAMPLE REMARKS

str1 + str2 Returns a string that has str2’s data concatenated to the
end of str1’s data. The size is set appropriately.

str.insert(pos, str2) Inserts str2 into str beginning at position pos.

str.remove(pos,
length)

Removes substring of size length, starting at position pos.

Comparisons

str1 == str2 str1 !=
str2

Compare for equality or inequality; returns a Boolean value.

str1 < str2 str1 >
str2

Four comparisons. All are lexicographical comparisons.

str1 <= str2 str1 >=
str2

str.find(str1) Returns index of the first occurrence of str1 in str.

str.find(str1, pos) Returns index of the first occurrence of string str1 in str;
the search starts at position pos.

str.find_first_of
(str1, pos)

Returns the index of the first instance in str of any character
in str1, starting the search at position pos.

str.find_first_not_of
(str1, pos)

Returns the index of the first instance in str of any character
not in str1, starting search at position pos.

Display 9.7 Member Functions of the Standard Class string (part 2 of 2)

 = and == Are Different for strings and C-strings

The operators =, ==, !=, <, >, <=, and <=, when used with the standard C++ type string,
produce results that correspond to our intuitive notion of how strings compare. They do not
misbehave as they do with C-strings, as we discussed in Section 9.1.

 EXAMPLE: Palindrome Testing

 A palindrome is a string that reads the same front to back as it does back to front.
The program in Display 9.8 tests an input string to see if it is a palindrome. Our
palindrome test will disregard all spaces and punctuation and will consider uppercase

www.itpub.net

and lowercase versions of a letter to be the same when deciding if something is a
palindrome. Some palindrome examples are as follows:

Able was I 'ere I saw Elba.
I Love Me, Vol. I.
Madam, I'm Adam.
A man, a plan, a canal, Panama.
Rats live on no evil star.
radar
deed
mom
racecar

 The removePunct function is of interest in that it uses the string member functions
substr and find . The member function substr extracts a substring of the calling
object, given the position and length of the desired substring. The first three lines of
removePunct declare variables for use in the function. The for loop runs through the
characters of the parameter s one at a time and tries to find them in the punct string.
To do this, a string that is the substring of s, of length 1 at each character position,
is extracted. The position of this substring in punct is determined using the find
member function. If this one-character string is not in the punct string , then the
one-character string is concatenated to the noPunct string that is to be returned.

 Display 9.8 Palindrome Testing Program (part 1 of 3)

1 //Test for palindrome property.
2 #include <iostream>
3 #include <string>
4 #include <cctype>
5 using namespace std;
6 void swap(char& v1, char& v2);
7 //Interchanges the values of v1 and v2.
8 string reverse(const string& s);
9 //Returns a copy of s but with characters in reverse order.

10 string removePunct(const string& s, const string& punct);
11 //Returns a copy of s with any occurrences of characters
12 //in the string punct removed .

13 string makeLower (const string& s);
14 //Returns a copy of s that has all uppercase
15 //characters changed to lowercase, with other characters unchanged.

16 bool isPal(const string& s);
17 //Returns true if s is a palindrome; false otherwise.

EXAMPLE: (continued)

(continued)

The Standard Class string 405

406 CHAPTER 9 Strings

18 int main()
19 {
20 string str;
21 cout << "Enter a candidate for palindrome test\n"
22 << "followed by pressing Return.\n";
23 getline(cin, str);

24 if (isPal(str))
25 cout << "\"" << str + "\" is a palindrome.";

26 else
27 cout << "\"" << str + "\" is not a palindrome.";
28 cout << endl;

29 return 0;
30 }

31
32 void swap(char& v1, char& v2)
33 {
34 char temp = v1;
35 v1 = v2;
36 v2 = temp;
37 }

38 string reverse(const string& s)
39 {
40 int start = 0;
41 int end = s.length();
42 string temp(s);

43 while (start < end)
44 {
45 end--;
46 swap(temp[start], temp[end]);
47 start++;
48 }

49 return temp;
50 }

51 //Uses <cctype> and <string>
52 string makeLower(const string& s)
53 {
54 string temp(s);
55 for (int i = 0; i < s.length(); i++)
56 temp[i] = tolower(s[i]);
57
58 return temp;
59 }
60

Display 9.8 Palindrome Testing Program (part 2 of 3)

www.itpub.net

61 string removePunct(const string& s, const string& punct)
62 {
63 string noPunct; //initialized to empty string
64 int sLength = s.length();
65 int punctLength = punct.length();
66 for (int i = 0; i < sLength; i++)
67 {
68 string aChar = s.substr(i,1); //A one-character string
69 int location = punct.find(aChar, 0);
70 //Find location of successive characters
71 //of src in punct.

72 if (location < 0 || location >= punctLength)
73 noPunct = noPunct + aChar; //aChar is not in punct, so keep it
74 }
75
76 return noPunct;
77 }

78 //uses functions makeLower, removePunct
79 bool isPal(const string& s)
80 {
81 string punct(",;:.?!'\" "); //includes a blank
82 string str(s);
83 str = makeLower(str);
84 string lowerStr = removePunct(str, punct);
85
86 return (lowerStr == reverse(lowerStr));
87 }

 Sample Dialogues

Enter a candidate for palindrome test

followed by pressing Return.

Madam, I'm Adam.

"Madam, I'm Adam." is a palindrome.

Enter a candidate for palindrome test

followed by pressing Return.

Radar

"Radar" is a palindrome.

Enter a candidate for palindrome test

followed by pressing Return.

Am I a palindrome?

"Am I a palindrome?" is not a palindrome.

Display 9.8 Palindrome Testing Program (part 3 of 3)

The Standard Class string 407

408 CHAPTER 9 Strings

 Self-Test Exercises

 24. Consider the following code:

string s1, s2("Hello");
cout << "Enter a line of input:\n";
cin >> s1;
if (s1 == s2)
 cout << "Equal\n";
else
 cout << "Not equal\n";

 If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
Hello friend!

 25. What is the output produced by the following code?

string s1, s2("Hello");

s1 = s2;

s2[0] = 'J';
cout << s1 << " " << s2;

 Converting between string Objects and C-Strings

 You have already seen that C++ will perform an automatic type conversion to allow
you to store a C-string in a variable of type string . For example, the following will
work fine:

char aCString[] = "This is my C-string.";
string stringVariable;
stringVariable = aCString;

 However, the following will produce a compiler error message:

aCString = stringVariable; //ILLEGAL

 The following is also illegal:

strcpy(aCString, stringVariable); //ILLEGAL

strcpy cannot take a string object as its second argument and there is no automatic
conversion of string objects to C-strings, which is the problem we cannot seem to get
away from.

 To obtain the C-string corresponding to a string object you must perform an
explicit conversion. This can be done with the string member function c_str() .
The correct version of the copying we have been trying to do is the following:

strcpy(aCString, stringVariable.c_str()); //Legal;

c_str()

www.itpub.net

Answers to Self-Test Exercises 409

 Note that you need to use the strcpy function to do the copying. The member
function c_str() returns the C-string corresponding to the string calling object. As
we noted earlier in this chapter, the assignment operator does not work with C-strings.
So, just in case you thought the following might work, we should point out that it too
is illegal.

aCString = stringVariable.c_str(); //ILLEGAL

 Chapter Summary

• A C-string variable is the same thing as an array of characters, but it is used in a
slightly different way. A string variable uses the null character, '\0' , to mark the end
of the string stored in the array.

• C-string variables usually must be treated like arrays rather than simple variables of
the kind we used for numbers and single characters. In particular, you cannot assign
a C-string value to a C-string variable using the equal sign, = , and you cannot com-
pare the values in two C-string variables using the == operator. Instead, you must use
special C-string functions to perform these tasks.

• The library <cctype> has a number of useful character-manipulating functions.

• You can use cin.get to read a single character of input without skipping over
whitespace. The function cin.get reads the next character no matter what kind of
character it is.

• Various versions of the getline function can be used to read an entire line of input
from the keyboard.

• The ANSI/ISO standard <string> library provides a fully featured class called
string that can be used to represent strings of characters.

• Objects of the class string are better behaved than C-strings. In particular, the
 assignment and equal operators, = and == , have their intuitive meanings when used
with objects of the class string .

 Answers to Self-Test Exercises

 1. The following two declarations are equivalent to each other (but not equivalent to
any others):

 char stringVar[10] = "Hello";
 char stringVar[10] = {'H', 'e', 'l', 'l', 'o', '\0'};

 The following two declarations are equivalent to each other (but not equivalent to
any others):

 char stringVar[6] = "Hello";
 char stringVar[] = "Hello";

410 CHAPTER 9 Strings

 The following declaration is not equivalent to any of the others:

 char stringVar[10] = {'H', 'e', 'l';, 'l', 'o'};

 2. "DoBeDo to you"

 3. The declaration means that stringVar has room for only six characters (including
the null character, '\0'). The function strcat does not check that there is room
to add more characters to stringVar , so strcat will write all the characters in the
string " and Good-bye." into memory, even though that requires more memory
than has been assigned to stringVar . This means memory that should not be
changed will be changed. The net effect is unpredictable, but bad.

 4. If strlen were not already defined for you, you could use the following definition:

 int strlen(const char str[])

//Precondition: str contains a string value terminated

 //with '\0'.

 //Returns the number of characters in the string str (not

 //counting '\0').

 {
 int index = 0;

 while (str[index] != '\0')

 index++;

 return index;

 }

 5. The maximum number of characters is five because the sixth position is needed for
the null terminator ('\0').

 6. a. 1
 b. 1
 c. 5 (including the '\0')
 d. 2 (including the '\0')
 e. 6 (including the '\0')

 7. These are not equivalent. The first of these places the null character '\0' in the
array after the characters 'a' , 'b' , and 'c' . The second only assigns the successive
positions 'a' , 'b' , and 'c' but does not put a '\0' anywhere.

 8. int index = 0;
 while (ourString[index] != '\0')

 {

 ourString[index] = "X";

 index++;

 }

 9. a. If the C-string variable does not have a null terminator, '\0' , the loop can
run beyond the memory allocated for the C-string, destroying the contents of
memory there. To protect memory beyond the end of the array, change the
while condition as shown in b.

 b. while(ourString[index] != '\0' && index < SIZE)

www.itpub.net

 10. #include <cstring>
//needed to get the declaration of strcpy

 ...

 strcpy(aString, "Hello");

 11. I did it my way!

 12. The string "good, I hope." is too long for aString . A chunk of memory that
does not belong to the array aString will be overwritten.

 13. The complete dialogue is as follows:

 Enter some input:

The

 time is now.

 The-time<END OF OUTPUT

 14. The complete dialogue is as follows:

 Enter a line of input:

 May the hair on your toes grow long and curly.
 May t<END OF OUTPUT

 15. The complete dialogue is as follows:

 Enter a line of input:

 a b c d e f g

 a b END OF OUTPUT

 16. The complete dialogue is as follows:

 Enter a line of input:

 abcdef gh

 ace h

 Note that the output is simply every other character of the input, and note that the
blank is treated just like any other character.

 17. The complete dialogue is as follows:

 Enter a line of input:

 0 1 2 3 4 5 6 7 8 9 10 11

 01234567891 1

 Be sure to note that only the '1' in the input string 10 is output. This is because
cin.get is reading characters, not numbers, and so it reads the input 10 as the
two characters '1' and '0' . Since this code is written to echo only every other
 character, the '0' is not output. Since the '0' is not output, the next character,
which is a blank, is output, and so there is one blank in the output. Similarly, only
one of the two '1' characters in 11 is output. If this is unclear, write the input on a
sheet of paper and use a small square for the blank character. Then, cross out every
other character; the output shown previously is what is left.

Answers to Self-Test Exercises 411

412 CHAPTER 9 Strings

 18. This code contains an infinite loop and will continue as long as the user continues
to give it input. The Boolean expression (next != '\n') is always true because
next is filled via the statement

 cin >> next;

 and this statement always skips the newline character, '\n' (as well as any blanks).
The code will run, and if the user gives no additional input, the dialogue will be
as follows:

 Enter a line of input:
 0 1 2 3 4 5 6 7 8 9 10 11

 0246811

 This code outputs every other nonblank character. The two '1' characters in the
output are the first character in the input 10 and the first character in the input 11.

 19. The complete dialogue is as follows:

 Enter a line of input:
 I'll see you at 10:30 AM.

 I'll see you at 1<END OF OUTPUT

 20. cout << "Enter a line of input:\n";

 char next;
 do
 {

 cin.get(next);

 if (!isupper(next))

 cout << next;

 } while (next != '\n');

 Note that you should use !isupper(next) and not use islower(next) . This is
because islower(next) returns false if next contains a character that is not a
letter (such as the blank or comma symbol).

 21. //Uses iostream:
 void newLine()
 {
 cin.ignore(10000, '\n');

 }

 Of course, this only works for lines less than about 10,000 characters, but any lines
longer than that would likely indicate some other unrelated problem.

 22. A*string<END OF OUTPUT

 23. A string is a joy forever!<END OF OUTPUT

 24. The complete dialogue is as follows:

 Enter a line of input:
 Hello friend!
 Equal

 25. Hello Jello

www.itpub.net

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a program that will read in a sentence of up to 100 characters and output
the sentence with spacing corrected and with letters corrected for capitalization.
In other words, in the output sentence all strings of two or more blanks should be
compressed to a single blank. The sentence should start with an uppercase letter
but should contain no other uppercase letters. Do not worry about proper names;
if their first letter is changed to lowercase, that is acceptable. Treat a line break as
if it were a blank in the sense that a line break and any number of blanks are com-
pressed to a single blank. Assume that the sentence ends with a period and contains
no other periods. For example, the input

 the Answer to life, the Universe, and everything
IS 42.

 should produce the following output:

 The answer to life, the universe, and everything is 42.

 2. Write a program that will read in a line of text and output the number of words
in the line and the number of occurrences of each letter. Define a word to be
any string of letters that is delimited at each end by either whitespace, a period, a
comma, or the beginning or end of the line. You can assume that the input consists
entirely of letters, whitespace, commas, and periods. When outputting the number
of letters that occur in a line, be sure to count uppercase and lowercase versions of a
letter as the same letter. Output the letters in alphabetical order and list only those
letters that occur in the input line. For example, the input line

 I say Hi.

 should produce output similar to the following:

 3 words
 1 a

 1 h

 2 i

 1 s

 1 y

 3. Write a program that reads a person’s name in the following format: first name,
then middle name or initial, and then last name. The program then outputs the
name in the following format:

 Last_Name, First_Name, Middle_Initial.

 For example, the input

 Mary Average User

 should produce the output

 User, Mary A.

Programming Projects 413

www.myprogramminglab.com

414 CHAPTER 9 Strings

 The input

 Mary A. User

 should also produce the output

 User, Mary A.

 Your program should place a period after the middle initial even if the input did
not contain a period. Your program should allow for users who give no middle
name or middle initial. In that case, the output, of course, contains no middle
name or initial. For example, the input

 Mary User

 should produce the output

 User, Mary

 If you are using C-strings, assume that each name is at most 20 characters long.
 Alternatively, use the class string . (Hint: You may want to use three string vari-
ables rather than one large string variable for the input. You may find it easier to
not use getline .)

 4. Write a program that reads in a line of text and replaces all four-letter words with
the word "love" . For example, the input string

 I hate you, you dodo!

 should produce the following output:

 I love you, you love!

 Of course, the output will not always make sense. For example, the input string

 John will run home.

 should produce the following output:

 Love love run love.

 If the four-letter word starts wit h a capital letter, it should be replaced by "Love" ,
not by "love" . You need not check capitalization, except for the first letter of a
word. A word is any string consisting of the letters of the alphabet and delimited at
each end by a blank, the end of the line, or any other character that is not a letter.
Your program should repeat this action until the user says to quit.

 5. Write a program that can be used to train the user to use less sexist language by
suggesting alternative versions of sentences given by the user. The program will ask
for a sentence, read the sentence into a string variable, and replace all occurrences
of masculine pronouns with gender-neutral pronouns. For example, it will replace
"he" with "she or he" . Thus, the input sentence

 See an adviser, talk to him, and listen to him.

 should produce the following suggested changed version of the sentence:

 See an adviser, talk to her or him, and listen to her or him.

 Be sure to preserve uppercase letters for the first word of the sentence. The pronoun
"his" can be replaced by "her(s)" ; your program need not decide between "her"
and "hers" . Allow the user to repeat this for more sentences until the user says she

www.itpub.net

or he is done. This will be a long program that requires a good deal of patience.
Your program should not replace the string "he" when it occurs inside another
word such as "here" . A word is any string consisting of the letters of the alphabet
and delimited at each end by a blank, the end of the line, or any other character
that is not a letter. Allow your sentences to be up to 100 characters long.

 6. There is a CD available for purchase that contains .jpeg and .gif images of music
that is in the public domain. The CD includes a file consisting of lines contain-
ing the names, then composers of that title, one per line. The name of the piece is
first, then zero or more spaces then a dash (-) character, then one or more spaces,
then the composer’s name. The composer name may be only the last name, an
initial and one name, two names (first and last), or three names (first, middle, and
last). There are a few tunes with “no author listed” as author. In the subsequent
processing, “no author listed” should not be rearranged. Here is a very abbreviated
list of the titles and authors.

 1. Adagio “MoonLight” Sonata - Ludwig Van Beethoven

 2. An Alexis - F.H. Hummel and J.N. Hummel

 3. A La Bien Aimee - Ben Schutt

 4. At Sunset - E. MacDowell

 5. Angelus - J. Massenet

 6. Anitra’s Dance - Edward Grieg

 7. Ase’s Death - Edward Grieg

 8. Au Matin- Benj. - Godard

 …

 37. The Dying Poet - L. Gottschalk

 38. Dead March - G.F. Handel

 39. Do They Think of Me At Home - Chas. W. Glover

 40. The Dearest Spot - W.T. Wrighton

 1. Evening - L. Van Beethoven

 2. Embarrassment - Franz Abt

 3. Erin is my Home - no author listed

 4. Ellen Bayne - Stephen C. Foster

 …

 9. Alla Mazurka - A. Nemerowsky

 …

 1. The Dying Volunteer - A.E. Muse

 2. Dolly Day - Stephen C. Foster

 3. Dolcy Jones - Stephen C. Foster

 4. Dickory, Dickory, Dock - no author listed

Programming Projects 415

416 CHAPTER 9 Strings

 5. The Dear Little Shamrock - no author listed

 6. Dutch Warbler - no author listed

 …

 The ultimate task is to produce an alphabetized list of composers followed by a list
of pieces by them alphabetized on the title within composer. This exercise is easier
if it is broken into pieces:

 Write code to do the following:

 a. Remove the lead numbers, any periods, and any spaces so that the first word of
the title is the first word of the line.

 b. Replace any multiple spaces with a single space.

 c. A few titles may have several - characters, for example,

 20. Ba- Be- Bi- Bo- Bu - no author listed

 Replace all dash - characters on any line before the end of the line by a space
except the last one.

 d. The last word in the title may have the - character with no space between it and
the = character. Put the space in.

 e. When alphabetizing the title, you do not want to consider an initial “A”, “An”,
or “The” in the title. Write code to move such initial words to just before the
- character. A comma after the last word in the title is not required, but that
would be a nice touch. This can be done after the composer’s names are moved
to the front, but obviously the code will be different.

 f. Move the composer’s names to the beginning of the line, followed by the char-
acter, followed by the composition title.

 g. Move any first initial, or first and second names of the composer to after the
composer’s last name. If the composer is “no author listed” this should not be
rearranged, so test for this combination.

 h. Alphabetize by composer using any sort routine you know. You may ignore any
duplicate composer’s last name, such as CPE Bach and JS Bach, but sorting
by composer’s second name would be a nice touch. You may use the insertion
sort, or selection sort, or bubble sort, or other sorting algorithm.

 i. If you have not already done so, move “A”, “An”, or “The” that may begin a
title to the end of the title. Then alphabetize within each composer by composi-
tion title.

 j. Keep a copy of your design and your code. You will be asked to do this over
using the STL vector container.

 7. One sign that the caps lock key may be inadvertently on is that the first letter of
a word is lowercase and the remaining letters are uppercase, lIKE tHIS . Write a
program that scans a string input by the user and outputs any words that appear to
suffer from caps-lock syndrome.

www.itpub.net

 The program should allow the user to input as many strings as desired, testing each
string for potential caps-lock words, until the user enters a blank string.

 8. Write a program that converts a sentence input by the user into pig latin. You can
assume that the sentence contains no punctuation. The rules for pig latin are as
follows:

 a. For words that begin with consonants, move the leading consonant to the end
of the word and add “ay.” Thus, “ball” becomes “allbay”; “button” becomes
“uttonbay”; and so forth.

 b. For words that begin with vowels, add “way” to the end. Thus, “all” becomes
“allway”; “one” becomes “oneway”; and so forth.

 9. Write a function to compare two C-strings for equality. The function should return
true if the strings are equal and false if they are not. Your function should ignore
case, punctuation, and whitespace characters. Test your function with a variety of
input strings.

 10. Write a simple trivia quiz game. Start by creating a Trivia class that contains
information about a single trivia question. The class should contain a string
for the question, a string for the answer to the question, and an integer rep-
resenting the dollar amount the question is worth (harder questions should
be worth more). Add appropriate constructor and accessor functions. In your
main function create either an array or a vector of type Trivia and hard-code
at least five trivia questions of your choice. Your program should then ask
each question to the player, input the player’s answer, and check if the player’s
answer matches the actual answer. If so, award the player the dollar amount
for that question. If the player enters the wrong answer your program should
display the correct answer. When all questions have been asked display the total
amount that the player has won.

 11. Write a function that determines if two strings are anagrams. The function
should not be case sensitive and should disregard any punctuation or spaces.
Two strings are anagrams if the letters can be rearranged to form each other.
For example, “Eleven plus two” is an anagram of “Twelve plus one”. Each string
contains one “v”, three “e’s”, two “l’s”, etc. Test your function with several
strings that are anagrams and non-anagrams. You may use either the string class
or a C-style string.

 12. Write a function that converts a string into an integer. For example, given the string
“1234” the function should return the integer 1234. If you do some research, you
will find that there is a function named atoi and also the stringstream class that
can do this conversion for you. However, in this Programming Project, you should
write your own code to do the conversion. Also write a suitable test program.

Programming Projects 417

Solution to
Programming
Project 9.11

VideoNote

418 CHAPTER 9 Strings

 13. Some word games require the player to find words that can be formed using the
 letters of another word. For example, given the word SWIMMING then other
words that can be formed using the letters include SWIM, WIN, WING, SING,
MIMING, etc. Write a program that lets the user enter a word and then output
all the words contained in the file words.txt (included on the website with this
book) that can be formed from the letters of the entered word. One algorithm
to do this is to compare the letter histograms for each word. Create an array that
counts up the number of each letter in the entered word (e.g., one S, one W, two
I, two M, etc.) and then creates a similar array for the current word read from
the file . The two arrays can be compared to see if the word from the file could be
created out of the letters from the entered word.

Solution to
Programming
Project 9.13

VideoNote

www.itpub.net

 10.3 CLASSES, POINTERS, AND DYNAMIC
ARRAYS 448

 The -> Operator 448
 The this Pointer 449
 Overloading the Assignment Operator 449
 Example: A Class for Partially Filled Arrays 456
 Destructors 459
 Copy Constructors 460

 10.1 POINTERS 420
 Pointer Variables 421
 Basic Memory Management 429
 Pitfall: Dangling Pointers 432
 Dynamic Variables and Automatic Variables 432
 Tip: Define Pointer Types 433
 Pitfall: Pointers as Call-by-Value Parameters 435
 Uses for Pointers 436

 10.2 DYNAMIC ARRAYS 437
 Array Variables and Pointer Variables 437
 Creating and Using Dynamic Arrays 439
 Example: A Function That Returns an Array 442
 Pointer Arithmetic 444
 Multidimensional Dynamic Arrays 445

 10 Pointers and
 Dynamic Arrays

 Chapter Summary 465 Answers to Self-Test Exercises 465 Programming Projects 467

 Memory is necessary for all the operations of reason.

 BLAISE PASCAL, Pensées

 Introduction
 A pointer is a construct that gives you more control of the computer’s memory. This
chapter will show you how pointers are used with arrays and will introduce a new form
of array called a dynamically allocated array. Dynamically allocated arrays (dynamic
arrays for short) are arrays whose size is determined while the program is running,
rather than being fixed when the program is written.

 Before reading Sections 10.1 and 10.2 on pointers and dynamically allocated arrays
you should first read Chapters 1 through 6 (omitting the coverage of vectors if you wish) ,
but you need not read any of Chapters 7 through 9 . You can even read Sections 10.1
and 10.2 after reading just Chapters 1 to 5 , provided you ignore the few passages that
mention classes .

 Section 10.3 discusses some tools for classes that only become relevant once you
begin to use pointers and dynamically allocated data (such as dynamically allocated
arrays). Before covering Section 10.3 , you should read Chap ters 1 through 8 , although
you may omit the coverage of vectors if you wish.

 You may cover this chapter, Chapter 11 on separate compilation and namespaces,
 Chapter 12 on file I/O, and Chapter 13 on recursion in any order. If you do not read
the Chapter 11 section on namespaces before this chapter, you might find it profitable
to review the section of Chapter 1 entitled “Namespaces” .

 10.1 Pointers

 By indirections find directions out.

 WILLIAM SHAKESPEARE, Hamlet

 A pointer is the memory address of a variable. Recall from Chapter 5 that the
computer’s memory is divided into numbered memory locations (called bytes) and
 that variables are implemented as a sequence of adjacent memory locations. Recall
also that sometimes the C++ system uses these memory addresses as names for the
variables. If a variable is implemented as, say, three memory locations, then the
address of the first of these memory locations is sometimes used as a name for that
variable. For example, when the variable is used as a call-by-reference argument, it
is this address, not the identifier name of the variable, that is passed to the calling
function. An address that is used to name a variable in this way (by giving the address

10 Pointers and Dynamic Arrays

pointer

www.itpub.net

Pointers 421

in memory where the variable starts) is called a pointer because the address can be
thought of as “pointing” to the variable. The address “points” to the variable because it
identifies the variable by telling where the variable is, rather than telling what the
variable’s name is.

 You have already been using pointers in a number of situations. As noted in the
previous paragraph, when a variable is a call-by-reference argument in a function call,
the function is given this argument variable in the form of a pointer to the variable. As
noted in Chapter 5 , an array is given to a function (or to anything else, for that matter)
by giving a pointer to the first array element. (At the time we called these pointers
“memory addresses,” but that is the same thing as a pointer.) These are two powerful
uses for pointers, but they are handled automatically by the C++ system. This chapter
shows you how to write programs that directly manipulate pointers rather than relying
on the system to manipulate the pointers for you.

 Pointer Variables

 A pointer can be stored in a variable. However, even though a pointer is a memory
address and a memory address is a number, you cannot store a pointer in a variable of
type int or double . A variable to hold a pointer must be declared to have a pointer
type. For example, the following declares p to be a pointer variable that can hold one
pointer that points to a variable of type double :

double *p;

 The variable p can hold pointers to variables of type double , but it cannot normally
contain a pointer to a variable of some other type, such as int or char . Each variable
type requires a different pointer type. 1

 In general, to declare a variable that can hold pointers to other variables of a specific
type, you declare the pointer variable just as you would declare an ordinary variable of that
type, but you place an asterisk in front of the variable name. For example, the following
declares the variables p1 and p2 so they can hold pointers to variables of type int ; it also
declares two ordinary variables v1 and v2 of type int :

int *p1, *p2, v1, v2;

 There must be an asterisk before each of the pointer variables. If you omit the second
asterisk in the previous declaration, then p2 will not be a pointer variable; it will
instead be an ordinary variable of type int.

 When discussing pointers and pointer variables, we usually speak of pointing rather
than speaking of addresses. When a pointer variable, such as p1 , contains the address of
a variable, such as v1 , the pointer variable is said to point to the variable v1 or to be a
pointer to the variable v1 .

declaring
pointer

variables

1 There are ways to get a pointer of one type into a pointer variable for another type, but it does not
happen automatically and is very poor style anyway.

422 CHAPTER 10 Pointers and Dynamic Arrays

 Pointer variables, like p1 and p2 declared previously, can contain pointers to
variables like v1 and v2 . You can use the operator & to determine the address of a
variable, and you can then assign that address to a pointer variable. For example, the
following will set the variable p1 equal to a pointer that points to the variable v1 :

p1 = &v1;

 You now have two ways to refer to v1 : You can call it v1 or you can call it “the variable
pointed to by p1 .” In C++, the way you say “the variable pointed to by p1 ” is *p1 .
This is the same asterisk that we used when we declared p1 , but now it has yet another
meaning. When the asterisk is used in this way it is called the dereferencing operator ,
and the pointer variable is said to be dereferenced .

 Putting these pieces together can produce some surprising results. Consider the
following code:

v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

 Pointer Variable Declarations
A variable that can hold pointers to other variables of type Type_Name is declared similar to
the way you declare a variable of type Type_Name, except that you place an asterisk at the
beginning of the variable name.

 SYNTAX

Type_Name *Variable_Name1, *Variable_Name2,...;

 EXAMPLE

double *pointer1, *pointer2;

 Addresses and Numbers
A pointer is an address, and an address is an integer, but a pointer is not an integer. That is
not crazy—that is abstraction! C++ insists that you use a pointer as an address and that you
not use it as a number. A pointer is not a value of type int or of any other numeric type.
You normally cannot store a pointer in a variable of type int. If you try, most C++ compilers
will give you an error message or a warning message. Also, you cannot perform the normal
arithmetic operations on pointers. (As you will see later in this chapter, you can perform
a kind of addition and a kind of subtraction on pointers, but they are not the usual integer
addition and subtraction.)

the & operator

the * operator

dereferencing
operator

www.itpub.net

Pointers 423

 This code will output the following to the screen:

42
42

 As long as p1 contains a pointer that points to v1 , then v1 and *p1 refer to the same
variable. So when you set *p1 equal to 42 , you are also setting v1 equal to 42 .

 The symbol & that is used to obtain the address of a variable is the same symbol that
you use in function declarations to specify a call-by-reference parameter. This is not
a coincidence. Recall that a call-by-reference argument is implemented by giving the
address of the argument to the calling function. So, these two uses of the symbol & are
very closely related, although they are not exactly the same.

 You can assign the value of one pointer variable to another pointer variable. For
example, if p1 is still pointing to v1 , then the following will set p2 so that it also points
to v1 :

p2 = p1;

 Provided we have not changed v1 ’s value, the following will also output 42 to the
screen:

cout << *p2;

 Be sure you do not confuse

p1 = p2;

 and

*p1 = *p2;

 Pointer Types
There is a bit of an inconsistency (or at least a potential for confusion) in how C++ names
pointer types. If you want a parameter whose type is, for example, a pointer to variables of
type int, then the type is written int*, as in the following example:

void manipulatePointer(int* p);

If you want to declare a variable of the same pointer type, the * goes with the variable, as
in the following example:

int *p1, *p2;

In fact, the compiler does not care whether the * is attached to the int or the variable
name, so the following are also accepted by the compiler and have the same meanings:

void manipulatePointer(int *p); //Accepted but not as nice.
int* p1, *p2; //Accepted but dangerous.

However, we find the first versions to be clearer. In particular, note that when declaring
variables there must be one * for each pointer variable.

pointers in
assignment
statements

424 CHAPTER 10 Pointers and Dynamic Arrays

 When you add the asterisk, you are not dealing with the pointers p1 and p2 , but with
the variables to which the pointers are pointing. This is illustrated in Display 10.1 , in
which variables are represented as boxes and the value of the variable is written inside
the box. We have not shown the actual numeric addresses in the pointer variables
because the numbers are not important. What is important is that the number is
the address of some particular variable. So, rather than use the actual number of the
address, we have merely indicated the address with an arrow that points to the variable
with that address.

 The * and & Operators
The * operator in front of a pointer variable produces the variable to which it points. When
used this way, the * operator is called the dereferencing operator.

The operator & in front of an ordinary variable produces the address of that variable; that
is, it produces a pointer that points to the variable. The & operator is simply called the
addressof operator.

For example, consider the declarations

double *p, v;

The following sets the value of p so that p points to the variable v:

p = &v;

*p produces the variable pointed to by p, so after the previous assignment, *p and v refer
to the same variable. For example, the following sets the value of v to 9.99, even though
the name v is never explicitly used:

*p = 9.99;

 Pointer Variables Used with =
If p1 and p2 are pointer variables, then the statement

p1 = p2;

changes the value of p1 so that it is the memory address (pointer) in p2. A common way
to think of this is that the assignment will change p1 so that it points to the same thing to
which p2 is currently pointing.

www.itpub.net

Pointers 425

 Since a pointer can be used to refer to a variable, your program can manipulate
variables even if the variables have no identifiers to name them. The operator new
can be used to create variables that have no identifiers to serve as their names. These
nameless variables are referred to via pointers. For example, the following creates a new
variable of type int and sets the pointer variable p1 equal to the address of this new
variable (that is, p1 points to this new, nameless variable):

p1 = new int;

 This new, nameless variable can be referred to as *p1 (that is, as the variable pointed
to by p1). You can do anything with this nameless variable that you can do with any
other variable of type int . For example, the following code reads a value of type int
from the keyboard into this nameless variable, adds 7 to the value, and then outputs
this new value:

cin >> *p1;
*p1 = *p1 + 7;
cout << *p1;

 The new operator produces a new, nameless variable and returns a pointer that
points to this new variable. You specify the type for this new variable by writing the
type name after the new operator. Variables that are created using the new operator are
called dynamically allocated variables or simply dynamic variables , because they
are created and destroyed while the program is running. The program in Display 10.2
demonstrates some simple operations on pointers and dynamic variables. Display 10.3
graphically illustrates the working of the program in Display 10.2 .

 p1 = p2;

 *p1 = *p2;

Before: After:

p1

p2

p1

p2

p1

p2

p1

p2

8

9

8

9

8

Before:

9

9

After:

9

 Display 10.1 Uses of the Assignment Operator with Pointer Variables

new

dynamic
variable

426 CHAPTER 10 Pointers and Dynamic Arrays

 Display 10.2 Basic Pointer Manipulations

1 //Program to demonstrate pointers and dynamic variables.
2 #include <iostream>
3 using namespace std;

4 int main()
5 {
6 int *p1, *p2;

7 p1 = new int;
8 *p1 = 42;
 9 p2 = p1;
10 cout << "*p1 == " << *p1 << endl;
11 cout << "*p2 == " << *p2 << endl;

12 *p2 = 53;
13 cout << "*p1 == " << *p1 << endl;
14 cout << "*p2 == " << *p2 << endl;

15 p1 = new int;
16 *p1 = 88;
17 cout << "*p1 == " << *p1 << endl;
18 cout << "*p2 == " << *p2 << endl;

19 cout << "Hope you got the point of this example!\n";
20 return 0;
21 }

 Sample Dialogue

*p1 == 42

*p2 == 42

*p1 == 53

*p2 == 53

*p1 == 88

*p2 == 53

Hope you got the point of this example!

www.itpub.net

Pointers 427

 When the new operator is used to create a dynamic variable of a class type, a
constructor for the class is invoked. If you do not specify which constructor to use,
the default constructor is invoked. For example, the following invokes the default
constructor:

SomeClass *classPtr;
classPtr = new SomeClass; //Calls default constructor.

p1

p2

(c)
*p1 = 42;

42

?

p1

p2

(b)
p1 = new int;

?

?

p1

p2

(a)
int *p1, *p2;

?

p1

p2

(d)
p2 = p1;

42

?

p1

p2

(g)
*p1 = 88;

88

53

p1

p2

(e)
*p2 = 53;

53

p1

p2

(f)
p1 = new int;

?

53

 Display 10.3 Explanation of Display 10.2

428 CHAPTER 10 Pointers and Dynamic Arrays

 If you include constructor arguments, you can invoke a different constructor, as
illustrated next:

classPtr = new SomeClass(32.0, 17);
//Calls SomeClass(double, int).

 A similar notation allows you to initialize dynamic variables of nonclass types, as
illustrated next:

double *dPtr;
dPtr = new double(98.6); // Initializes *dPtr to 98.6.

 A pointer type is a full-fledged type and can be used in the same ways as other
types. In particular, you can have a function parameter of a pointer type and you can
have a function that returns a pointer type. For example, the following function has a
parameter that is a pointer to an int variable and returns a (possibly different) pointer
to an int variable:

int* findOtherPointer(int* p);

 The new Operator
The new operator creates a new dynamic variable of a specified type and returns a pointer
that points to this new variable. For example, the following creates a new dynamic variable
of type MyType and leaves the pointer variable p pointing to this new variable:

MyType *p;
p = new MyType;

If the type is a class type, the default constructor is called for the newly created dynamic
variable. You can specify a different constructor by including arguments as follows:

MyType *mtPtr;
mtPtr = new MyType(32.0, 17); // calls MyType(double, int);

A similar notation allows you to initialize dynamic variables of nonclass types, as illustrated here:

int *n;
n = new int(17); // initializes *n to 17

With earlier C++ compilers, if there was insufficient available memory to create the new
variable, then new returned a special pointer named NULL. The C++ standard provides that
if there is insufficient available memory to create the new variable, then the new operator,
by default, terminates the program.

pointer
parameters

www.itpub.net

Pointers 429

 Self-Test Exercises

 1. What is a pointer in C++?

 2. Give at least three uses of the * operator. Name and describe each use.

 3. What is the output produced by the following code?

int *p1, *p2;
p1 = new int;
p2 = new int;
*p1 = 10;
*p2 = 20;
cout << *p1 << " " << *p2 << endl;
p1 = p2;
cout << *p1 << " " << *p2 << endl;
*p1 = 30;
cout << *p1 << " " << *p2 << endl;

 How would the output change if you were to replace

*p1 = 30;

 with the following?

*p2 = 30;

 4. What is the output produced by the following code?

int *p1, *p2;
p1 = new int;
p2 = new int;
*p1 = 10;
*p2 = 20;
cout << *p1 << " " << *p2 << endl;
*p1 = *p2; //This is different from Exercise 3
cout << *p1 << " " << *p2 << endl;
*p1 = 30;
cout << *p1 << " " << *p2 << endl;

 Basic Memory Management

 A special area of memory, called the freestore or the heap , is reserved for dynamically
allocated variables. Any new dynamic variable created by a program consumes some
of the memory in the freestore. If your program creates too many dynamic variables,
it will consume all the memory in the freestore. If this happens, any additional calls
to new will fail. What happens when you use new after you have exhausted all the
memory in the freestore (all the memory reserved for dynamically allocated variables)
will depend on how up-to-date your compiler is. With earlier C++ compilers, if

freestore or
heap

430 CHAPTER 10 Pointers and Dynamic Arrays

there was insufficient available memory to create the new variable, then new returned
a special value named NULL . If you have a compiler that fully conforms to the
newer C++ standard, then if there is insufficient available memory to create the new
variable, the new operator terminates the program. Chapter 18 discusses ways to
configure your program so that it can do things other than abort when new exhausts
the freestore . 2

 If you have an older compiler, you can check to see if a call to new was successful by
testing to see if NULL was returned by the call to new . For example, the following code
tests to see if the attempt to create a new dynamic variable succeeded. The program will
end with an error message if the call to new failed to create the desired dynamic variable:

int *p;
p = new int;
if (p == NULL)
{
 cout << "Error: Insufficient memory.\n";
 exit(1);
}
//If new succeeded, the program continues from here.

 (Remember that since this code uses exit , you need an include directive for the
library with header file <cstdlib> or, with some implementations, P<stdlib.h> .)

 The constant NULL is actually the number 0 , but we prefer to think of it and spell
it as NULL to make it clear that you mean this special-purpose value which you can
assign to pointer variables. We will discuss other uses for NULL later in this book.
The definition of the identifier NULL is in a number of the standard libraries, such
as <iostream> and <cstddef> , so you should use an include directive for either
<iostream> or <cstddef> (or another suitable library) when you use NULL .

 As we said, NULL is actually just the number 0 . The definition of NULL is handled by
the C++ preprocessor which replaces NULL with 0 . Thus, the compiler never actually
sees “ NULL ” and so there is no namespace issue and no using directive is needed for
NULL . 3 While we prefer to use NULL rather than 0 in our code, we note that some
authorities hold just the opposite view and advocate using 0 rather than NULL .

 (Do not confuse the NULL pointer with the null character '\0' which is used to
terminate C-strings. They are not the same. One is the integer 0 while the other is the
character '\0' .)

 Newer compilers do not require the previous explicit check to see if the new
dynamic variable was created. On newer compilers, your program will automatically
end with an error message if a call to new fails to create the desired dynamic variable.
However, with any compiler, the previous check will cause no harm and will make
your program more portable.

2 Technically, the new operator throws an exception, which, if not caught, terminates the program. It is
possible to catch the exception and handle the exception. Exception handling is discussed in Chapter 18 .

NULL is 0

3 The details are as follows: The definition of NULL uses #define , a form of definition that was
 inherited from the C language and that is handled by the preprocessor.

www.itpub.net

Pointers 431

 The size of the freestore varies from one implementation of C++ to another. It
is typically large, and a modest program is not likely to use all the memory in the
freestore. However, even in modest programs it is a good practice to recycle any
freestore memory that is no longer needed. If your program no longer needs a dynamic
variable, the memory used by that dynamic variable can be returned to the freestore
manager which recycles the memory to create other dynamic variables. The delete
operator eliminates a dynamic variable and returns the memory that the dynamic
variable occupied to the freestore manager so that the memory can be reused. Suppose
that p is a pointer variable that is pointing to a dynamic variable. The following will
destroy the dynamic variable pointed to by p and return the memory used by the
dynamic variable to the freestore manager for reuse:

delete p;

 NULL
NULL is a special constant pointer value that is used to give a value to a pointer variable that
would not otherwise have a value. NULL can be assigned to a pointer variable of any type.
The identifier NULL is defined in a number of libraries, including <iostream>. (The constant
NULL is actually the integer 0.)

delete

 The delete Operator
The delete operator eliminates a dynamic variable and returns the memory that the
dynamic variable occupied to the freestore. The memory can then be reused to create new
dynamic variables. For example, the following eliminates the dynamic variable pointed to by
the pointer variable p:

delete p;

After a call to delete, the value of the pointer variable, like p shown, is undefined.
(A slightly different version of delete, discussed later in this chapter, is used when the
dynamically allocated variable is an array.)

432 CHAPTER 10 Pointers and Dynamic Arrays

 PITFALL: Dangling Pointers

 When you apply delete to a pointer variable, the dynamic variable to which it is
pointing is destroyed. At that point, the value of the pointer variable is undefined,
which means that you do not know where it is pointing. Moreover, if some other
pointer variable was pointing to the dynamic variable that was destroyed, then
this other pointer variable is also undefined. These undefined pointer variables
are called dangling pointers . If p is a dangling pointer and your program applies
the dereferencing operator * to p (to produce the expression *p), the result is
unpredictable and usually disastrous. Before you apply the dereferencing operator
* to a pointer variable, you should be certain that the pointer variable points to
some variable.

 C++ has no built-in test to check whether a pointer variable is a dangling pointer.
One way to avoid dangling pointers is to set any dangling pointer variable equal to
NULL . Then your program can test the pointer variable to see if it is equal to NULL
before applying the dereferencing operator * to the pointer variable. When you use
this technique, you follow a call to delete by code that sets all dangling pointers
equal to NULL . Remember, other pointer variables may become dangling pointers
besides the one pointer variable used in the call to delete , so be sure to set all
dangling pointers to NULL . It is up to the programmer to keep track of dangling
pointers and set them to NULL or otherwise ensure that they are not dereferenced. ■

dangling
pointer

 Dynamic Variables and Automatic Variables

 Variables created with the new operator are called dynamic variables (or dynamically
allocated variables) because they are created and destroyed while the program is
running. Local variables—that is, variables declared within a function definition—also
have a certain dynamic characteristic, but they are not called dynamic variables. If a
variable is local to a function, then the variable is created by the C++ system when
the function is called and is destroyed when the function call is completed. Since the
main part of a program is really just a function called main , this is even true of the
variables declared in the main part of your program. (Since the call to main does not
end until the program ends, the variables declared in main are not destroyed until
the program ends, but the mechanism for handling local variables is the same for
main as for any other function.) These local variables are sometimes called automatic
variables because their dynamic properties are controlled automatically for you. They
are automatically created when the function in which they are declared is called and
automatically destroyed when the function call ends.

 Variables declared outside any function or class definition, including outside main ,
are called global variables . These global variables are sometimes called statically
allocated variables , because they are truly static in contrast to dynamic and automatic
variables. We discussed global variables briefly in Chapter 3 . As it turns out, we have
no need for global variables and have not used them .4

automatic
variable

global
variable

4 Variables declared within a class using the modifier static are static in a different sense than the
 dynamic/static contrast we are discussing in this section.

www.itpub.net

Pointers 433

 TIP: Define Pointer Types

 You can define a pointer type name so that pointer variables can be declared like
other variables without the need to place an asterisk in front of each pointer variable.
For example, the following defines a type called IntPtr , which is the type for pointer
variables that contain pointers to int variables:

typedef int* IntPtr;

 Thus, the following two pointer variable declarations are equivalent:

IntPtr p;

 and

int *p;

 You can use typedef to define an alias for any type name or definition. For example,
the following defines the type name Kilometers to mean the same thing as the type
name double :

typedef double Kilometers;

 Once you have given this type defi nition, you can defi ne a variable of type double as
follows:

Kilometers distance;

 Renaming existing types this way can occasionally be useful. However, our main use
of typedef will be to define types for pointer variables.

 Keep in mind that a typedef does not produce a new type but is simply an alias
for the type defi nition. For example, given the previous defi nition of Kilometers ,
a variable of type Kilometers may be substituted for a parameter of type double .
Kilometers and double are two names for the same type.

 There are two advantages to using defi ned pointer type names, such as IntPtr
 defi ned previously. First, it avoids the mistake of omitting an asterisk. Remember, if
you intend p1 and p2 to be pointers, then the following is a mistake:

int *p1, p2;

 Since the * was omitted from the p2 , the variable p2 is just an ordinary int variable,
not a pointer variable. If you get confused and place the * on the int , the problem
is the same but is more difficult to notice. C++ allows you to place the * on the type
name, such as int , so that the following is legal:

int* p1, p2;

typedef

(continued)

434 CHAPTER 10 Pointers and Dynamic Arrays

TIP: (continued)

 Although this is legal, it is misleading. It looks like both p1 and p2 are pointer
variables, but in fact only p1 is a pointer variable; p2 is an ordinary int variable. As
far as the C++ compiler is concerned, the * that is attached to the identifier int may
as well be attached to the identifier p1 . One correct way to declare both p1 and p2 to
be pointer variables is

int *p1, *p2;

 An easier and less error-prone way to declare both p1 and p2 to be pointer variables is
to use the defined type name IntPtr as follows:

IntPtr p1, p2;

 The second advantage of using a defined pointer type, such as IntPtr , is seen when
you define a function with a call-by-reference parameter for a pointer variable. Without
the defined pointer type name, you would need to include both an * and an & in the
declaration for the function, and the details can get confusing. If you use a type name
for the pointer type, then a call-by-reference parameter for a pointer type involves no
complications. You define a call-by-reference parameter for a defined pointer type just
like you define any other call-by-reference parameter. Here is an example:

void sampleFunction(IntPtr& pointerVariable); ■

 Self-Test Exercises

 5. What unfortunate misinterpretation can occur with the following declaration?

int* intPtr1, intPtr2;

 6. Suppose a dynamic variable were created as follows:

char *p;
p = new char;

 Assuming that the value of the pointer variable p has not changed (so it still
points to the same dynamic variable), how can you destroy this new dynamic
variable and return the memory it uses to the freestore manager so that the
memory can be reused to create other new dynamic variables?

 7. Write a defi nition for a type called NumberPtr that will be the type for pointer
variables that hold pointers to dynamic variables of type double . Also, write a
declaration for a pointer variable called myPoint , which is of type NumberPtr .

 8. Describe the action of the new operator. What does the new operator return?
What are the indications of errors?

www.itpub.net

Pointers 435

 Type Definitions
You can assign a name to a type definition and then use the type name to declare variables.
This is done with the keyword typedef. These type definitions are normally placed outside
the body of the main part of your program and outside the body of other functions, typically
near the start of a file. That way the typedef is global and available to your entire program.
We will use type definitions to define names for pointer types, as shown in the example here.

 SYNTAX

typedef Known_Type_Definition New_Type_Name;

 EXAMPLE

typedef int* IntPtr;

The type name IntPtr can then be used to declare pointers to dynamic variables of type
int, as in the following example:

IntPtr pointer1, pointer2;

 PITFALL: Pointers as Call-by-Value Parameters

 When a call-by-value parameter is of a pointer type, its behavior can occasionally
be subtle and troublesome. Consider the function call shown in Display 10.4 . The
parameter temp in the function sneaky is a call-by-value parameter, and hence it is
a local variable. When the function is called, the value of temp is set to the value of
the argument p and the function body is executed. Since temp is a local variable, no
changes to temp should go outside the function sneaky . In particular, the value of
the pointer variable p should not be changed. Yet the sample dialogue makes it look
like the value of the pointer variable p has changed. Before the call to the function
sneaky , the value of *p was 77 , and after the call to sneaky the value of *p is 99 .
What has happened?

 The situation is diagrammed in Display 10.5 . Although the sample dialogue may
make it look as if p were changed, the value of p was not changed by the function call
to sneaky . Pointer p has two things associated with it: p ’s pointer value and the value
stored where p points. But the value of p is the pointer (that is, a memory address).
 After the call to sneaky , the variable p contains the same pointer value (that is, the same
memory address). The call to sneaky has changed the value of the variable pointed to
by p , but it has not changed the value of p itself.

 If the parameter type is a class or structure type that has member variables of a
pointer type, the same kind of surprising changes can occur with call-by-value argu-
ments of the class type. However, for class types, you can avoid (and control) these
surprise changes by defi ning a copy constructor, as described later in this chapter. ■

436 CHAPTER 10 Pointers and Dynamic Arrays

 Display 10.4 A Call-by-Value Pointer Parameter

 1 //Program to demonstrate the way call-by-value parameters
 2 //behave with pointer arguments.
 3 #include <iostream>
 4 using namespace std;

 5 typedef int* IntPointer;

 6 void sneaky(IntPointer temp);

 7 int main()
 8 {
 9 IntPointer p;

10 p = new int;
11 *p = 77;
12 cout << "Before call to function *p == "
13 << *p << endl;

14 sneaky(p);

15 cout << "After call to function *p == "
16 << *p << endl;

17 return 0;
18 }
19 void sneaky(IntPointer temp)
20 {
21 *temp = 99;
22 cout << "Inside function call *temp == "
23 << *temp << endl;
24 }

 Sample Dialogue

Before call to function *p == 77

Inside function call *temp == 99

After call to function *p == 99

 Uses for Pointers

 Chapter 17 discusses ways to use pointers to create a number of useful data structures.
This chapter only discusses one use of pointers, namely, to reference arrays, and in
particular to create and reference a kind of array known as a dynamically allocated array .
Dynamically allocated arrays are the topic of Section 10.2 .

www.itpub.net

Dynamic Arrays 437

 10.2 Dynamic Arrays

 In this section you will see that array variables are actually pointer variables. You will
also find out how to write programs with dynamically allocated arrays. A dynamically
allocated array (also called simply a dynamic array) is an array whose size is not
specified when you write the program, but is determined while the program is running.

 Array Variables and Pointer Variables

 Chapter 5 described how arrays are kept in memory. At that point we discussed arrays
in terms of memory addresses. But a memory address is a pointer. So, in C++ an array
variable is actually a kind of pointer variable that points to the first indexed variable
of the array. Given the following two variable declarations, p and a are both pointer
variables:

int a[10];
typedef int* IntPtr;
IntPtr p;

 The fact that a and p are both pointer variables is illustrated in Display 10.6 . Since a is
a pointer that points to a variable of type int (namely, the variable a[0]), the value of
a can be assigned to the pointer variable p as follows:

p = a;

 After this assignment, p points to the same memory location that a points to. Thus,
p[0] , p[1] , ... p[9] refer to the indexed variables a[0] , a[1] , ... a[9] . The square
bracket notation you have been using for arrays applies to pointer variables as long as
the pointer variable points to an array in memory. After the previous assignment, you

1. Before call to sneaky :

p 77

2. Value of p is plugged in for temp:

p

temp

77

4. After call to sneaky:3. Change made to *temp:

p

temp

99 p 99

 Display 10.5 The Function Call sneaky(p);

dynamically
allocated array

438 CHAPTER 10 Pointers and Dynamic Arrays

can treat the identifier p as if it were an array identifier. You can also treat the identifier
a as if it were a pointer variable, but there is one important reservation: You cannot
change the pointer value in an array variable. If the pointer variable p2 has a value, you
might be tempted to think the following is legal, but it is not:

a = p2; //ILLEGAL. You cannot assign a different address to a.

 The underlying reason why this assignment does not work is that an array variable is
not of type int* , but its type is a const version of int* . An array variable, like a , is a
pointer variable with the modifier const , which means that its value cannot be changed.

Note that changes
to the array p
are also changes
to the array a.

 Display 10.6 Arrays and Pointer Variables

 1 //Program to demonstrate that an array variable is a kind of pointer
//variable.

 2 #include <iostream>
 3 using namespace std;

 4 typedef int* IntPtr;

 5 int main()
 6 {
 7 IntPtr p;
 8 int a[10];
9 int index;

10 for (index = 0; index < 10; index++)
11 a[index] = index;

12 p = a;

13 for (index = 0; index < 10; index++)
14 cout << p[index] << " ";
15 cout << endl;

16 for (index = 0; index < 10; index++)
17 p[index] = p[index] + 1;

18 for (index = 0; index < 10; index++)
19 cout << a[index] << " ";
20 cout << endl;

21 return 0;
22 }

 Sample Dialogue

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

www.itpub.net

 Creating and Using Dynamic Arrays

 One problem with the kinds of arrays we discussed in Chapter 5 is that you must
specify the size of the array when you write the program—but you may not know
what size array you need until the program is run. For example, an array might hold
a list of student identification numbers, but the size of the class may be different each
time the program is run. With the kinds of arrays you have used thus far, you must
estimate the largest possible size you may need for the array and hope that size is large
enough. There are two problems with this. First, you may estimate too low, and then
your program will not work in all situations. Second, since the array might have many
unused positions, this can waste computer memory. Dynamically allocated arrays
avoid these problems. If your program uses a dynamically allocated array for student
identification numbers, then the number of students can be entered as input to the
program and the dynamically allocated array can be created to have a size exactly equal
to the number of students.

 Dynamically allocated arrays are created using the new operator. The creation and
use of dynamically allocated arrays is surprisingly simple. Since array variables are
pointer variables, you can use the new operator to create dynamically allocated variables
that are arrays and can treat these dynamically allocated arrays as if they were ordinary
arrays. For example, the following creates a dynamically allocated array variable with
ten array elements of type double :

typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

 To obtain a dynamically allocated array of elements of any other type, simply replace
double with the desired type. In particular, you can replace the type double with a
struct or class type. To obtain a dynamically allocated array variable of any other size,
simply replace 10 with the desired size.

 There are also a number of less-obvious things to notice about this example. First,
the pointer type that you use for a pointer to a dynamically allocated array is the same
as the pointer type you would use for a single element of the array. For instance, the
pointer type for an array of elements of type double is the same as the pointer type
you would use for a simple variable of type double . The pointer to the array is actually
a pointer to the first indexed variable of the array. In the previous example, an entire
array with ten indexed variables is created, and the pointer d is left pointing to the first
of these ten indexed variables.

 Second, notice that when you call new , the size of the dynamically allocated array is
given in square brackets after the type, which in this example is the type double . This
tells the computer how much storage to reserve for the dynamic array. If you omitted
the square brackets and the 10 in this example, the computer would allocate enough
storage for only one variable of type double , rather than for an array of ten indexed
variables of type double .

 Display 10.7 contains a program that illustrates the use of a dynamically allocated
array. The program searches a list of numbers stored in a dynamically allocated array.
The size of the array is determined when the program is run. The user is asked how

creating a
dynamic array

Dynamic Arrays 439

440 CHAPTER 10 Pointers and Dynamic Arrays

many numbers there will be, and then the new operator creates a dynamically allocated
array of that size. The size of the dynamic array is given by the variable arraySize .
The size of a dynamic array need not be given by a constant. It can, as in Display 10.7 ,
be given by a variable whose value is determined when the program is run.

 Display 10.7 A Dynamically Allocated Array (part 1 of 2)

 1 //Searches a list of numbers entered at the keyboard.
 2 #include <iostream>
 3 using namespace std;

 4 typedef int* IntPtr;

 5 void fillArray(int a[], int size);
 6 //Precondition: size is the size of the array a.
 7 //Postcondition: a[0] through a[size-1] have been
 8 //filled with values read from the keyboard.

 9 int search(int a[], int size, int target);
10 //Precondition: size is the size of the array a.
11 //The array elements a[0] through a[size-1] have values.
12 //If target is in the array, returns the first index of target.
13 //If target is not in the array, returns -1.

14 int main()
15 {
16 cout << "This program searches a list of numbers.\n";

17 int arraySize;
18 cout << "How many numbers will be on the list? ";
19 cin >> arraySize;
20 IntPtr a;
21 a = new int[arraySize];

22 fillArray(a, arraySize);

23 int target;
24 cout << "Enter a value to search for: ";
25 cin >> target;
26 int location = search(a, arraySize, target);
27 if (location == -1)
28 cout << target << " is not in the array.\n";
29 else
30 cout << target << " is element " << location << " in the
 array.\n";
31
32 delete [] a;
33
34 return 0;
35 }

Ordinary array
parameters

The dynamic array a is used
like an ordinary array.

www.itpub.net

 Notice the delete statement, which destroys the dynamically allocated array
pointed to by a in Display 10.7 . Since the program is about to end anyway, we did not
really need this delete statement; if the program went on to do other things, however,
you would want such a delete statement so that the memory used by this dynamically
allocated array would be returned to the freestore manager. The delete statement for
a dynamically allocated array is similar to the delete statement you saw earlier, except
that with a dynamically allocated array you must include an empty pair of square
brackets like so:

delete [] a;

 The square brackets tell C++ that a dynamically allocated array variable is being
eliminated, so the system checks the size of the array and removes that many indexed
variables. If you omit the square brackets you will not be eliminating the entire array.
For example,

delete a;

36 //Uses the library <iostream>:
37 void fillArray(int a[], int size)
38 {
39 cout << "Enter " << size << " integers.\n";
40 for (int index = 0; index < size; index++)
41 cin >> a[index];
42 }

43 int search(int a[], int size, int target)
44 {
45 int index = 0;
46 while ((a[index] != target) && (index < size))
47 index++;
48 if (index == size) //if target is not in a.
49 index = -1;
50 return index;
51 }

 Sample Dialogue

This program searches a list of numbers.

How many numbers will be on the list? 5

Enter 5 integers.

1 2 3 4 5

Enter a value to search for: 3

3 is element 2 in the array.

Display 10.7 A Dynamically Allocated Array (part 2 of 2)

delete []

Dynamic Arrays 441

442 CHAPTER 10 Pointers and Dynamic Arrays

 is not legal, but the error is not detected by most compilers. The C++ standard says
that what happens when you do this is “undefined.” That means the author of the
compiler can have this do anything that is convenient (for the compiler writer, not for
you). Always use the

delete [] arrayPtr;

 syntax when you are deleting memory that was allocated with something like

arrayPtr = new MyType[37];

 Also note the position of the square brackets in the delete statement

delete [] arrayPtr; //Correct
delete arrayPtr[]; //ILLEGAL!

 You create a dynamically allocated array with a call to new using a pointer, such as the
pointer a in Display 10.7 . After the call to new , you should not assign any other pointer
value to this pointer variable because that can confuse the system when the memory for
the dynamic array is returned to the freestore manager with a call to delete .

 Dynamically allocated arrays are created using new and a pointer variable. When
your program is finished using a dynamically allocated array, you should return the
array memory to the freestore manager with a call to delete . Other than that, a
dynamically allocated array can be used just like any other array.

 EXAMPLE: A Function That Returns an Array

 In C++ an array type is not allowed as the return type of a function. For example, the
following is illegal:

int [] someFunction(); //ILLEGAL

 If you want to create a function similar to this, you must return a pointer to the array
base type and have the pointer point to the array. So, the function declaration would
be as follows:

int* someFunction(); //Legal

 An example of a function that returns a pointer to an array is given in Dis play 10.8 .

www.itpub.net

Dynamic Arrays 443

This call to delete is not really
needed since the program is ending,
but in another context it could be
important to include this delete.

 Display 10.8 Returning a Pointer to an Array

1 #include <iostream>
2 using namespace std;

3 int* doubler(int a[], int size);
4 //Precondition; size is the size of the array a.
5 //All indexed variables of a have values.
6 //Returns: a pointer to an array of the same size as a in which
7 //each indexed variable is double the corresponding element in a.

8 int main()
9 {
10 int a[] = {1, 2, 3, 4, 5};
11 int* b;

12 b = doubler(a, 5);

13 int i;
14 cout << "Array a:\n";
15 for (i = 0; i < 5; i++)
16 cout << a[i] << " ";
17 cout << endl;
18 cout << "Array b:\n";
19 for (i = 0; i < 5; i++)
20 cout << b[i] << " ";
21 cout << endl;

22 delete[] b;
23 return 0;
24 }

25 int* doubler(int a[], int size)
26 {
27 int* temp = new int[size];

28 for (int i =0; i < size; i++)
29 temp[i] = 2*a[i];

30 return temp;
31 }

 Sample Dialogue

Array a:
1 2 3 4 5
Array b:
2 4 6 8 10

444 CHAPTER 10 Pointers and Dynamic Arrays

 Self-Test Exercises

 9. Write a type defi nition for pointer variables that will be used to point to
dynamically allocated arrays. The array elements are to be of type char . Call
the type CharArray .

 10. Suppose your program contains code to create a dynamically allocated array
as follows,

int *entry;
entry = new int[10];

 so that the pointer variable entry is pointing to this dynamically allocated
array. Write code to fi ll this array with ten numbers typed in at the keyboard.

 11. Suppose your program contains code to create a dynamically allocated array as
in Self-Test Exercise 10, and suppose the pointer variable entry has not had its
(pointer) value changed. Write code to destroy this dynamically allocated array
and return the memory it uses to the freestore manager.

 12. What is the output of the following code fragment?

int a[10];
int arraySize = 10;
int *p = a;
int i;
for (i = 0; i < arraySize; i++)

a[i] = i;
for (i = 0; i < arraySize; i++)

cout << p[i] << " ";
cout << endl;

 Pointer Arithmetic

 You can perform a kind of arithmetic on pointers, but it is an arithmetic of addresses,
not an arithmetic of numbers. For example, suppose your program contains the
following code:

typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

 After these statements, d contains the address of the indexed variable d[0] . The
expression d + 1 evaluates to the address of d[1] , d + 2 is the address of d[2] , and
so forth. Notice that although the value of d is an address and an address is a number,
d + 1 does not simply add 1 to the number in d . If a variable of type double requires
eight bytes (eight memory locations) and d contains the address 2000 , then d + 1
evaluates to the memory address 2008 . Of course, the type double can be replaced by
any other type, and then pointer addition moves in units of variables for that type.

addresses,
not numbers

www.itpub.net

Dynamic Arrays 445

 This pointer arithmetic gives you an alternative way to manipulate arrays. For
example, if arraySize is the size of the dynamically allocated array pointed to by d ,
then the following will output the contents of the dynamic array:

for (int i = 0; i < arraySize; i++)
cout << *(d + i)<< " ";

 The previous is equivalent to the following:

for (int i = 0; i < arraySize; i++)
cout << d[i] << " ";

 You may not perform multiplication or division of pointers. All you can do is add
an integer to a pointer, subtract an integer from a pointer, or subtract two pointers of
the same type. When you subtract two pointers, the result is the number of indexed
variables between the two addresses. Remember, for subtraction of two pointer values,
these values must point into the same array! It makes little sense to subtract a pointer that
points into one array from another pointer that points into a different array.

 You can also use the increment and decrement operators, ++ and -- , to perform
pointer arithmetic. For example, d++ will advance the value of d so that it contains
the address of the next indexed variable, and d-- will change d so that it contains the
address of the previous indexed variable.

 Multidimensional Dynamic Arrays

 You can have multidimensional dynamic arrays. You just need to remember that
multidimensional dynamic arrays are arrays of arrays or arrays of arrays of arrays and
so forth. For example, to create a two-dimensional dynamic array you must remember
that it is an array of arrays. To create a two-dimensional array of integers, you first
create a one-dimensional dynamic array of pointers of type int* , which is the type
for a one-dimensional array of int s. Then you create a dynamic array of int s for each
element of the array.

 A type definition may help to keep things straight. The following is the variable type
for an ordinary one-dimensional dynamic array of int s:

typedef int* IntArrayPtr;

 To obtain a three-by-four array of int s, you want an array whose base type is
IntArrayPtr . For example,

IntArrayPtr *m = new IntArrayPtr[3];

 This is an array of three pointers, each of which can name a dynamic array of int s,
as follows:

for (int i = 0; i < 3; i++)
 m[i] = new int[4];

 The resulting array m is a three-by-four dynamic array. A simple program to illustrate
this is given in Display 10.9 .

++ and --

446 CHAPTER 10 Pointers and Dynamic Arrays

 How to Use a Dynamic Array

 ■ Define a pointer type : Define a type for pointers to variables of the same type as the
elements of the array. For example, if the dynamic array is an array of doubles, you
might use the following:

typedef double* DoubleArrayPtr;

■ Declare a pointer variable: Declare a pointer variable of this defined type. The pointer
variable will point to the dynamically allocated array in memory and will serve as the
name of the dynamic array.

DoubleArrayPtr a;

(Alternatively, without a defined pointer type, use double *a;).

■ Call new: Create a dynamic array using the new operator:

a = new double[arraySize];

The size of the dynamic array is given in square brackets as in the previous example. The
size can be given using an int variable or other int expression. In the previous example,
arraySize can be a variable of type int whose value is determined while the program
is running.

■ Use like an ordinary array: The pointer variable, such as a, is used just like an ordinary
array. For example, the indexed variables are written in the usual way: a[0], a[1], and
so forth. The pointer variable should not have any other pointer value assigned to it, but
should be used like an array variable.

 ■ Call delete[]: When your program is finished with the dynamically allocated array
variable, use delete and empty square brackets along with the pointer variable to
eliminate the dynamic array and return the storage that it occupies to the freestore
manager for reuse. For example,

delete [] a;

 Be sure to notice the use of delete in Display 10.9 . Since the dynamic array m is an
array of arrays, each of the arrays created with new in the for loop on lines 13 and 14
must be returned to the freestore manager with a call to delete []; then, the array m

itself must be returned to the freestore manager with another call to delete []. There
must be a call to delete [] for each call to new that created an array. (Since the program
ends right after the calls to delete [], we could safely omit the calls to dele te [], but we
wanted to illustrate their usage.)

delete []

www.itpub.net

Dynamic Arrays 447

 Display 10.9 A Two-Dimensional Dynamic Array

1 #include <iostream>
2 using namespace std;

3 typedef int* IntArrayPtr;

4 int main()
5 {
6 int d1, d2;
7 cout << "Enter the row and column dimensions of the array:\n"
8 cin >> d1 >> d2;

9 IntArrayPtr *m = new IntArrayPtr[d1];
10 int i, j;
11 for (i = 0; i < d1; i++)
12 m[i] = new int[d2];
13 //m is now a d1-by-d2 array.

14 cout << "Enter " << d1 << " rows of "
15 << d2 << " integers each:\n";
16 for (i = 0; i < d1; i++)
17 for (j = 0; j < d2; j++)
18 cin >> m[i][j];

19 cout << "Echoing the two-dimensional array:\n";
20 for (i = 0; i < d1; i++)
21 {
22 for (j = 0; j < d2; j++)
23 cout << m[i][j] << " ";
24 cout << endl;
25 }
26
27 for (i = 0; i < d1; i++)
28 delete[] m[i];
29 delete[] m;

30 return 0;
31 }

 Sample Dialogue

Enter the row and column dimensions of the array:
3 4
Enter 3 rows of 4 integers each:
1 2 3 4
5 6 7 8
9 0 1 2
Echoing the two-dimensional array:
1 2 3 4
5 6 7 8
9 0 1 2

Note that there must be one call to
delete[] for each call to new that
created an array.
(These calls to delete[] are not
really needed since the program is
ending, but in another context it
could be important to include them.)

448 CHAPTER 10 Pointers and Dynamic Arrays

 10.3 Classes, Pointers, and Dynamic Arrays

 The combinations are endless.

 Common advertisement copy

 A dynamically allocated array can have a base type that is a class. A class can have a
member variable that is a dynamically allocated array. You can combine classes and
dynamically allocated arrays in just about any combination. There are a few more
things to worry about when using classes and dynamically allocated arrays, but the
basic techniques are the ones that you have already used. Many of the techniques
presented in this section apply to all dynamically allocated structures , such as
those we will discuss in Chapter 17 , and not just to classes involving dynamically
allocated arrays.

 The –> Operator

 C++ has an operator that can be used with a pointer to simplify the notation for
specifying the members of a struct or a class. The arrow operator , -> , combines
the actions of a dereferencing operator, * , and a dot operator to specify a member of
a dynamic struct or class object that is pointed to by a given pointer. For example,
suppose you have the following definition:

struct Record
{

int number;
char grade;

};

 The following creates a dynamically allocated variable of type Record and sets the
member variables of the dynamic struct variable to 2001 and 'A' .

Record *p;
p = new Record;
p->number = 2001;
p->grade = 'A';

 The notations

p->grade

 and

(*p).grade

 have the same meaning. However, the first is more convenient and is almost always the
notation used.

arrow operator

www.itpub.net

Classes, Pointers, and Dynamic Arrays 449

 The this Pointer

 When defining member functions for a class, you sometimes want to refer to the calling
object. The this pointer is a predefined pointer that points to the calling object. For
example, consider a class like the following:

class Sample
{
public:

...
void showStuff() const;

...
private:

int stuff;
...

};

 The following two ways of defining the member function showStuff are equivalent:

void Sample::showStuff() const
{

cout << stuff;
}

//Not good style, but this illustrates the this pointer:
void Sample::showStuff()
{

cout << this->stuff;
}

 Notice that this is not the name of the calling object, but is the name of a pointer that
points to the calling object. The this pointer cannot have its value changed; it always
points to the calling object.

 As our earlier comment indicated, you normally have no need for the pointer
this . However, in a few situations it is handy. One place where the this pointer is
commonly used is in overloading the assignment operator, = , which we discuss next.

 Since the this pointer points to the calling object, you cannot use this in the
definition of any static member functions. A static member function normally has no
calling object to which the pointer this can point.

 Overloading the Assignment Operator

 In this book we usually use the assignment operator as if it were a void function.
However, the predefined assignment operator returns a reference that allows for some
specialized uses.

 With the predefined assignment operator, you can chain assignment operators as
follows: a = b = c; , which means a = (b = c); . The first operation, b = c , returns
the new version of b . So, the action of

a = b = c;

450 CHAPTER 10 Pointers and Dynamic Arrays

 is to set a as well as b equal to c . To ensure that your overloaded versions of the
assignment operator can be used in this way, you need to define the assignment
operator so it returns something of the same type as its left-hand side. As you will see
shortly, the this pointer will allow you to do this. (No pun intended.) However, while
this requires that the assignment operator return something of the type of its left-
hand side, it does not require that it return a reference. Another use of the assignment
operator explains why a reference is returned.

 The reason that the predefined assignment operator returns a reference is so that
you can invoke a member function with the value returned, as in

(a = b).f();

 where f is a member function. If you want your overloaded versions of the assignment
operator to allow for invoking member functions in this way, then you should have
them return a reference. This is not a very compelling reason for returning a reference,
since this is a pretty minor property that is seldom used. However, it is traditional to
return a reference, and it is not significantly more difficult to return a reference than to
simply return a value.

 For example, consider the following class (which might be used for some specialized
string handling that is not easily handled by the predefined class string):

class StringClass
{
public:

...
void someProcessing();
...
StringClass& operator=(const StringClass& rtSide);
...

private:
char *a; //Dynamic array for characters in the string
int capacity; //size of dynamic array a
int length; //Number of characters in a

};

 As noted in Chapter 8 , when you overload the assignment operator it must be
a member of the class; it cannot be a friend of the class. That is why the previous
definition has only one parameter for operator . For example, consider the following:

s1 = s2; //s1 and s2 in the class StringClass

 In the previous call, s1 is the calling object and s2 is the argument to the member
operator = .

 The following definition of the overloaded assignment operator can be used in
chains of assignments like

s1 = s2 = s3;

 and can be used to invoke member functions as follows:

(s1 = s2).someProcessing();

= must be a
member

calling
object for =

www.itpub.net

Classes, Pointers, and Dynamic Arrays 451

 The definition of the overloaded assignment operator uses the this pointer to
return the object on the left side of the = sign (which is the calling object):

//This version does not work in all cases.
StringClass& StringClass::operator=(const StringClass& rtSide)
{

capacity = rtSide.capacity;
length = rtSide.length;
delete [] a;
a = new char[capacity];
for (int i = 0; i < length; i++)

a[i] = rtSide.a[i];

return * this;
}

 This version has a problem when used in an assignment with the same object on
both sides of the assignment operator, like the following:

s = s;

 When this assignment is executed, the following statement is executed:

delete [] a;

 But the calling object is s , so this means

delete [] s.a;

 The pointer s.a is then undefined. The assignment operator has corrupted the object s
and this run of the program is probably ruined.

 For many classes, the obvious definition for overloading the assignment operator
does not work correctly when the same object is on both sides of the assignment
operator. You should always check this case and be careful to write your definition of
the overloaded assignment operator so that it also works in this case.

 To avoid the problem we had with our first definition of the overloaded assignment
operator, you can use the this pointer to test this special case as follows:

//Final version with bug fixed:
StringClass& StringClass::operator=(const StringClass& rtSide)
{

if (this == &rtSide)
//if the right side is the same as the left side

{
return * this;

}
else
{

capacity = rtSide.capacity;
length = rtSide.length;
delete [] a;
a = new char[capacity];

452 CHAPTER 10 Pointers and Dynamic Arrays

for (int i = 0; i < length; i++)
a[i] = rtSide.a[i];

return * this;
}

}

 A complete example with an overloaded assignment operator is given in the next
programming example.

 Display 10.10 Defi nition of a Class with a Dynamic Array Member

1 //Objects of this class are partially filled arrays of doubles.
2 class PFArrayD
3 {
4 public:
5 PFArrayD();
6 //Initializes with a capacity of 50.

7 PFArrayD(int capacityValue);

8 PFArrayD(const PFArrayD& pfaObject);

9 void addElement(double element);
10 //Precondition: The array is not full.
11 //Postcondition: The element has been added.

12 bool full() const { return (capacity == used); }
13 //Returns true if the array is full, false otherwise.

14 int getCapacity() const { return capacity; }

15 int getNumberUsed() const { return used; }

16 void emptyArray(){ used = 0; }
17 //Empties the array.

18 double& operator[](int index);
19 //Read and change access to elements 0 through numberUsed - 1.

20 PFArrayD& operator =(const PFArrayD& rightSide);

21 ~PFArrayD();
22 private:
23 double *a; //For an array of doubles
24 int capacity; //For the size of the array
25 int used; //For the number of array positions currently in use

26 };

Copy constructor

Overloaded
assignment

Destructor

www.itpub.net

Classes, Pointers, and Dynamic Arrays 453

 Display 10.11 Member Function Defi nitions for PFArrayD Class (part 1 of 2)

1 //These are the definitions for the member functions for the class
//PFArrayD.

2 //They require the following include and using directives:
3 //#include <iostream>
4 //using std::cout;

5 PFArrayD::PFArrayD() :capacity(50), used(0)
6 {
7 a = new double[capacity];
8 }

9 PFArrayD::PFArrayD(int size) :capacity(size), used(0)
10 {
11 a = new double[capacity];
12 }

13 PFArrayD::PFArrayD(const PFArrayD& pfaObject)
14 :capacity(pfaObject.getCapacity()), used(pfaObject.getNumberUsed())
15 {
16 a = new double[capacity];
17 for (int i = 0; i < used; i++)
18 a[i] = pfaObject.a[i];
19 }

20 void PFArrayD::addElement(double element)
21 {
22 if (used >= capacity)
23 {
24 cout << "Attempt to exceed capacity in PFArrayD.\n";
25 exit(0);
26 }
27 a[used] = element;
28 used++;
29 }
30
31 double& PFArrayD::operator[](int index)
32 {
33 if (index >= used)
34 {
35 cout << "Illegal index in PFArrayD.\n";
36 exit(0);
37 }

38 return a[index];
39 }

(continued)

454 CHAPTER 10 Pointers and Dynamic Arrays

Display 10.11 Member Function Defi nitions for PFArrayD Class (part 2 of 2)

40 PFArrayD& PFArrayD::operator =(const PFArrayD& rightSide)
41 {
42 if (capacity != rightSide.capacity)
43 {
44 delete [] a;
45 a = new double[rightSide.capacity];
46 }

47 capacity = rightSide.capacity;
48 used = rightSide.used;
49 for (int i = 0; i < used; i++)
50 a[i] = rightSide.a[i];

51 return * this;
52 }

53 PFArrayD::~PFArrayD()
54 {
55 delete [] a;
56 }
57

Note that this also
checks for the case
of having the same
object on both
sides of the
assignment
operator.

 Display 10.12 Demonstration Program for PFArrayD (part 1 of 2)

1 //Program to demonstrate the class PFArrayD
2 #include <iostream>
3 using namespace std;

4 class PFArrayD
5 {
6 <The rest of the class definition is the same as in Display 10.10.>
7 };

8 void testPFArrayD();
9 //Conducts one test of the class PFArrayD.

10 int main()
11 {
12 cout << "This program tests the class PFArrayD.\n";
13 char ans;
14 do
15 {
16 testPFArrayD();
17 cout << "Test again? (y/n) ";
18 cin >> ans;
19 } while ((ans == 'y') || (ans == 'Y'));

20 return 0;
21 }

In Section 11.1 of Chapter 11 we show
you how to divide this long file into
three shorter files corresponding
roughly to Displays 10.10, 10.11,
and this display without the code
from Displays 10.10 and 10.11.

www.itpub.net

Classes, Pointers, and Dynamic Arrays 455

Display 10.12 Demonstration Program for PFArrayD (part 2 of 2)

22 <The defi nitions of the member functions for the class PFArrayD go here.>
23 void testPFArrayD()
24 {
25 int cap;
26 cout << "Enter capacity of this super array: ";
27 cin >> cap;
28 PFArrayD temp(cap);

29 cout << "Enter up to " << cap << " nonnegative numbers.\n";
30 cout << "Place a negative number at the end.\n";

31 double next;
32 cin >> next;
33 while ((next >= 0) && (!temp.full()))
34 {
35 temp.addElement(next);
36 cin >> next;
37 }

38 cout << "You entered the following "
39 << temp.getNumberUsed() << " numbers:\n";
40 int index;
41 int count = temp.getNumberUsed();
42 for (index = 0; index < count; index++)
43 cout << temp[index] << " ";
44 cout << endl;
45 cout << "(plus a sentinel value.)\n";
46 }

 Sample Dialogue

This program tests the class PFArrayD.
Enter capacity of this super array: 10
Enter up to 10 nonnegative numbers.
Place a negative number at the end.
1.1
2.2
3.3
4.4
-1
You entered the following 4 numbers:
1.1 2.2 3.3 4.4
(plus a sentinel value.)
Test again? (y/n) n

456 CHAPTER 10 Pointers and Dynamic Arrays

 EXAMPLE: A Class for Partially Filled Arrays

 The class PFArrayD in Displays 10.10 and 10.11 is a class for a partially filled array
of doubles. 5 As shown in the demonstration program in Display 10.12 , an object of
the class PFArrayD can be accessed using the square brackets just like an ordinary
array, but the object also automatically keeps track of how much of the array is in use.
Thus, it functions like a partially filled array. The member function getNumberUsed

returns the number of array positions used and can thus be used in a for loop as in
the following sample code:

PFArrayD stuff(cap); //cap is an int variable.
<some code to fill object stuff with elements.>

for (int index = 0; index < stuff.getNumberUsed(); index++)
cout << stuff[index] << " ";

 An object of the class PFArrayD has a dynamic array as a member variable. This
member variable array stores the elements. The dynamic array member variable
is actually a pointer variable. In each constructor, this member variable is set to
point at a dynamic array. There are also two member variables of type int : The
member variable capacity records the size of the dynamic array, and the member
variable used records the number of array positions that have been filled so far. As is
customary with partially filled arrays, the elements must be filled in order, going first
into position 0, then 1, then 2, and so forth.

 An object of the class PFArrayD can be used as a partially filled array of double s.
It has some advantages over an ordinary array of double s or a dynamic array of
double s. Unlike the standard arrays, this array gives an error message if an illegal
array index is used. Also, an object of the class PFArrayD does not require an extra
int variable to keep track of how much of the array is used. (You may protest that
“There is such an int variable. It’s a member variable.” However, that member
variable is a private member variable in the implementation, and a programmer who
uses the class PFArrayD need never be aware of that member variable.)

 An object of the class PFArrayD only works for storing values of type double .
 When we discuss templates in Chapter 16 , you will see that it would be easy to
convert the definition to a template class that would work for any type, but for now
we will settle for storing elements of type double .

 Most of the details in the definition of the class PFArrayD use only items covered
before now, but there are three new items: a copy constructor, a destructor, and
an overloading of the assignment operator. We explain the overloaded assignment
operator next and discuss the copy constructor and destructor in the next two
subsections.

5 If you have already read the section of Chapter 7 on vectors, you will notice that the class defined here
is a weak version of a vector. Even though you can use a vector any place that you would use this class,
this is still an instructive example using many of the techniques we discussed in this chapter. Moreover,
this example will give you some insight into how a vector class might be implemented.

www.itpub.net

Classes, Pointers, and Dynamic Arrays 457

 EXAMPLE: (continued)

To see why you want to overload the assignment operator, suppose that the
overloading of the assignment operator was omitted from Displays 10.10 and 10.11 .
Suppose list1 and list2 are then declared as follows:

PFArrayD list1(10), list2(20);

 If list2 has been given a list of numbers with invocations of list2.addElement ,
then even though we are assuming that there is no overloading of the assignment
operator, the following assignment statement is still defined, but its meaning may not
be what you would like it to be:

list1 = list2;

 With no overloading of the assignment operator, the default predefined assignment
operator is used. As usual, this predefined version of the assignment operator copies the
value of each of the member variables of list2 to the corresponding member variables
of list1 . Thus, the value of list1.a is changed to be the same as list2.a , the value
of list1.capacity is changed to be the same as list2.capacity , and the value of
list1.used is changed to be the same as list2.used . But this can cause problems.

 The member variable list1.a contains a pointer, and the assignment state-
ment sets this pointer equal to the same value as list2.a . Both list1.a and
list2.a therefore point to the same place in memory. Thus, if you change the array
list1.a , you will also change the array list2.a . Similarly, if you change the
array list2.a , you will also change the array list1.a . This is not what we normally
want. We usually want the assignment operator to produce a completely independent
copy of the thing on the right-hand side. The way to fix this is to overload the
assignment operator so that it does what we want it to do with objects of the class
PFArrayD . This is what we have done in Displays 10.10 and 10.11 .

 The definition of the overloaded assignment operator in Display 10.11 is
reproduced next:

PFArrayD& PFArrayD::operator =(const PFArrayD& rightSide)
{

if (capacity != rightSide.capacity)
{

delete [] a;
a = new double[rightSide.capacity];

}

capacity = rightSide.capacity;
used = rightSide.used;
for (int i = 0; i < used; i++)

a[i] = rightSide.a[i];

return * this;
}

(continued)

458 CHAPTER 10 Pointers and Dynamic Arrays

 EXAMPLE: (continued)

When you overload the assignment operator it must be a member of the class; it
cannot be a friend of the class. That is why the previous definition has only one
parameter. For example, consider the following:

list1 = list2;

 In the previous call, list1 is the calling object and list2 is the argument to the
member operator = .

 Notice that the capacities of the two objects are checked to see if they are equal.
If they are not equal, then the array member variable a of the left side (that is, of
the calling object) is destroyed using delete and a new array with the appropriate
capacity is created using new . This ensures that the object on the left side of the
assignment operator will have an array of the correct size, but also does something
else that is very important: It ensures that if the same object occurs on both sides of
the assignment operator, then the array named by the member variable a will not be
deleted with a call to delete . To see why this is important, consider the following
alternative and simpler definition of the overloaded assignment operator:

//This version has a bug:
PFArrayD& PFArrayD::operator =(const PFArrayD& rightSide)
{

delete [] a;
 a = new double[rightSide.capacity];

 capacity = rightSide.capacity;
 used = rightSide.used;

for (int i = 0; i < used; i++)
 a[i] = rightSide.a[i];

return * this;
}

 This version has a problem when used in an assignment with the same object on both
sides of the assignment operator, like the following:

myList = myList;

 When this assignment is executed, the first statement executed is

delete [] a;

 But the calling object is myList , so this means

delete [] myList.a;

 The pointer myList.a is then undefined. The assignment operator has corrupted the
object myList . This problem cannot happen with the definition of the overloaded
assignment operator we gave in Display 10.11 .

www.itpub.net

Classes, Pointers, and Dynamic Arrays 459

 Shallow Copy and Deep Copy
When defining an overloaded assignment operator or a copy constructor, if your code simply
copies the contents of member variables from one object to the other that is known as a
shallow copy. The default assignment operator and the default copy constructor perform
shallow copies. If there are no pointers or dynamically allocated data involved, this works
fine. If some member variable names a dynamic array (or points to some other dynamic
structure), then you normally do not want a shallow copy. Instead, you want to create a
copy of what each member variable is pointing to, so that you get a separate but identical
copy, as illustrated in Display 10.11. This is called a deep copy and is what we normally do
when overloading the assignment operator or defining a copy constructor.

 Destructors

 Dynamically allocated variables have one problem: They do not go away unless your
program makes a suitable call to dele te. Even if the dynamic variable was created using
a local pointer variable and the local pointer variable goes away at the end of a function
call, the dynamic variable will remain unless there is a call to delete . If you do not
eliminate dynamic variables with calls to delete , the dynamic variables will continue
to occupy memory space, which may cause your program to abort by using up all the
memory in the freestore manager. Moreover, if the dynamic variable is embedded in
the implementation details of a class, the programmer who uses the class may not know
about the dynamic variable and cannot be expected to perform the calls to delete . In
fact, since the data members are normally private members, the programmer normally
cannot access the needed pointer variables and so cannot call delete with these pointer
variables. To handle this problem, C++ has a special kind of member function called
a destructor.

 A destructor is a member function that is called automatically when an object of
the class passes out of scope. If your program contains a local variable that names an
object from a class with a destructor, then when the function call ends, the destructor
will be called automatically. If the destructor is defined correctly, the destructor will
call delete to eliminate all the dynamically allocated variables created by the object.
This may be done with a single call to delete or it may require several calls to delete .
You may also want your destructor to perform some other clean-up details as well, but
returning memory to the freestore manager for reuse is the main job of the destructor.

 The member function ~PFArrayD is the destructor for the class PFArrayD shown in
 Display 10.10 . Like a constructor, a destructor always has the same name as the class of
which it is a member, but the destructor has the tilde symbol, ~ , at the beginning of its
name (so you can tell that it is a destructor and not a constructor). Like a constructor, a
destructor has no type for the value returned, not even the type void . A destructor has no
parameters. Thus, a class can have only one destructor; you cannot overload the destructor
for a class. Otherwise, a destructor is defined just like any other member function.

 Notice the definition of the destructor ~PFArrayD given in Display 10.11 .
~PFArrayD calls delete to eliminate the dynamically allocated array pointed to by the
member pointer variable a . Look again at the function testPFArrayD in the sample

destructor

destructor
name

Example of
Shallow Copy
vs. Deep Copy

VideoNote

460 CHAPTER 10 Pointers and Dynamic Arrays

program shown in Display 10.12 . The local variable temp contains a dynamic array
pointed to by the member variable temp.a . If this class did not have a destructor, then
after the call to testPFArrayD ended, this dynamic array would still be occupying
memory, even though the dynamic array is useless to the program. Moreover, every
iteration of the do-while loop would produce another useless dynamic array to clutter
up memory. If the loop is iterated enough times, the function calls could consume all
the memory in the freestore manager and your program would then end abnormally.

 Destructor
The destructor of a class is a member function of a class that is called automatically when
an object of the class goes out of scope. Among other things, this means that if an object of
the class type is a local variable for a function, then the destructor is automatically called as
the last action before the function call ends. Destructors are used to eliminate any dynamically
allocated variables that have been created by the object so that the memory occupied by these
dynamic variables is returned to the freestore manager for reuse. Destructors may perform
other clean-up tasks as well. The name of a destructor must consist of the tilde symbol, ~,
followed by the name of the class.

 Copy Constructors

 A copy constructor is a constructor that has one parameter that is of the same type as
the class. The one parameter must be a call-by-reference parameter, and normally the
parameter is preceded by the const parameter modifier, so it is a constant parameter.
In all other respects a copy constructor is defined in the same way as any other
constructor and can be used just like other constructors. For example, a program that
uses the class PFArrayD defined in Display 10.10 might contain the following:

PFArrayD b(20);
for (int i = 0; i < 20; i++)

b.addElement(i);
PFArrayD temp(b); //Initialized by the copy constructor

 The object b is initialized with the constructor that has a parameter of type int .
Similarly, the object temp is initialized by the constructor that has one argument of
type const PFArrayD& . When used in this way a copy constructor is being used just
like any other constructor.

 A copy constructor should be defined so that the object being initialized becomes a
complete, independent copy of its argument. So, in the declaration

PFArrayD temp(b);

 the member variable temp.a should not be simply set to the same value as b.a ; that
would produce two pointers pointing to the same dynamic array. The definition of the
copy constructor is shown in Display 10.11 . Note that in the definition of the copy
constructor, a new dynamic array is created and the contents of one dynamic array are

copy
constructor

www.itpub.net

Classes, Pointers, and Dynamic Arrays 461

copied to the other dynamic array. Thus, in the previous declaration, temp is initialized
so that its array member variable is different from the array member variable of b . The two
array member variables, temp.a and b.a , contain the same values of type double , but if a
change is made to one of these array member variables, it has no effect on the other array
member variable. Thus, any change that is made to temp will have no effect on b .

 As you have seen, a copy constructor can be used just like any other constructor.
A copy constructor is also called automatically in certain other situations. Roughly
speaking, whenever C++ needs to make a copy of an object, it automatically calls the
copy constructor. In particular, the copy constructor is called automatically in three
circumstances:

 1. When a class object is being declared and is initialized by another object of the
same type given in parentheses. (This is the case of using the copy constructor like
any other constructor.)

 2. When a function returns a value of the class type.
 3. Whenever an argument of the class type is “plugged in” for a call-by-value param-

eter. In this case, the copy constructor defi nes what is meant by “plugging in.”

 If you do not define a copy constructor for a class, C++ will automatically generate
a copy constructor for you. However, this default copy constructor simply copies the
contents of member variables and does not work correctly for classes with pointers or
dynamic data in their member variables. Thus, if your class member variables involve
pointers, dynamic arrays, or other dynamic data, you should define a copy constructor
for the class.

 To see why you need a copy constructor, let us see what would happen if we did not
define a copy constructor for the class PFArrayD . Suppose we did not include the copy
constructor in the definition of the class PFArrayD and suppose we used a call-by-value
parameter in a function definition, for example,

void showPFArrayD(PFArrayD parameter)
{

cout << "The first value is: "
<< parameter[0] << endl;

}

 Consider the following code, which includes a function call:

PFArrayD sample(2);
sample.addElement(5.5);
sample.addElement(6.6);
showPFArrayD(sample);
cout << "After call: " << sample[0] << endl;

Because no copy constructor is defined for the class PFArrayD , the class has a default copy
constructor that simply copies the contents of member variables. Things then proceed
as follows. When the function call is executed, the value of sample is copied to the

why a copy
constructor

is needed

462 CHAPTER 10 Pointers and Dynamic Arrays

local variable parameter , so parameter.a is set equal to sample.a . But these are
pointer variables, so during the function call parameter.a and sample.a point to the
same dynamic array, as follows:

5.5, 6.6

sample.a parameter.a

Undefined

sample.a parameter.a

 When the function call ends, the destructor for PFArrayD is called to return the
memory used by parameter to the freestore manager so it can be reused. The definition
of the destructor contains the following statement:

delete [] a;

 Since the destructor is called with the object parameter , this statement is equivalent to

delete [] parameter.a;

 which changes the picture to the following:

 Since sample.a and parameter.a point to the same dynamic array, deleting
parameter.a is the same as deleting sample.a . Thus, sample.a is undefined when
the program reaches the statement

cout << "After call: " << sample[0] << endl;

 so this cout statement is undefined. The cout statement may by chance give you the
output you want, but sooner or later the fact that sample.a is undefined will produce
problems. One major problem occurs when the object sample is a local variable in
some function. In this case the destructor will be called with sample when the function
call ends. That destructor call will be equivalent to

delete [] sample.a;

 But, as we just saw, the dynamic array pointed to by sample.a has already been deleted
once, and now the system is trying to delete it a second time. Calling delete twice to
delete the same dynamic array (or any other variable created with new) can produce a
serious system error that can cause your program to crash.

 That was what would happen if there were no copy constructor. Fortunately, we
included a copy constructor in our definition of the class PFArrayD , so the copy
constructor is called automatically when the following function call is executed:

showPFArrayD(sample);

www.itpub.net

Classes, Pointers, and Dynamic Arrays 463

 The copy constructor defines what it means to plug in the argument sample for the
call-by-value parameter named parameter , so that now the picture is as follows:

5.5, 6.6

sample.a parameter.a

5.5, 6.6

 Thus, any change that is made to parameter.a has no effect on the argument sample ,
and there are no problems with the destructor. If the destructor is called for parameter
and then called for sample , each call to the destructor deletes a different dynamic array.

 When a function returns a value of a class type, the copy constructor is called
automatically to copy the value specified by the return statement. If there is
no copy constructor, problems similar to what we described for call-by-value
parameters will occur.

 If a class definition involves pointers and dynamically allocated memory using the
new operator, you need to include a copy constructor. Classes that do not involve
pointers or dynamically allocated memory do not need to define a copy constructor.

 Contrary to what you might expect, the copy constructor is not called when you
set one object equal to another using the assignment operator. 6 However, if you do
not like what the default assignment operator does, you can redefine the assignment
operator as we have done in Displays 10.10 and 10.11 .

returned value

when you
need a copy
constructor

assignment
statements

6 C++ makes a distinction between initialization (the three cases where the copy constructor is called)
and assignment. Initialization uses the copy constructor to create a new object; the assignment opera-
tor takes an existing object and modifies it so that it is an identical copy (in all but location) of the
right-hand side of the assignment.

 Copy Constructor
A copy constructor is a constructor that has one call-by-reference parameter that is of the
same type as the class. The one parameter must be a call-by-reference parameter; normally,
the parameter is also a constant parameter—that is, it is preceded by the const parameter
modifier. The copy constructor for a class is called automatically whenever a function
returns a value of the class type. The copy constructor is also called automatically whenever
an argument is plugged in for a call-by-value parameter of the class type. A copy constructor
can also be used in the same ways as other constructors.

Any class that uses pointers and the new operator should have a copy constructor.

464 CHAPTER 10 Pointers and Dynamic Arrays

 The Big Three
The copy constructor, the = assignment operator, and the destructor are called the big
three because experts say that if you need any of them, you need all three. If any of these
is missing, the compiler will create it, but the created item might not behave as you want.
Thus, it pays to define them yourself. The copy constructor and overloaded = assignment
operator that the compiler generates for you will work fine if all member variables are of
predefined types such as int and double. For any class that uses pointers and the new
operator, it is safest to define your own copy constructor, overloaded =, and a destructor.

 Self-Test Exercises

 13. If a class is named MyClass and it has a constructor, what is the constructor
named? If MyClass has a destructor what is the destructor named?

 14. Suppose you change the defi nition of the destructor in Display 10.11 to the
following. How would the sample dialogue in Display 10.12 change?

PFArrayD::~PFArrayD()
{

cout << "\nGood-bye cruel world! The short life of\n"
 << "this dynamic array is about to end.\n";
delete [] a;

}

 15. The following is the fi rst line of the copy constructor defi nition for the class
PFArrayD . The identifi er PFArrayD occurs three times and means something
slightly different each time. What does it mean in each of the three cases?

PFArrayD::PFArrayD(const PFArrayD& pfaObject)

 16. Answer these questions about destructors.

 a. What is a destructor and what must the name of a destructor be?

 b. When is a destructor called?

 c. What does a destructor actually do?

 d. What should a destructor do?

 17. a. Explain carefully why no overloaded assignment operator is needed when
the only data consists of built-in types.

 b. Same as part a for a copy constructor.

 c. Same as part a for a destructor.

www.itpub.net

Answers to Self-Test Exercises 465

 Chapter Summary

• A pointer is a memory address, so a pointer provides a way to indirectly name a
 variable by naming the address of the variable in the computer’s memory.

• Dynamic variables (also called dynamically allocated variables) are variables that are
created (and destroyed) while a program is running.

• Memory for dynamic variables is in a special portion of the computer’s memory
called the freestore manager. When a program is finished with a dynamic variable, the
memory used by the dynamic variable can be returned to the freestore manager for
reuse; this is done with a delete statement.

• A dynamically allocated array (also called simply a dynamic array) is an array whose
size is determined when the program is running. A dynamic array is implemented as
a dynamic variable of an array type.

• A destructor is a special kind of member function for a class. A destructor is called
automatically when an object of the class passes out of scope. The main reason for
destructors is to return memory to the freestore manager so the memory can be reused.

• A copy constructor is a constructor that has a single argument that is of the same type
as the class. If you define a copy constructor, it will be called automatically whenever
a function returns a value of the class type and whenever an argument is plugged in
for a call-by-value parameter of the class type. Any class that uses pointers and the
operator new should have a copy constructor.

• When overloading the assignment operator, it must be overloaded as a member
 operator. Be sure to check that your overloading works when the same variable is on
both sides of the overloaded assignment operator.

 Answers to Self-Test Exercises

 1. A pointer is the memory address of a variable.

 2. int *p; // This declares a pointer to an int variable.

 *p = 17; //Here, * is the dereferencing operator. This assigns

//17 to the memory location pointed to by p.

 void func(int* p); // Declares p to be a pointer value

 // parameter.

 3. 10 20
 20 20

 30 30

 If you replace *p1 = 30; with *p2 = 30; , the output would be the same.

 4. 10 20
 20 20

 30 20

 5. To the unwary or to the neophyte, this looks like two objects of type pointer to
int , that is, int* . Unfortunately, the * binds to the identifier, not to the type (that
is, not to the int). The result is that this declaration declares intPtr1 to be an int
pointer, while intPtr2 is an ordinary int variable.

 6. delete p;

 7. typedef double* NumberPtr;
 NumberPtr myPoint;

 8. The new operator takes a type for its argument. new allocates space on the freestore
manager for a variable of the type of the argument. It returns a pointer to that
memory, provided there is enough space. If there is not enough space, the new

operator may return NULL , or may abort the program, depending on how your
particular compiler works.

 9. typedef char* CharArray;

 10. cout << "Enter 10 integers:\n";

 for (int i = 0; i < 10; i++)

 cin >> entry[i];

 11. delete [] entry;

 12. 0 1 2 3 4 5 6 7 8 9

 13. The constructor is named MyClass , the same name as the name of the class. The
destructor is named ~MyClass .

 14. The dialogue would change to the following:
 This program tests the class PFArrayD.
 Enter capacity of this super array: 10

 Enter up to 10 nonnegative numbers.

 Place a negative number at the end.

1.1

 2.2

 3.3

 4.4

 –1

 You entered the following 4 numbers:

 1.1 2.2 3.3 4.4

 (plus a sentinel value.)

 Good-bye cruel world! The short life of

 this dynamic array is about to end.

 Test again? (y/n) n

466 CHAPTER 10 Pointers and Dynamic Arrays

www.itpub.net

Programming Projects 467

 15. The PFArrayD before the :: is the name of the class. The PFArrayD right after the
:: is the name of the member function. (Remember, a constructor is a member
function that has the same name as the class.) The PFArrayD inside the parentheses
is the type for the parameter pfaObject .

 16. a. A destructor is a member function of a class. A destructor’s name always begins
with a tilde, ~, followed by the class name.

 b. A destructor is called when a class object goes out of scope.

 c. A destructor actually does whatever the class author programs it to do!

 d. A destructor is supposed to delete dynamic variables that have been allocated by
constructors for the class. Destructors may also do other clean-up tasks.

 17. In the case of the assignment operator = and the copy constructor, if there are only
built-in types for data, the copy mechanism is exactly what you want, so the default
works fine. In the case of the destructor, no dynamic memory allocation is done
(no pointers), so the default do-nothing action is again what you want.

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Reread the code in Display 10.9 . Then, write a class TwoD that implements the
two-dimensional dynamic array of double s using ideas from this display in its
constructors. You should have a private member of type pointer to double to point
to the dynamic array, and two int (or unsigned int) values that are MaxRows and
MaxCols .

 You should supply a default constructor for which you are to choose a default
maximum row and column sizes and a parameterized constructor that allows the
programmer to set maximum row and column sizes.

 Further, you should provide a void member function that allows setting a particu-
lar row and column entry and a member function that returns a particular row and
column entry as a value of type double .

 Remark: It is difficult or impossible (depending on the details) to overload [] so
it works as you would like for two-dimensional arrays. So simply use accessor and
mutator functions using ordinary function notation.

 Overload the + operator as a friend function to add two two-dimensional arrays.
This function should return the TwoD object whose i th row, j th column element is
the sum of the i th row, j th column element of the left-hand operand TwoD object and
the i th row, j th column element of the right-hand operand TwoD object.

 Provide a copy constructor, an overloaded operator = , and a destructor.

 Declare class member functions that do not change the data as const members.

 2. Using dynamic arrays, implement a polynomial class with polynomial addition,
subtraction, and multiplication.

www.myprogramminglab.com

 Discussion: A variable in a polynomial does nothing but act as a placeholder for
the coefficients. Hence, the only interesting thing about polynomials is the array
of coefficients and the corresponding exponent. Think about the polynomial

x*x*x + x + 1

 Where is the term in x*x ? One simple way to implement the polynomial class is to
use an array of doubles to store the coefficients. The index of the array is the
exponent of the corresponding term. If a term is missing, then it simply has a zero
coefficient.

 There are techniques for representing polynomials of high degree with many miss-
ing terms. These use so-called sparse matrix techniques. Unless you already know
these techniques, or learn very quickly, do not use these techniques.

 Provide a default constructor, a copy constructor, and a parameterized constructor
that enables an arbitrary polynomial to be constructed.

 Supply an overloaded operator = and a destructor.

 Provide these operations:

 polynomial + polynomial, constant + polynomial, polynomial + constant,

 polynomial - polynomial, constant - polynomial, polynomial - constant.

 polynomial * polynomial, constant * polynomial, polynomial * constant,

 Supply functions to assign and extract coefficients, indexed by exponent.

 Supply a function to evaluate the polynomial at a value of type double .

 You should decide whether to implement these functions as members, friends, or
standalone functions.

 3. Write a program that accepts a C-string input from the user and reverses the con-
tents of the string. Your program should work by using two pointers. The “head”
pointer should be set to the address of the first character in the string, and the
“tail” pointer should be set to the address of the last character in the string (i.e., the
character before the terminating null). The program should swap the characters
referenced by these pointers, increment “head” to point to the next character, dec-
rement “tail” to point to the second-to-last character, and so on, until all characters
have been swapped and the entire string reversed.

 4. Create a class named Student that has three member variables:

 name – A string that stores the name of the student

 numClasses – An integer that tracks how many courses the student is cur-
rently enrolled in

 classList – A dynamic array of strings used to store the names of the
classes that the student is enrolled in

468 CHAPTER 10 Pointers and Dynamic Arrays

www.itpub.net

Programming Projects 469

 Write appropriate constructor(s), mutator, and accessor functions for the class
along with the following:

 • A function that inputs all values from the user, including the list of class names.
This function will have to support input for an arbitrary number of classes.

 • A function that outputs the name and list of all courses.

 • A function that resets the number of classes to 0 and the classList to an
empty list.

 • An overloaded assignment operator that correctly makes a new copy of the list
of courses.

 • A destructor that releases all memory that has been allocated.

 Write a main function that tests all of your functions.

 5. This programming project is based on Programming Projects 7.8 and 5.7 . Write
a program that outputs a histogram of grades for an assignment given to a class of
students. The program should input each student’s grade as an integer and store
the grade in a vector. Grades should be entered until the user enters -1 for a grade.
The program should then scan through the vector and compute the histogram. In
computing the histogram, the minimum value of a grade is 0, but your program
should determine the maximum value entered by the user. Use a dynamic array to
store the histogram. Output the histogram to the console.

 6. One problem with dynamic arrays is that once the array is created using the new
operator the size cannot be changed. For example, you might want to add or delete
entries from the array similar to the behavior of a vector . This project asks you
to create a class called DynamicStringArray that includes member functions that
allow it to emulate the behavior of a vector of strings.

 The class should have the following:

 • A private member variable called dynamicArray that references a dynamic
array of type string.

 • A private member variable called size that holds the number of entries in
the array.

 • A default constructor that sets the dynamic array to NULL and sets size to 0.

 • A function that returns size .

 • A function named addEntry that takes a string as input. The function should
create a new dynamic array one element larger than dynamicArray , copy all
elements from dynamicArray into the new array, add the new string onto the
end of the new array, increment size, delete the old dynamicArray , and then
set dynamicArray to the new array.

 • A function named deleteEntry that takes a string as input. The function
should search dynamicArray for the string. If not found, it returns false . If
found, it creates a new dynamic array one element smaller than dynamicArray .
It should copy all elements except the input string into the new array, delete
dynamicArray , decrement size, and return true .

Solution to
Programming
Project 10.5

VideoNote

 • A function named getEntry that takes an integer as input and returns the
string at that index in dynamicArray . It should return NULL if the index is out
of dynamicArray’s bounds.

 • A copy constructor that makes a copy of the input object’s dynamic array.

 • Overload the assignment operator so that the dynamic array is properly copied
to the target object.

 • A destructor that frees up the memory allocated to the dynamic array.

 Embed your class in a suitable test program.

470 CHAPTER 10 Pointers and Dynamic Arrays

www.itpub.net

 Unnamed Namespaces 497
 Pitfall: Confusing the Global Namespace and the

Unnamed Namespace 503
 Tip: Unnamed Namespaces Replace the

 static Qualifier 504
 Tip: Hiding Helping Functions 504
 Nested Namespaces 505
 Tip: What Namespace Specification Should

You Use? 505

 11.1 SEPARATE COMPILATION 472
 Encapsulation Reviewed 473
 Header Files and Implementation Files 473
 Example: DigitalTime Class 482
 Tip: Reusable Components 483
 Using #ifndef 483
 Tip: Defining Other Libraries 485

 11.2 NAMESPACES 487
 Namespaces and using Directives 487
 Creating a Namespace 489
 Using Declarations 492
 Qualifying Names 493
 Tip: Choosing a Name for a Namespace 495
 Example: A Class Definition in a Namespace 496

 11 Separate Compilation
and Namespaces

Chapter Summary 508 Answers to Self-Test Exercises 508 Programming Projects 510

 From mine own library with volumes that

I prize above my dukedom.

 WILLIAM SHAKESPEARE, The Tempest

 Introduction
 This chapter covers two topics that have to do with how to organize a C + + program into
separate parts. Section 11.1 on separate compilation discusses how a C+ + program can
be distributed across a number of files so that when some parts of the program change
only those parts need to be recompiled and so that the separate parts can be more easily
reused in other applications.

 Section 11.2 discusses namespaces , which were introduced briefly in Chapter 1 .
Namespaces are a way of allowing you to reuse the names of classes, functions, and
other items by qualifying the names to indicate different uses. Namespaces divide
your code into sections so that the different sections may reuse the same names with
differing meanings. They allow a kind of local meaning for names that is more general
than local variables.

 This chapter can be covered earlier than its location in the book. This chapter does
not use any of the material from Chapters 5 (arrays), 9 (strings), 10 (pointers and
dynamic arrays) or Section 7.3 (vectors) of Chapter 7 .

 11.1 Separate Compilation

 Your “if” is the only peacemaker; much virtue in “if.”

 WILLIAM SHAKESPEARE, As You Like It

 C+ + has facilities for dividing a program into parts that are kept in separate files,
compiled separately, and then linked together when (or just before) the program is run.
You can place the definition for a class (and its associated function definitions) in files
that are separate from the programs that use the class. In this way you can build up a
library of classes so that many programs can use the same class. You can compile the
class once and then use it in many different programs, just like you use the predefined
libraries such as those with header files iostream and cstdlib . Moreover, you can
define the class itself in two files so that the specification of what the class does is
separate from how the class is implemented. If you only change the implementation of
the class, then you need only recompile the file containing the class implementation.
The other files, including the files containing the programs that use the class, need not
be changed or even recompiled. This section tells you how to carry out this separate
compilation of classes.

11Separate Compilation and Namespaces

www.itpub.net

Separate Compilation 473

 Encapsulation Reviewed

 The principle of encapsulation says that you should separate the specification of how
the class is used by a programmer from the details of how the class is implemented. The
separation should be so complete that you can change the implementation without
needing to change any program that uses the class. The way to ensure this separation
can be summarized in three rules:

1. Make all the member variables private members of the class.

2. Make each of the basic operations for the class either a public member function of
the class, a friend function, an ordinary function, or an overloaded operator. Group
the class definition and the function and operator declarations (prototypes) together.
This group, along with its accompanying comments, is called the interface for the
class. Fully specify how to use each such function or operator in a comment given
with the class or with the function or operator declaration.

3. Make the implementation of the basic operations unavailable to the programmer
who uses the class. The implementation consists of the function definitions
and overloaded operator definitions (along with any helping functions or other
additional items these definitions require).

 In C+ +, the best way to ensure that you follow these rules is to place the interface
and the implementation of the class in separate files. As you might guess, the file that
contains the interface is often called the interface file , and the file that contains the
implementation is called the implementation file . The exact details of how to set
up, compile, and use these files will vary slightly from one version of C+ + to another,
but the basic scheme is the same in all versions of C+ +. In particular, the details of
what goes into the files are the same in all systems. The only things that vary are the
commands used to compile and link these files. The details about what goes into these
files are illustrated in the next subsection.

 A typical class has private member variables. Private member variables (and
private member functions) present a problem to our basic philosophy of placing the
interface and the implementation of a class in separate files. The public part of the
definition for a class is part of the interface for the class, but the private part is part
of the implementation. This is a problem because C+ + will not allow you to split the
class definition across two files. Thus, some sort of compromise is needed. The only
sensible compromise is to place the entire class definition in the interface file. Since a
programmer who is using the class cannot use any of the private members of the class,
the private members will, in effect, still be hidden from the programmer.

 Header Files and Implementation Files

 Display 11.1 contains the interface file for a class called DigitalTime . DigitalTime
is a class whose values are times of day, such as 9:30. Only the public members of the
class are part of the interface. The private members are part of the implementation,
even though they are in the interface file. The label private: warns you that these
private members are not part of the public interface. Everything that a programmer

interface

implementation

interface
file and

implementation
file

Private members
are part of the

implementation.

474 CHAPTER 11 Separate Compilation and Namespaces

needs to know in order to use the class DigitalTime is explained in the comment at
the start of the file and in the comments in the public section of the class definition. As
noted in the comment at the top of the interface file, this class uses 24-hour notation,
so, for instance, 1:30 P.M. is input and output as 13:30. This and the other details
you must know in order to effectively use the class DigitalTime are included in the
comments given with the member functions.

 We have placed the interface in a file named dtime.h . The suffix .h indicates that
this is a header file . An interface file is always a header file and so always ends with
the suffix .h . Any program that uses the class DigitalTime must contain an include
directive like the following, which names this file:

#include "dtime.h"

 When you write an include directive, you must indicate whether the header file is
a predefined header file that is provided for you or is a header file that you wrote.
If the header file is predefined, write the header file name in angular brackets, like
<iostream> . If the header file is one that you wrote, write the header file name in
quotes, like "dtime.h" . This distinction tells the compiler where to look for the header
file. If the header file name is in angular brackets, the compiler looks wherever the
predefined header files are kept in your implementation of C+ +. If the header file name
is in quotes, the compiler looks in the current directory or wherever programmer-
defined header files are kept on your system.

 Any program that uses our DigitalTime class must contain the previous include
directive that names the header file dtime.h . That is enough to allow you to compile
the program, but is not enough to allow you to run the program. In order to run
the program you must write (and compile) the definitions of the member functions
and the overloaded operators. We have placed these function and operator definitions
in another file, which is called the implementation file . Although it is not required by
most compilers, it is traditional to give the interface file and the implementation file
the same name. The two files do, however, end in different suffixes. We have placed the
interface for our class in the file named dtime.h and the implementation for our class in
a file named dtime.cpp . The suffix you use for the implementation file depends on your
version of C+ +. Use the same suffix for the implementation file as you normally use for
files that contain C+ + programs. (Other common suffixes are .cc and .cxx and .hxx .)
The implementation file for our DigitalTime class is given in Display 11.2 . After we
explain how the various files for our class interact with each other, we will return to
 Display 11.2 and discuss the details of the definitions in this implementation file.

header files

include

file names

 Display 11.1 Interface File for the DigitalTime Class (part 1 of 2)

 1 //This is the header file dtime.h. This is the interface for the class
 2 //DigitalTime. Values of this type are times of day. The values are

//input and output in 24-hour notation, as in 9:30 for 9:30 AM and
 3 //14:45 for 2:45 PM.
 4 #include <iostream>
 5 using namespace std;

www.itpub.net

Separate Compilation 475

 6 class DigitalTime
 7 {
 8 public:
 9 DigitalTime(int theHour, int theMinute);
10 DigitalTime();
11 //Initializes the time value to 0:00 (which is midnight).

12 int getHour() const;
13 int getMinute() const;
14 void advance(int minutesAdded);
15 //Changes the time to minutesAdded minutes later.

16 void advance(int hoursAdded, int minutesAdded);
17 //Changes the time to hoursAdded hours plus minutesAdded minutes
 //later.

18 friend bool operator ==(const DigitalTime& time1,
19 const DigitalTime& time2);

20 friend istream& operator >>(istream& ins, DigitalTime& theObject);

21 friend ostream& operator <<(ostream& outs, const DigitalTime&
theObject);

22 private:

23 int hour;
24 int minute;

25 static void readHour(int& theHour);
26 //Precondition: Next input to be read from the keyboard is
27 //a time in notation, like 9:45 or 14:45.
28 //Postcondition: theHour has been set to the hour part of the time.
29 //The colon has been discarded and the next input to be read is the
 //minute.

30 static void readMinute(int& theMinute);
31 //Reads the minute from the keyboard after readHour has read the
 //hour.

32 static int digitToInt(char c);
33 //Precondition: c is one of the digits '0' through '9'.
34 //Returns the integer for the digit; for example, digitToInt('3')
 //returns 3.
35
36 };

These member variables and helping
functions are part of the implementation.
They are not part of the interface. The word
private indicates that they are not part
of the public interface.

Display 11.1 Interface File for the DigitalTime Class (part 2 of 2)

476 CHAPTER 11 Separate Compilation and Namespaces

 Display 11.2 Implementation File (part 1 of 3)

 1 //This is the implementation file dtime.cpp of the class DigitalTime.
 2 //The interface for the class DigitalTime is in the header file dtime.h.
 3 #include <iostream>
 4 #include <cctype>
 5 #include <cstdlib>
 6 using namespace std;
 7 #include "dtime.h"

 8 //Uses iostream and cstdlib:
 9 DigitalTime::DigitalTime(int theHour, int theMinute)
 10 {
 11 if (theHour < 0 || theHour > 24 || theMinute < 0 || theMinute > 59)
 12 {
 13 cout << "Illegal argument to DigitalTime constructor.";
 14 exit(1);
 15 }
 16 else
 17 {
 18 hour = theHour;
 19 minute = theMinute;
 20 }

21 if (hour == 24)
 22 hour = 0; //Standardize midnight as 0:00
 23 }

24 DigitalTime::DigitalTime()
 25 {
 26 hour = 0;
 27 minute = 0;
 28 }

29 int DigitalTime::getHour() const
 30 {
 31 return hour;
 32 }
 33
 34 int DigitalTime::getMinute() const
 35 {
 36 return minute;
 37 }

38 void DigitalTime::advance(int minutesAdded)
 39 {
 40 int grossMinutes = minute + minutesAdded;
 41 minute = grossMinutes % 60;

www.itpub.net

Separate Compilation 477

 42 int hourAdjustment = grossMinutes / 60;
 43 hour = (hour + hourAdjustment)%24;
 44 }

45 void DigitalTime::advance(int hoursAdded, int minutesAdded)
 46 {
 47 hour = (hour + hoursAdded) % 24;
 48 advance(minutesAdded);
 49 }

50 bool operator ==(const DigitalTime& time1, const DigitalTime& time2)
 51 {
 52 return (time1.hour == time2.hour && time1.minute == time2.minute);
 53 }

54 //Uses iostream:
 55 ostream& operator <<(ostream& outs, const DigitalTime& theObject)
 56 {
 57 outs << theObject.hour << ':';
 58 if (theObject.minute < 10)
 59 outs << '0';
 60 outs << theObject.minute;
 61 return outs;
 62 }
 63
 64 //Uses iostream:
 65 istream& operator >>(istream& ins, DigitalTime& theObject)
 66 {
 67 DigitalTime::readHour(theObject.hour);
 68 DigitalTime::readMinute(theObject.minute);
 69 return ins;
 70 }

 71 int DigitalTime::digitToInt(char c)
 72 {
 73 return (static_cast< int>(c) - static_cast< int>('0'));
 74 }

75 //Uses iostream, cctype, and cstdlib:
 76 void DigitalTime::readMinute(int& theMinute)
 77 {
 78 char c1, c2;
 79 cin >> c1 >> c2;

 80 if (!(isdigit(c1) && isdigit(c2)))
 81 {
 82 cout << "Error: illegal input to readMinute\n";

Display 11.2 Implementation File (part 2 of 3)

(continued)

478 CHAPTER 11 Separate Compilation and Namespaces

 83 exit(1);
 84 }
 85 theMinute = digitToInt(c1)*10 + digitToInt(c2);

 86 if (theMinute < 0 || theMinute > 59)
 87 {
 88 cout << "Error: illegal input to readMinute\n";
 89 exit(1);
 90 }
 91 }
 92
 93 //Uses iostream, cctype, and cstdlib:
 94 void DigitalTime::readHour(int& theHour)
 95 {
 96 char c1, c2;
 97 cin >> c1 >> c2;
 98 if (!(isdigit(c1) && (isdigit(c2) || c2 == ':')))
 99 {
 100 cout << "Error: illegal input to readHour\n";
 101 exit(1);
 102 }

103 if (isdigit(c1) && c2 == ':')
 104 {
 105 theHour = DigitalTime::digitToInt(c1);
 106 }
 107 else //(isdigit(c1) && isdigit(c2))
 108 {
 109 theHour = DigitalTime::digitToInt(c1)*10
 110 + DigitalTime::digitToInt(c2);
 111 cin >> c2; //discard ':'
 112 if (c2 != ':')
 113 {
 114 cout << "Error: illegal input to readHour\n";
 115 exit(1);
 116 }
 117 }

118 if (theHour == 24)
 119 theHour = 0; //Standardize midnight as 0:00

120 if (theHour < 0 || theHour > 23)
 121 {
 122 cout << "Error: illegal input to readHour\n";
 123 exit(1);
 124 }
 125 }

Display 11.2 Implementation File (part 3 of 3)

www.itpub.net

Separate Compilation 479

 Any file that uses the class DigitalTime must contain the include directive

#include "dtime.h"

 Thus, both the implementation file and the program file must contain the include
directive that names the interface file. The file that contains the program (that is, the
file that contains the main function) is often called the application file or driver file .
 Display 11.3 contains an application file with a very simple program that uses and
demonstrates the DigitalTime class.

 The exact details of how to run this complete program, which is contained in
three files, depend on what system you are using. However, the basic details are
the same for all systems. You must compile the implementation file and you must
compile the application file that contains the main function. You do not compile the
interface file, which in this example is the file dtime.h given in Display 11.1 . You do
not need to compile the interface file because the compiler thinks the contents of this
interface file are already contained in each of the other two files. Recall that both the
implementation file and the application file contain the directive

#include "dtime.h"

 Compiling your program automatically invokes a preprocessor that reads this include
directive and replaces it with the text in the file dtime.h . Thus, the compiler sees the
contents of dtime.h , and so the file dtime.h does not need to be compiled separately.
(In fact, the compiler sees the contents of dtime.h twice: once when you compile the
implementation file and once when you compile the application file.) This copying of
the file dtime.h is only a conceptual copying. The compiler acts as if the contents of
dtime.h were copied into each file that has the include directive. However, if you
look in those files after they are compiled, you will only find the include directive;
you will not find the contents of the file dtime.h .

 Once the implementation file and the application file are compiled, you still need to
connect these files so that they can work together. This is called linking the files and is
done by a separate utility called a linker . The details of how to call the linker depends
on what system you are using. Often, the command to run a program automatically
invokes the linker, so you need not explicitly call the linker at all. After the files are
linked, you can run your program.

 This sounds like a complicated process, but many systems have facilities that
manage much of this detail for you automatically or semiautomatically. On any system,
the details quickly become routine. On UNIX systems, these details are handled by the
make facility. In most Integrated Development Environments (IDEs) these various
files are combined into a project .

 Displays 11.1 , 11.2 , and 11.3 contain one complete program divided into pieces and
placed in three different files. You could instead combine the contents of these three
files into one file, and then compile and run this one file without all this fuss about
include directives and linking separate files. Why bother with three separate files?
There are several advantages to dividing your program into separate files. Since you
have the definition and the implementation of the class DigitalTime in files separate
from the application file, you can use this class in many different programs without

application
file or driver

file

compiling
and running
the program

linking

linker

make

project

Why separate
files?

480 CHAPTER 11 Separate Compilation and Namespaces

 Display 11.3 Application File Using DigitalTime Class

 1 //This is the application file timedemo.cpp, which demonstrates use of
//DigitalTime.

 2 #include <iostream>
 3 using namespace std;
 4 #include "dtime.h"

 5 int main()
 6 {
 7 DigitalTime clock, oldClock;

 8 cout << "You may write midnight as either 0:00 or 24:00,\n"
 9 << "but I will always write it as 0:00.\n"
 10 << "Enter the time in 24-hour notation: ";
 11 cin >> clock;

 12 oldClock = clock;
 13 clock.advance(15);
 14 if (clock == oldClock)
 15 cout << "Something is wrong.";
 16 cout << "You entered " << oldClock << endl;
 17 cout << "15 minutes later the time will be "
 18 << clock << endl;

 19 clock.advance(2, 15);
 20 cout << "2 hours and 15 minutes after that\n"
 21 << "the time will be "
 22 << clock << endl;

 23 return 0;
 24 }

 Sample Dialogue

 You may write midnight as either 0:00 or 24:00,
but I will always write it as 0:00.

Enter the time in 24-hour notation: 11:15

You entered 11:15

15 minutes later the time will be 11:30

2 hours and 15 minutes after that

the time will be 13:45

www.itpub.net

Separate Compilation 481

needing to rewrite the definition of the class in each of the programs. Moreover, you
need to compile the implementation file only once, no matter how many programs
use the class DigitalTime . But there are more advantages than that. Since you have
separated the interface from the implementation of your DigitalTime class, you can
change the implementation file and will not need to change any program that uses
the class. In fact, you will not even need to recompile the program. If you change the
implementation file, you only need to recompile the implementation file and relink
the files. Saving a bit of recompiling time is nice, but the big advantage is avoiding the

 Defining a Class in Separate Files: A Summary
 You can define a class and place the definition of the class and the implementation of its
member functions in separate files. You can then compile the class separately from any
program that uses the class and you can use this same class in any number of different
programs. The class is placed in files as follows:

 1. Put the definition of the class in a header file called the interface file . The name of this
header file ends in .h . The interface file also contains the declarations (prototypes) for
any functions and overloaded operators that define basic class operations but that are
not listed in the class definition. Include comments that explain how all these functions
and operators are used.

 2. The definitions of all the functions and overloaded operators mentioned previously
(whether they are members or friends or neither) are placed in another file called the
 implementation file . This file must contain an include directive that names the inter-
face file previously described. This include directive uses quotes around the file name,
as in the following example:

#include "dtime.h"

 The interface file and the implementation file traditionally have the same name, but end
in different suffixes. The interface file ends in .h . The implementation file ends in the
same suffix that you use for files that contain a complete C+ + program. The implemen-
tation file is compiled separately before it is used in any program.

 3. When you want to use the class in a program, you place the main part of the program
(and any additional function definitions, constant declarations, and such) in another file
called an application file or driver file . This file also must contain an include directive
naming the interface file, as in the following example:

#include "dtime.h"

 The application file is compiled separately from the implementation file. You can write any
number of these application files to use with one pair of interface and implementation files.
To run an entire program, you must first link the object code produced by compiling the
 application file and the object code produced by compiling the implementation file. (On
some systems the linking may be done automatically or semiautomatically.)

 If you use multiple classes in a program, then you simply have multiple interface files and
multiple implementation files, each compiled separately.

482 CHAPTER 11 Separate Compilation and Namespaces

need to rewrite code. You can use the class in many programs without writing the class
code into each program. You can change the implementation of the class and you need
not rewrite any part of any program that uses the class.

 The details of the implementation of the class DigitalTime are discussed in the
following example section.

 EXAMPLE: DigitalTime Class

 Previously we described how the files in Displays 11.1 , 11.2 , and 11.3 divide a
program into three files: the interface for the class DigitalTime , the implementation
of the class DigitalTime , and an application that uses the class. Here we discuss the
details of the class implementation. There is no new material in this example section,
but if some of the details in the implementation (Display 11.2) are not completely
clear to you, this section may shed some light on your confusion.

 Most of the implementation details are straightforward, but there are two things that
merit comment. Notice that the member function name advance is overloaded so
that it has two function definitions. Also notice that the definition for the overloaded
extraction (input) operator >> uses two helping functions called readHour and
readMinute and that these two helping functions themselves use a third helping
function called digitToInt . Let us discuss these points.

 The class DigitalTime (Displays 11.1 and 11.2) has two member functions called
advance . One version takes a single argument, that is, an integer giving the number
of minutes to advance the time. The other version takes two arguments, one for a
number of hours and one for a number of minutes, and advances the time by that
number of hours plus that number of minutes. Notice that the definition of the two-
argument version of advance includes a call to the one-argument version. Look at the
definition of the two-argument version that is given in Display 11.2 . First the time
is advanced by hoursAdded hours and then the single-argument version of advance
is used to advance the time by an additional minutesAdded minutes. At first this
may seem strange, but it is perfectly legal. The two functions named advance are
two different functions that, as far as the compiler is concerned, just coincidentally
happen to have the same name.

 Now let us discuss the helping functions. The helping functions readHour and
readMinute read the input one character at a time and then convert the input
to integer values that are placed in the member variables hour and minute . The
functions readHour and readMinute read the hour and minute one digit at a time,
so they are reading values of type char . This is more complicated than reading the
input as int values, but it allows us to perform error checking to see whether the
input is correctly formed and to issue an error message if the input is not well formed.
These helping functions readHour and readMinute use another helping function
named digitToInt . The function digitToInt converts a digit, such as '3' , to a
number, such as 3 . This function was given previously in this book as the answer to
 Self-Test Exercise 3 in Chapter 7 .

www.itpub.net

Separate Compilation 483

 TIP: Reusable Components

 A class developed and coded into separate files is a software component that can
be used again and again in a number of different programs. A reusable component
saves effort because it does not need to be redesigned, recoded, and retested for every
application. A reusable component is also likely to be more reliable than a component
that is used only once. It is likely to be more reliable for two reasons. First, you can
afford to spend more time and effort on a component if it will be used many times.
Second, if the component is used again and again, it is tested again and again. Every
use of a software component is a test of that component. Using a software component
many times in a variety of contexts is one of the best ways to discover any remaining
bugs in the software. ■

 Using #ifndef

 We have given you a method for placing a program in three (or more) files: two for
the interface and implementation of each class and one for the application part of the
program. A program can be kept in more than three files. For example, a program
might use several classes, and each class might be kept in a separate pair of files.
Suppose you have a program spread across a number of files and that more than one
file has an include directive for a class interface file such as the following:

#include "dtime.h"

 Under these circumstances you can have files that include other files, and these other
files may in turn include yet other files. This can easily lead to a situation in which a
file, in effect, contains the definitions in dtime.h more than once. C+ + does not allow
you to define a class more than once, even if the repeated definitions are identical.
Moreover, if you are using the same header file in many different projects, it becomes
close to impossible to keep track of whether you included the class definition more
than once. To avoid this problem, C+ + provides a way of marking a section of code to
say “if you have already included this stuff once before, do not include it again.” The
way this is done is quite intuitive, although the notation may look a bit weird until you
get used to it. We will go through an example, explaining the details as we go.

 The following directive defines DTIME_H :

#define DTIME_H

 What this means is that the compiler’s preprocessor puts DTIME_H on a list to indicate
that DTIME_H has been seen. Defined is perhaps not the best word for this, since
DTIME_H is not defined to mean anything but merely put on a list. The important
point is that you can use another directive to test whether DTIME_H has been defined
and so test whether a section of code has already been processed. You can use any
(nonkeyword) identifier in place of DTIME_H , but you will see that there are standard
conventions for which identifier you should use.

 The following directive tests to see whether DTIME_H has been defined:

#ifndef DTIME_H

#define

#ifndef

484 CHAPTER 11 Separate Compilation and Namespaces

 If DTIME_H has already been defined, then everything between this directive and the
first occurrence of the following directive is skipped:

#endif

 An equivalent way to state this, which may clarify the way the directives are spelled,
is the following: If DTIME_H is not defined, then the compiler processes everything up
to the next #endif . The not is why there is an n in #ifndef . (This may lead you to
wonder whether there is a #ifdef directive as well as a #ifndef directive. There is,
and it has the obvious meaning, but we will have no occasion to use #ifdef .)

 Now consider the following code:

#ifndef DTIME_H
#define DTIME_H
<a class definition>
#endif

 If this code is in a file named dtime.h , then no matter how many times your program
contains

#include "dtime.h"

 the class will be defined only one time.
 The first time

#include "dtime.h"

 is processed, the flag DTIME_H is defined and the class is defined. Now, suppose the
compiler again encounters

#include "dtime.h"

 When the include directive is processed this second time, the directive

#ifndef DTIME_H

 says to skip everything up to

#endif

 and so the class is not defined again.
 In Display 11.4 we have rewritten the header file dtime.h shown in Display 11.1 ,

but this time we used these directives to prevent multiple definitions. With the version
of dtime.h shown in Display 11.4 , if a file contains the following include directive
more than once, the class DigitalTime will still be defined only once:

#include "dtime.h"

 You may use some other identifier in place of DTIME_H , but the normal convention
is to use the name of the file written in all uppercase letters with the underscore used in
place of the period. You should follow this convention so that others can more easily
read your code and so that you do not have to remember the flag name. This way the
flag name is determined automatically and there is nothing arbitrary to remember.

#endif

Avoiding
Multiple
Defi nition
with
#ifndef

VideoNote

www.itpub.net

Separate Compilation 485

 These same directives can be used to skip over code in files other than header files,
but we will not have occasion to use these directives except in header files.

 Display 11.4 Avoiding Multiple Defi nitions of a Class

 1 //This is the header file dtime.h. This is the interface for the class
 2 //DigitalTime. Values of this type are times of day. The values are
 3 //input and output in 24-hour notation, as in 9:30 for 9:30 AM and
 //14:45 for 2:45 PM.

 4 #ifndef DTIME_H
 5 #define DTIME_H

 6 #include <iostream>
 7 using namespace std;

 8 class DigitalTime
 9 {

10 };

11 #endif //DTIME_H

<The definition of the class DigitalTime is the same as in Display 11.1.>

 #Ifndef

 You can avoid multiple definitions of a class (or anything else) by using #ifndef in the
header file (interface file), as illustrated in Display 11.4 . If the file is included more than once,
only one of the definitions included will be used.

 TIP: Defining Other Libraries

 You need not define a class in order to use separate compilation. If you have a collection
of related functions that you want to make into a library of your own design, you can
place the function declarations (prototypes) and accompanying comments in a header
file and the function definitions in an implementation file, just as we outlined for
classes. After that, you can use this library in your programs the same way you would
use a class that you placed in separate files. ■

486 CHAPTER 11 Separate Compilation and Namespaces

 Self-Test Exercises

 1. Suppose that you are defining a class and that you then want to use this class in
a program. You want to separate the class and program parts into separate files as
described in this chapter. State whether each of the following should be placed in
the interface file, implementation file, or application file.

 a. The class definition

 b. The declaration for a function that is to serve as a class operation but that is
neither a member nor a friend of the class

 c. The declaration for an overloaded operator that is to serve as a class operation
but that is neither a member nor a friend of the class

 d. The definition for a function that is to serve as a class operation but that is
neither a member nor a friend of the class

 e. The definition for a friend function that is to serve as a class operation

 f. The definition for a member function

 g. The definition for an overloaded operator that is to serve as a class operation
but that is neither a member nor a friend of the class

 h. The definition for an overloaded operator that is to serve as a class operation
and that is a friend of the class

 i. The main function of your program

 2. Which of the following files has a name that ends in .h : the interface file for a
class, the implementation file for the class, or the application file that uses the class?

 3. When you define a class in separate files, there is an interface file and an
implementation file. Which of these files needs to be compiled? (Both? Neither?
Only one? If so, which one?)

 4. Suppose you define a class in separate files and use the class in a program. Now
suppose you change the class implementation file. Which of the following files,
if any, needs to be recompiled: the interface file, the implementation file, and/or
the application file?

 5. Suppose you want to change the implementation of the class DigitalTime given
in Displays 11.1 and 11.2 . Specifically, you want to change the way the time is
recorded. Instead of using the two private variables hour and minute , you want
to use a single (private) int variable, which will be called minutes . In this new
implementation the private variable minutes will record the time as the number
of minutes since the time 0:00 (that is, since midnight). For example, 1:30 is
recorded as 90 minutes, since it is 90 minutes past midnight. Describe how you need
to change the interface and implementation files shown in Displays 11.1 and 11.2 .
You need not write out the files in their entirety; just indicate what items you
need to change and how, in a very general way, you would change them.

www.itpub.net

Namespaces 487

 11.2 Namespaces

 What’s in a name? That which we call a rose
By any other name would smell as sweet.

 WILLIAM SHAKESPEARE, Romeo and Juliet

 When a program uses different classes and functions written by different programmers
there is a possibility that two programmers will use the same name for two different
things. Namespaces are a way to deal with this problem. A namespace is a collection
of name definitions, such as class definitions and variable declarations. A namespace
can, in a sense, be turned on and off so that when some of its names would otherwise
conflict with names in another namespace, it can be turned off.

 Namespaces and using Directives

 We have already been using the namespace that is named std . The std namespace
contains all the names defined in many of the standard C+ + library files (such as
iostream). For example, when you place the following line at the start of a file,

#include <iostream>

 it places all the name definitions (for names like cin and cout) into the std namespace.
Your program does not know about names in the std namespace unless you specify
that it is using the std namespace. To make all the definitions in the std namespace
available to your code, insert the following using directive:

using namespace std;

 A good way to see why you might want to include this using directive is to think
about why you might want to not include it. If you do not include this using directive
for the namespace std , then you can define cin and cout to have some meaning other
than their standard meaning. (Perhaps you want to redefine cin and cout because
you want them to behave a bit differently from the standard versions.) Their standard
meaning is in the std namespace; without the using directive (or something like it), your
code knows nothing about the std namespace, and so, as far as your code is concerned,
the only definitions of cin and cout it knows are whatever definitions you give them.

 Every bit of code you write is in some namespace. If you do not place the code
in some specific namespace, then the code is in a namespace known as the global
namespace . So far we have not placed any code we wrote in any namespace and so
all our code has been in the global namespace. The global namespace does not have
a using directive because you are always using the global namespace. You could
say there is always an implicit automatic using directive that says you are using the
global namespace.

 Note that you can use more than one namespace in the same program. For example, we
are always using the global namespace and we are usually using the std namespace. What
happens if a name is defined in two namespaces and you are using both namespaces?

namespace

global
namespace

488 CHAPTER 11 Separate Compilation and Namespaces

This results in an error (either a compiler error or a run-time error, depending on the
exact details). You can have the same name defined in two different namespaces, but
if that is true, then you can only use one of those namespaces at a time. However, this
does not mean you cannot use the two namespaces in the same program. You can use
them each at different times in the same program.

 For example, suppose NS1 and NS2 are two namespaces and suppose myFunction is
a void function with no arguments that is defined in both namespaces but defined in
different ways in the two namespaces. The following is then legal:

{
using namespace NS1;
myFunction();

}
{

using namespace NS2;
myFunction();

}

 The first invocation would use the definition of myFunction given in the namespace
NS1 , and the second invocation would use the definition of myFunction given in the
namespace NS2 .

 Recall that a block is a list of statements, declarations, and possibly other code
enclosed in braces, {} . A using directive at the start of a block applies only to that
block. Therefore the first using directive shown applies only in the first block, and the
second using directive applies only in the second block. The usual way of phrasing this
is to say that the scope of the NS1 using directive is the first block, whereas the scope
of the NS2 using directive is the second block. Note that because of this scope rule, we
are able to use two conflicting namespaces in the same program (such as in a program
that contains the two blocks we discussed in the previous paragraph).

 Normally, you place a using directive at the start of a block. If you place it further
down in the block, however, you need to know its precise scope. The scope of a using
directive runs from the place where it occurs to the end of the block. You may have a
using directive for the same namespace in more than one block, so the entire scope of
a namespace may cover multiple disconnected blocks. When you use a using directive
in a block, it is typically the block consisting of the body of a function definition.

 If you place a using directive at the start of a file (as we have usually done so far),
then the using directive applies to the entire file. A using directive should normally be
placed near the start of a file (or the start of a block), but the precise scope rule is that
the scope of a using directive that is outside all blocks is from the occurrence of the
using directive to the end of the file.

scope

 Scope Rule for using Directives
 The scope of a using directive is the block in which it appears (more precisely, from the
location of the using directive to the end of the block). If the using directive is outside all
blocks, then it applies to all of the file that follows the using directive.

www.itpub.net

Namespaces 489

 Creating a Namespace

 To place some code in a namespace, you simply place it in a namespace grouping of
the following form:

namespace Name_Space_Name
{

Some_Code
}

 When you include one of these groupings in your code, you are said to place the names
defined in Some_Code into the namespace Name_Space_Name. These names (really, the
definitions of these names) can be made available with the using directive

using namespace Name_Space_Name;

 For example, the following, taken from Display 11.5 , places a function declaration
in the namespace Space1 :

namespace Space1
{

void greeting();
}

 If you look again at Display 11.5 , you see that the definition of the function greeting
is also placed in namespace Space1 . That is done with the following additional
namespace grouping:

namespace Space1
{

void greeting()
{

cout << "Hello from namespace Space1.\n";
}

}

 Note that you can have any number of these namespace groupings for a single
namespace. In Display 11.5 , we used two namespace groupings for namespace Space1
and two other groupings for namespace Space2 .

 Every name defined in a namespace is available inside the namespace groupings, but
the names can also be made available to code outside the namespace groupings. For
example, the function declaration and function definition in the namespace Space1

can be made available with the using directive

using namespace Space1

 as illustrated in Display 11.5 .

namespace
grouping

490 CHAPTER 11 Separate Compilation and Namespaces

 Display 11.5 Namespace Demonstration (part 1 of 2)

 1
 2 #include <iostream>
 3 using namespace std;

 4 namespace Space1
 5 {
 6 void greeting();
 7 }

 8 namespace Space2
 9 {
 10 void greeting();
 11 }

 12 void bigGreeting();
 13 int main()
 14 {
 15 {
 16 using namespace Space2;
 17 greeting();
 18 }

 19 {
 20 using namespace Space1;
 21 greeting();
 22 }

 23 bigGreeting();

 24 return 0;
 25 }
 26
 27 namespace Space1
 28 {
 29 void greeting()
 30 {
 31 cout << "Hello from namespace Space1.\n";
 32 }
 33 }

 34 namespace Space2
 35 {
 36 void greeting()
 37 {
 38 cout << "Greetings from namespace Space2.\n";
 39 }
 40 }

Names in this block use definitions in
namespaces Space2, std, and the
global namespace.

Names in this block use definitions in
namespaces Space1,std, and the
globalnamespace.

Names out here only use definitions in the
namespace std and the global namespace.

www.itpub.net

Namespaces 491

 41 void bigGreeting()
 42 {
 43 cout << "A Big Global Hello!\n";
 44 }

 Sample Dialogue

Greetings from namespace Space2.

Hello from namespace Space1.

A Big Global Hello!

Display 11.5 Namespace Demonstration (part 2 of 2)

 Putting a Definition in a Namespace
 You place a name definition in a namespace by placing it in a namespace grouping , which
has the following syntax:

namespace Namespace_Name
{

 Definition_1
 Definition_2
 .
 .
 .
 Definition_Last

}

 You can have multiple namespace groupings (even in multiple files), and all the definitions in
all the groupings will be in the same namespace.

 Self-Test Exercises

 6. Consider the program shown in Display 11.5 . Could we use the name greeting
in place of bigGreeting ?

 7. In Exercise 6, we saw that you could not add a defi nition for the following
function to the global namespace:

void greeting();

 Can you add a defi nition for the following function declaration to the
global namespace?

void greeting(int howMany);

492 CHAPTER 11 Separate Compilation and Namespaces

 using Declarations

 This subsection describes a way to qualify a single name so that you can make only one
name from a namespace available to your program, rather than making all the names in
a namespace available. We saw this technique in Chapter 1 and so this is a review and
amplification of what we said in Chapter 1 .

 Suppose you are faced with the following situation. You have two namespaces,
NS1 and NS2 . You want to use the function fun1 defined in NS1 and the function
fun2 defined in namespace NS2 . The complication is that both NS1 and NS2 define a
function myFunction . (Assume all functions in this discussion take no arguments, so
overloading does not apply.) You cannot use

using namespace NS1;
using namespace NS2;

 This would potentially provide conflicting definitions for myFunction . (If the name
myFunction is never used, then the compiler will not detect the problem and will
allow your program to compile and run.)

 What you need is a way to say you are using fun1 in namespace NS1 and fun2 in
namespace NS2 and nothing else in the namespaces NS1 and NS2 . We have already been
using a technique that can handle this situation. The following is your solution:

using NS1::fun1;
using NS2::fun2;

 A qualification of the form

using Name_Space::One_Name;

 makes the (definition of the) name One_Name from the namespace Name_Space
available, but does not make any other names in Name_Space available. This is called a
using declaration .

 Note that the scope resolution operator :: that we use in these using declarations
is the same as the scope resolution operator we use when defining member functions.
These two uses of the scope resolution operator have a similarity. For example, Display 11.2
had the following function definition:

void DigitalTime::advance(int hoursAdded, int minutesAdded)
{

hour = (hour + hoursAdded)%24;
advance(minutesAdded);

}

 In this case the :: means that we are defining the function advance for the class
DigitalTime , as opposed to any other function named advance in any other class.
Similarly,

using NS1::fun1;

 means we are using the function named fun1 as defined in the namespace NS1 , as
opposed to any other definition of fun1 in any other namespace.

using NS1::
fun1;

using
declaration

www.itpub.net

Namespaces 493

 There are two differences between a using declaration , such as

using std::cout;

 and a using directive, such as

using namespace std;

 The differences are as follows:

1. A using declaration makes only one name in the namespace available to your code,
while a using directive makes all the names in a namespace available.

2. A using declaration introduces a name (like cout) into your code so no other use
of the name can be made. However, a using directive only potentially introduces
the names in the namespace.

 Point 1 is pretty obvious. Point 2 has some subtleties. For example, suppose the
namespaces NS1 and NS2 both provide definitions for myFunction , but have no other
name conflicts. Then the following will produce no problems provided that (within
the scope of these directives) the conflicting name myFunction is never used in
your code.

using namespace NS1;
using namespace NS2;

 On the other hand, the following is illegal, even if the function myFunction is
never used:

using NS1::myFunction;
using NS2::myFunction;

 Sometimes this subtle point can be important, but it does not impinge on most
routine code. So, we will often use the term using directive loosely to mean either a
using directive or a using declaration.

 Qualifying Names

 This section introduces a way to qualify names that we have not discussed before.
Suppose that you intend to use the name fun1 as defined in the namespace NS1 , but
you only intend to use it one time (or a small number of times). You can name the
function (or other item) using the name of the namespace and the scope resolution
operator as follows:

NS1::fun1();

 This form is often used when specifying a parameter type. For example, consider

int getInput(std::istream inputStream)
. . .

using directive

494 CHAPTER 11 Separate Compilation and Namespaces

 In the function getInput , the parameter inputStream is of type istream , where
istream is defined as in the std namespace. If this use of the type name istream
is the only name you need from the std namespace (or if all the names you need are
similarly qualified with std::), then you do not need

using namespace std;

 or

using std::istream;

 Note that you can use std::istream even within the scope of a using directive for
another namespace which also defines the name istream . In this case std::istream
and istream will have different definitions. For example, consider

using namespace MySpace;
void someFunction(istream p1, std::istream p2);

 Assuming istream is a type defined in the namespace MySpace , then p1 will have the
type istream as defined in MySpace and p2 will have the type istream as defined in
the std namespace.

 Self-Test Exercises

 8. What is the output produced by the following program?

#include <iostream>
using namespace std;

namespace Hello
{

void message();
}

namespace GoodBye
{

void message();
}

void message();

int main()
{

using GoodBye::message;

 {
using Hello::message;
message();
GoodBye::message();

}

www.itpub.net

Namespaces 495

 Self-Test Exercises (continued)

 message();

return 0;

}

void message()
{

cout << "Global message.\n";
}

namespace Hello
{

void message()
{

cout << "Hello.\n";
}

}

namespace GoodBye
{

void message()
{

cout << "Good-Bye.\n";
}

}

 9. Write the declaration (prototype) for a void function named wow . The function
wow has two parameters, the fi rst of type speed as defi ned in the speedway
namespace and the second of type spee d as defi ned in the indy500 namespace.

 TIP: Choosing a Name for a Namespace

 It is a good idea to include your last name or some other unique string in the names
of your namespaces so as to reduce the chance that somebody else will use the same
namespace name as you do. With multiple programmers writing code for the same
project, it is important that namespaces that are meant to be distinct really do have
distinct names. Otherwise, you can easily have multiple definitions of the same names
in the same scope. That is why we included the name Savitch in the namespace
DtimeSavitch in Display 11.9 . ■

496 CHAPTER 11 Separate Compilation and Namespaces

 EXAMPLE: A Class Definition in a Namespace

 In Displays 11.6 and 11.7 we have again rewritten both the header file dtime.h
for the class DigitalTime and the implementation file for the class DigitalTime .
This time (no pun intended), we have placed the definition in a namespace called
DTimeSavitch . Note that the namespace DTimeSavitch spans the two files dtime.h
and dtime.cpp . A namespace can span multiple files.

 If you rewrite the definition of the class DigitalTime as shown in Displays 11.6
 and 11.7 , then the application file in Display 11.3 needs to specify the namespace
DTimeSavitch in some way, such as the following:

using namespace DTimeSavitch;

 or

using DTimeSavitch::DigitalTime;

 Display 11.6 Placing a Class in a Namespace (Header File)

 1 //This is the header file dtime.h.
 2 #ifndef DTIME_H
 3 #define DTIME_H

 4 #include <iostream>
 5 using std::istream;
 6 using std::ostream;

 7 namespace DTimeSavitch
 8 {
 9
10 class DigitalTime
11 {
12
13 < The definition of the class DigitalTime is the same as in Display 11.1 >.
14 };
15
16 } // DTimeSavitch

17 #endif //DTIME_H

A better version of this class definition will be
given in Displays 11.8 and 11.9.

Note that the namespace DTimeSavitch spans two
files. The other is shown in Display 11.7.

www.itpub.net

Namespaces 497

 Unnamed Namespaces

 A compilation unit is a file, such as a class implementation file, along with all the
files that are #included in the file, such as the interface header file for the class. Every
compilation unit has an unnamed namespace. A namespace grouping for the unnamed
namespace is written in the same way as for any other namespace, but no name is
given, as in the following example:

namespace
{

void sampleFunction()
.
.
.

} //unnamed namespace

compilation
unit

 Display 11.7 Placing a Class in a Namespace (Implementation File)

 1 //This is the implementation file dtime.cpp.
 2 #include <iostream>
 3 #include <cctype>
 4 #include <cstdlib>
 5 using std::istream;
 6 using std::ostream;
 7 using std::cout;
 8 using std::cin;
 9 #include "dtime.h"

 10 namespace DTimeSavitch
 11 {
 12
 13 < All the function definitions from Display 11.2 go here. >
 14
 15 } // DTimeSavitch

You can use the single using directive
using namespace std;
in place of these four using declarations.
However, the four using declarations are
a preferable style.

 All the names defined in the unnamed namespace are local to the compilation unit,
and so the names can be reused for something else outside the compilation unit. For
example, Displays 11.8 and 11.9 show a rewritten (and final) version of the interface
and implementation file for the class DigitalTime . Note that the helping functions
readHour , readMinute , and digitToInt are all in the unnamed namespace; thus
they are local to the compilation unit. As illustrated in Display 11.10 , the names in the
unnamed namespace can be reused for something else outside the compilation unit. In
 Display 11.10 , the function name readHour is reused for a different function in the
application program.

 If you look again at the implementation file in Display 11.9 , you will see that
the helping functions digitToInt , readHour , and readMinute are used outside
the unnamed namespace without any namespace qualifier. Any name defined in

498 CHAPTER 11 Separate Compilation and Namespaces

the unnamed namespace can be used without qualification anywhere in the compilation
unit. (Of course, this needed to be so, since the unnamed namespace has no name to
use for qualifying its names.)

 Display 11.8 Hiding the Helping Functions in a Namespace (Interface File)

 1 //This is the header file dtime.h. This is the interface for the class
 2 //DigitalTime. Values of this type are times of day. The values are
 //input and output in 24-hour notation, as in 9:30 for 9:30 AM and
 3 //14:45 for 2:45 PM.
 4 #ifndef DTIME_H
 5 #define DTIME_H

 6 #include <iostream>
 7 using std::istream;
 8 using std::ostream;

 9 namespace DTimeSavitch
 10 {
 11 class DigitalTime
 12 {
 13 public:
 14 DigitalTime(int theHour, int theMinute);

 15 DigitalTime();
 16 //Initializes the time value to 0:00 (which is midnight).

 17 getHour() const ;
 18 getMinute() const ;

 19 void advance(int minutesAdded);
 20 //Changes the time to minutesAdded minutes later.
 21 void advance(int hoursAdded, int minutesAdded);
 22 //Changes the time to hoursAdded hours plus minutesAdded

minutes later.
 23 friend bool operator ==(const DigitalTime& time1,
 24 const DigitalTime& time2);
 25 friend istream& operator >>(istream& ins,

DigitalTime& theObject);
 26 friend ostream& operator <<(ostream& outs,
 27 const DigitalTime& theObject);
 28 private:
 29 int hour;
 30 int minute;
 31 };

 32 } //DTimeSavitch
 33 #endif //DTIME_H

This is our final version of the class DigitalTime.
This is the best version and the one you should use.
The implementation to use with this interface is
given in Display 11.9.

Note that the helping functions are not mentioned
in the interface file.

www.itpub.net

Namespaces 499

 Display 11.9 Hiding the Helping Functions in a Namespace (Implementation File) (part 1 of 3)

 1 //This is the implementation file dtime.cpp of the class DigitalTime.
 2 //The interface for the class DigitalTime is in the header file dtime.h.
 3 #include <iostream>
 4 #include <cctype>
 5 #include <cstdlib>
 6 using std::istream;
 7 using std::ostream;
 8 using std::cout;
 9 using std::cin;
 10 #include "dtime.h"

 11 namespace
 12 {
 13 int digitToInt(char c)
 14 {
 15 return (int(c) - int('0'));
 16 }

 17 //Uses iostream, cctype, and cstdlib:
 18 void readMinute(int& theMinute)
 19 {
 20 char c1, c2;
 21 cin >> c1 >> c2;
 22 if (!(isdigit(c1) && isdigit(c2)))
 23 {
 24 cout << "Error: illegal input to readMinute\n";
 25 exit(1);
 26 }

 27 theMinute = digitToInt(c1)*10 + digitToInt(c2);

 28 if (theMinute < 0 || theMinute > 59)
 29 {
 30 cout << "Error: illegal input to readMinute\n";
 31 exit(1);
 32 }
 33 }

 34
 35 //Uses iostream, cctype, and cstdlib:
 36 void readHour(int& theHour)
 37 {
 38 char c1, c2;
 39 cin >> c1 >> c2;

Specifies the unnamed namespace

Names defined in the unnamed namespace
are local to the compilation unit. So, these
helping functions are local to the file
dtime.cpp.

(continued)

500 CHAPTER 11 Separate Compilation and Namespaces

 40 if (!(isdigit(c1) && (isdigit(c2) || c2 == ':')))
 41 {
 42 cout << "Error: illegal input to readHour\n";
 43 exit(1);
 44 }

 45 if (isdigit(c1) && c2 == ':')
 46 {
 47 theHour = digitToInt(c1);
 48 }
 49 else//(isdigit(c1) && isdigit(c2))
 50 {
 51 theHour = digitToInt(c1)*10 + digitToInt(c2);
 52 cin >> c2; //discard ':'
 53 if (c2 != ':')
 54 {
 55 cout << "Error: illegal input to readHour\n";
 56 exit(1);
 57 }
 58 }

 59 if (theHour == 24)
 60 theHour = 0; //Standardize midnight as 0:00.

 61 if (theHour < 0 || theHour > 23)
 62 {
 63 cout << "Error: illegal input to readHour\n";
 64 exit(1);
 65 }
 66 }
 67 } //unnamed namespace
 68
 69 namespace DTimeSavitch
 70 {

 71 //Uses iostream:
 72 istream& operator >>(istream& ins, DigitalTime& theObject)
 73 {
 74 readHour(theObject.hour);
 75 readMinute(theObject.minute);
 76 return ins;
 77 }
 78 ostream& operator <<(ostream& outs, const DigitalTime& theObject)

Display 11.9 Hiding the Helping Functions in a Namespace (Implementation File) (part 2 of 3)

Within the compilation unit (in this case
dtime.cpp), you can use names in the
unnamed namespace without qualification.

<The body of the function definition is the same as in Display 11.2.>

www.itpub.net

Namespaces 501

 79 bool operator ==(const DigitalTime& time1, const DigitalTime& time2)

 80 DigitalTime::DigitalTime(int theHour, int theMinute)

 81 DigitalTime::DigitalTime()

 82 int DigitalTime::getHour() const

 83 int DigitalTime::getMinute() const

 84 void DigitalTime::advance(int minutesAdded)

 85 void DigitalTime::advance(int hoursAdded, int minutesAdded)

 86 } //DTimeSavitch

Display 11.9 Hiding the Helping Functions in a Namespace (Implementation File) (part 3 of 3)

<The body of the function definition is the same as in Display 11.2.>

<The body of the function definition is the same as in Display 11.2.>

<The body of the function definition is the same as in Display 11.2.>

<The body of the function definition is the same as in Display 11.2.>

<The body of the function definition is the same as in Display 11.2.>

<The body of the function definition is the same as in Display 11.2.>

<The body of the function definition is the same as in Display 11.2.>

 Display 11.10 Hiding the Helping Functions in a Namespace (Application Program) (part 1 of 2)

 1 //This is the application file timedemo.cpp. This program
 2 //demonstrates hiding the helping functions in an unnamed namespace.

 3 #include <iostream>
 4 #include "dtime.h"

 5 void readHour(int& theHour);

 6 int main()
 7 {
 8 using std::cout;
 9 using std::cin;
 10 using std::endl;

 11 using DTimeSavitch::DigitalTime;
 12 int theHour;
 13 readHour(theHour);

(continued)

If you place the using declarations here,
then the program behavior will be the same.
However, many authorities say that you
should make the scope of each using
declaration or using directive as small as is
reasonable, and we wanted to give you an
example of that technique.

This is a different function readHour than
the one in the implementation file
dtime.cpp (shown in Display 11.9)

502 CHAPTER 11 Separate Compilation and Namespaces

Display 11.10 Hiding the Helping Functions in a Namespace (Application Program) (part 2 of 2)

 14 DigitalTime clock(theHour, 0), oldClock;

 15 oldClock = clock;
 16 clock.advance(15);
 17 if (clock == oldClock)
 18 cout << "Something is wrong.";
 19 cout << "You entered " << oldClock << endl;
 20 cout << "15 minutes later the time will be "
 21 << clock << endl;

 22 clock.advance(2, 15);
 23 cout << "2 hours and 15 minutes after that\n"
 24 << "the time will be "
 25 << clock << endl;

 26 return 0;
 27 }
 28
 29 void readHour(int& theHour)
 30 {
 31 using std::cout;
 32 using std::cin;
 33
 34 cout << "Let's play a time game.\n"
 35 << "Let's pretend the hour has just changed.\n"
 36 << "You may write midnight as either 0 or 24,\n"
 37 << "but, I will always write it as 0.\n"
 38 << "Enter the hour as a number (0 to 24): ";
 39 cin >> theHour;
 40 }

 Sample Dialogue

Let's play a time game.
Let's pretend the hour has just changed.
You may write midnight as either 0 or 24,
but, I will always write it as 0.
Enter the hour as a number (0 to 24): 11
You entered 11:00
15 minutes later the time will be 11:15
2 hours and 15 minutes after that
the time will be 13:30

When we gave these using declarations before,
they were in main, so their scope was main.
Thus, we need to repeat them here in order
to use cin and cout in readHour.

www.itpub.net

Namespaces 503

 Unnamed Namespace
 You can use the unnamed namespace to make a definition local to a compilation unit.
Each compilation unit has one unnamed namespace. All the identifiers defined in the
unnamed namespace are local to the compilation unit. You place a definition in the unnamed
namespace by placing the definition in a namespace grouping with no namespace name, as
shown next:

namespace
{

 Definition_1
 Definition_2
 .
 .
 .
 Definition_Last

}

 You can use any name in the unnamed namespace without qualifiers anyplace in the
compilation unit. See Displays 11.8 , 11.9 , and 11.10 for a complete example.

 PITFALL: Confusing the Global Namespace and the
 Unnamed Namespace

 Do not confuse the global namespace with the unnamed namespace. If you do not
put a name definition in a namespace grouping, then it is in the global namespace.
To put a name definition in the unnamed namespace, you must put it in a namespace
grouping that starts out as follows, without a name:

namespace
{

 Names in the global namespace and names in the unnamed namespace may both be
accessed without a qualifier. However, names in the global namespace have global
scope (all the program files), whereas names in an unnamed namespace are local to a
compilation unit.

 This confusion between the global namespace and the unnamed namespace does
not arise very much in writing code, since there is a tendency to think of names in
the global namespace as being “in no namespace,” even though that is not technically
 correct. However, the confusion can easily arise when discussing code. ■

504 CHAPTER 11 Separate Compilation and Namespaces

 TIP: Unnamed Namespaces Replace the static Qualifier

 Earlier versions of C+ + used the qualifier static to make a name local to a file.
This use of static is being phased out, and you should instead use the unnamed
namespace to make a name local to a compilation unit. Note that this use of static
has nothing to do with the use of static to make class members shared by all objects
of a class (as discussed in the subsection “Static Members” of Chapter 7) . So, since
static is used to mean more than one thing, it is probably good that one use of the
word is being phased out. ■

 TIP: Hiding Helping Functions

 There are two good ways to hide a helping function for a class. You can make the
function a private member function of the class or you can place the helping function
in the unnamed namespace for the implementation file of the class. If the function
naturally takes a calling object, then it should be made a private member function. If
it does not naturally take a calling object, you can make it a static member function
(for example, DigitalTime::readHour in Displays 11.1 and 11.2) or you can place
it in the unnamed namespace of the implementation file (for example, readHour in
 Displays 11.8 and 11.9 .)

 If the helping function does not need a calling object, then placing the helping
function in the unnamed namespace of the implementation fi le makes for cleaner
code because it better separates interface and implementation into separate fi les
and it avoids the need for so much function name qualifi cation. For example, note
that in Display 11.9 we can use the function name readHour unqualifi ed since it
is in the unnamed namespace, while in the version in Display 11.2 we need to use
DigitalTime::readHour . ■

 It is interesting to note how unnamed namespaces interact with the C+ + rule
that you cannot have two definitions of a name in the same namespace. There is one
unnamed namespace in each compilation unit. It is easily possible for compilation units
to overlap. For example, both the implementation file for a class and an application
program using the class would normally both include the header file (interface file) for
the class. Thus, the header file is in two compilation units and hence participates in
two unnamed namespaces. As dangerous as this sounds, it will normally produce no
problems as long as each compilation unit’s namespace makes sense when considered
by itself. For example, if a name is defined in the unnamed namespace in the header
file, it cannot be defined again in the unnamed namespace in either the implementation
file or the application file. Thus, a name conflict is avoided.

www.itpub.net

Namespaces 505

 Nested Namespaces

 It is legal to nest namespaces. When qualifying a name from a nested namespace, you
simply qualify twice. For example, consider

namespace S1
{

namespace S2
{

void sample()
{
.
.
.

}
.
.
.

} //S2
}//S1

 TIP: What Namespace Specification Should You Use?

 You have three ways to specify that your code uses the definition of a function
(or other item) named f that was defined in a namespace named theSpace . You
can insert

using namespace theSpace;

 Alternatively, you can insert

using theSpace::f;

 Finally, you could omit the using directive altogether, but always qualify the function
name by writing theSpace::f instead of just plain f .

 Which form should you use? All three methods can be made to work, and authori-
ties differ on what they recommend as the preferred style. However, to obtain the full
value of namespaces, it is good to avoid the form

using namespace theSpace;

 Placing such a using directive at the start of a file is little different than placing all
definitions in the global namespace, which is what earlier versions of C+ + actually
did. So, this approach gets no value from the namespace mechanism. (If you place
such a using directive inside a block, however, then it only applies to that block. This
is another alternative, which is both sensible and advocated by many authorities.)

 We prefer to use the second method most of the time, inserting statements like the
following at the start of fi les:

using theSpace::f;
(continued)

506 CHAPTER 11 Separate Compilation and Namespaces

 TIP: (continued)

This allows you to omit names that are in the namespace but that are not used. That
in turn avoids potential name conflicts. Moreover, it nicely documents which names
you use, and it is not as messy as always qualifying a name with notation of the form
theSpace::f .

 If your fi les are structured so that different namespaces are used in different
 locations, it may sometimes be preferable to place your using directives and using
declarations inside blocks, such as the bodies of function defi nitions, rather than at
the start of the fi le. ■

 To invoke sample outside the namespace S1 , you use

S1::S2::sample();

 To invoke sample outside the namespace S2 but within namespace S1 , you use

S2::sample();

 Alternatively, you could use a suitable using directive.

 Self-Test Exercises

 10. Would the program in Display 11.10 behave any differently if you replaced the
four using declarations

using std::cout;
using std::cin;
using std::endl;
using DTimeSavitch::DigitalTime;

 with the following two using directives?

using namespace std;
using namespace DTimeSavitch;

 11. What is the output produced by the following program?

#include <iostream>
using namespace std;
namespace Sally
{

 void message();
}

namespace
{

 void message();
}

www.itpub.net

Namespaces 507

 Self-Test Exercises (continued)

 int main()
{

 {
 message();
 using Sally::message;
 message();
 }
 message();

 return 0;
}

namespace Sally
{

 void message()
 {
 cout << "Hello from Sally.\n";
 }
}

namespace
{

 void message()
 {
 cout << "Hello from unnamed.\n";
 }
}

 12. What is the output produced by the following program?

#include <iostream>
using namespace std;

namespace Outer
{

 void message();
 namespace Inner
 {
 void message();
 }
}
int main()
{

 Outer::message();
 Outer::Inner::message();

 using namespace Outer;
 Inner::message();

(continued)

508 CHAPTER 11 Separate Compilation and Namespaces

 Self-Test Exercises (continued)

 return 0;
}
namespace Outer
{

 void message()
 {
 cout << "Outer.\n";
 }
 namespace Inner
 {
 void message()
 {
 cout << "Inner.\n";
 }
 }
}

 Chapter Summary

• You can define a class and place the definition of the class and the implementation
of its member functions in separate files. You can then compile the class separately
from any program that uses it, and you can use this same class in any number of
 different programs.

• A namespace is a collection of name definitions, such as class definitions and variable
declarations.

• There are three ways to use a name from a namespace: by making all the names in
the namespace available with a using directive , by making the single name available
with a using declaration for the one name, or by qualifying the name with the name
of the namespace and the scope resolution operator.

• You place a definition in a namespace by placing the definition in a namespace grouping
for that namespace.

• The unnamed namespace can be used to make a name definition local to a compila-
tion unit.

 Answers to Self-Test Exercises

 1. Parts a, b, and c go in the interface file; parts d through h go in the implementation
file. (All the definitions of class operations of any sort go in the implementation
file.) Part i (that is, the main part of your program) goes in the application file.

www.itpub.net

Answers to Self-Test Exercises 509

 2. The name of the interface file ends in .h .

 3. Only the implementation file needs to be compiled. The interface file does not
need to be compiled.

 4. Only the implementation file needs to be recompiled. You do, however, need to
relink the files.

 5. You need to delete the private member variables hour and minute from the
 interface file shown in Display 11.1 and replace them with the member variable
minutes (with an s). You do not need to make any other changes in the interface
file. In the implementation file, you need to change the definitions of all the con-
structors and other member functions, as well as the definitions of the overloaded
operators, so that they work for this new way of recording time. (In this case, you
do not need to change any of the helping functions readHour , readMinute , or
digitToInt , but that might not be true for some other class or even some other
reimplementation of this class.) For example, the definition of the overloaded
 operator, >> , could be changed to the following:

 istream& operator >>(istream& ins,

DigitalTime& theObject)

 {

 int inputHour, inputMinute;

 DigitalTime::readHour(inputHour);

 DigitalTime::readMinute(inputMinute);

 theObject.minutes = inputMinute + 60*inputHour;

 return ins;

 }

 You need not change any application files for programs that use the class. However,
since the interface file is changed (as well as the implementation file), you will need
to recompile any application files, and of course you will need to recompile the
implementation file.

 6. No. If you replace bigGreeting with greeting , you will have a definition for the
name greeting in the global namespace. There are parts of the program where all
the name definitions in the namespace Space1 and all the name definitions in the
global namespace are simultaneously available. In those parts of the program, there
would be two distinct definitions for

void greeting();

 7. Yes. The additional definition would cause no problems because overloading
is always allowed. When, for example, the namespace Space1 and the global
namespace are available, the function name greeting would be overloaded. The
problem in Self-Test Exercise 6 was that there would sometimes be two definitions
of the function name greeting with the same parameter lists.

 8. Hello
 Good-Bye

 Good-Bye

 9. void wow(speedway::speed s1, indy500::speed s2);

 10. The program would behave exactly the same. However, most authorities favor using
the using declaration, as we have done in Display 11.10 . Note that with either,
there are still two different functions named readHour . The one in Display 11.10
is different from the one defined in the unnamed namespace in Display 11.9 .

 11. Hello from unnamed.
 Hello from Sally.

 Hello from unnamed.

 12. Outer.
 Inner.

 Inner.

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. This exercise is intended to illustrate namespaces and separate compilation in your
development environment. You should use the development environment you regu-
larly use in this course for this exercise. In a file f.h , place a declaration of void f()
in namespace A . In a file g.h , place a declaration of void g() in namespace A . In files
f.cpp and g.cpp , place the definitions of void f() and void g() , respectively.
Place the definitions of void f() and void g() in namespace A . The functions
can do anything you want, but to keep track of execution include something like

cout << "Function_Name called" << endl;

 where Function_Name is the name of the particular function. In another file, main.
cpp , put your main function, #include the minimum collection of files to provide
access to the names from namespace A . In your main function call the functions
f then g . Compile, link, and execute using your development environment. To pro-
vide access to names in namespaces, you may use local using declarations such as

using std::cout;

 or use local using directives such as

using namespace std;

 inside a block, or qualify names using the names of namespaces, such as std::cout .
You may not use global namespace directives such as the following which are not
in a block and apply to the entire file:

using namespace std;

 Of course you must handle namespace A and function names f and g , in addition
to possibly std and cout .

 After doing this, write a one page description of how to create and use namespaces
and separate compilation in your environment.

 2. Obtain the source code for the PFArrayD class and the demonstration program
from Displays 11.10 , 10.11 , and 10.12. Modify this program to use namespaces
and separate compilation. Put the class definition and other function declarations

510 CHAPTER 11 Separate Compilation and Namespaces

www.itpub.net

www.myprogramminglab.com

Programming Projects 511

in one file. Place the implementations in a separate file. Distribute the namespace
definition across the two files. Place the demonstration program in a third file. To
provide access to names in namespaces, you may use local using declarations such as

using std::cout;

 or use local using directives such as

using namespace std;

 inside a block, or qualify names using the names of namespaces, such as std::cout .
You may not use global namespace directives such as the following which are not
in a block and apply to the entire file:

using namespace std;

 3. Extend Programming Project 10.1 from Chapter 10 in which you implemented a
two dimensional array class by placing the class definition and implementation in a
namespace, then providing access to the names in the namespace. Test your code. To
provide access to names in namespaces, you may use local using declarations such as

using std::cout;

 or use local using directives such as

using namespace std;

 inside a block, or qualify names using the names of namespaces, such as std::cout .
You may not use global namespace directives such as the following which are not
in a block and apply to the entire file:

using namespace std;

 4. You would like to verify the credentials of a user for your system. Listed next is a
class named Security , which authenticates a user and password. (Note that this
example is really not very secure. Typically passwords would be encrypted or stored
in a database.)

 class Security

 {

 public:

 static int validate(string username, string password);

 };

// This subroutine hard-codes valid users and is not

 // considered a secure practice.

 // It returns 0 if the credentials are invalid,

 // 1 if valid user, and

 // 2 if valid administrator

 int Security::validate(string username, string password)

 {

 if ((username=="abbott") && (password=="monday")) return 1;

 if ((username=="costello") && (password=="tuesday")) return 2;

 return 0;

 }

 Break this class into two files, a file with the header Security.h and a file with the
implementation Security.cpp .

 Next, create two more classes that use the Security class by including the header
file. The first class should be named Administrator and contain a function
named Login that returns true if a given username and password have adminis-
trator clearance. The second class should be named User and contain a function
named Login that returns true if a given username and password have either user
or administrator clearance.

 Both the User and Administrator classes should be split into separate files for the
header and implementation.

 Finally, write a main function that invokes the Login function for both the User
and Administrator classes to test if they work properly. The main function
should be in a separate file. Be sure to use the #ifndef directive to ensure that no
header file is included more than once.

 5. This Programming Project explores how the unnamed namespace works. Listed are
snippets from a program to perform input validation for a username and password.
The code to input and validate the username is in a separate file than the code to
input and validate the password.

File header user.cpp:

 namespace Authenticate

 {

 void inputUserName()

 {

 do

 {

 cout << "Enter your username (8 letters only)" << endl;

 cin >> username;

 } while (!isValid());

 }

 string getUserName()

 {

 return username;

 }

 }

 Define the username variable and the isValid() function in the unnamed
namespace so the code will compile. The isValid() function should return true
if username contains exactly eight letters. Generate an appropriate header file for
this code.

512 CHAPTER 11 Separate Compilation and Namespaces

Solution to
Programming
Project 11.5

VideoNote

www.itpub.net

Programming Projects 513

 Repeat the same steps for the file password.cpp , placing the password variable
and the isValid() function in the unnamed namespace. In this case, the
isValid() function should return true if the input password has at least eight
characters including at least one non-letter:

 File header password.cpp:

 namespace Authenticate

 {

 void inputPassword()

 {

 do

 {

 cout << "Enter your password (at least 8 characters " <<

 "and at least one non-letter)" << endl;

 cin >> password;

 } while (!isValid());

 }

 string getPassword()

 {

 return password;

 }

 }

 At this point, you should have two functions named isValid() , each in different
unnamed namespaces. Place the following main function in an appropriate place.
The program should compile and run.

 int main()

 {

 inputUserName();

 inputPassword();

 cout << "Your username is " << getUserName() <<

 " and your password is: " <<

 getPassword() << endl;

 return 0;

 }

 Test the program with several invalid usernames and passwords.

This page intentionally left blank

www.itpub.net

 12.3 STREAM HIERARCHIES: A PREVIEW
OF INHERITANCE 547

 Inheritance among Stream Classes 547
 Example: Another newLine Function 549
 Parsing Strings with the stringstream Class 553

 12.4 RANDOM ACCESS TO FILES 556

 12.1 I/O STREAMS 517
 File I/O 517
 Pitfall: Restrictions on Stream Variables 522
 Appending to a File 522
 Tip: Another Syntax for Opening a File 524
 Tip: Check That a File Was Opened

Successfully 526
 Character I/O 528
 Checking for the End of a File 529

 12.2 TOOLS FOR STREAM I/O 533
 File Names as Input 533
 Formatting Output with Stream Functions 534
 Manipulators 538
 Saving Flag Settings 539
 More Output Stream Member Functions 540
 Example: Cleaning Up a File Format 542
 Example: Editing a Text File 544

 12 Streams and File I/O

Chapter Summary 558 Answers to Self-Test Exercises 558 Programming Projects 561

Fish say, they have their stream and pond;

But is there anything beyond?

RUPERT BROOKE, Heaven (1913)

 As a leaf is carried by a stream, whether the stream ends in a lake or in

the sea, so too is the output of your program carried by a stream not

knowing if the stream goes to the screen or to a file.

Washroom Wall of a Computer Science Department (1995)

Introduction
 Input is delivered to your program and output from your program is delivered to the
output device via special objects known as streams . The term stream is supposed to
convey the idea that the output is streamed to or from your program without your
program being aware (or at least not very aware) of where the input data came from or
where the output data goes. This should, and does, mean that file input is handled in
essentially the same way as the keyboard input we have been using up to now and that
file output is handled in essentially the same way as screen output.

 File I/O makes a small but essential use of inheritance, which is not covered until
 Chapter 14 . However, we have placed this chapter before the inheritance chapter
because programmers often want to start using file I/O early . Therefore this chapter
includes a brief introduction to what few inheritance details are needed for file I/O.

 You may cover this chapter anytime after covering the material of Chapters 1 to 4
and 6 to 9 ; in other words, you may cover this chapter before Chapters 5 , 10 , and 11 .
 Although simple file input was given in Chapter 2 , the same concepts are repeated here
for continuity . The basic elements of file I/O, which are discussed in Section 12.1 ,
may be covered anytime after reading Chapters 1 to 4 , Chapter 6 , and the subsection
of Chapter 9 entitled “The Member Functions get and put .” That subsection is self-
contained and does not require reading any other parts of Chapter 9 . All of Section 12.2 ,
except for the subsection entitled “File Names as Input” may also be read after reading
only Chapters 1 to 4 , Chapter 6 , and the subsection of Chapter 9 entitled “The Member
Functions get and put .”

 If you have not read Chapter 11 on namespaces, you may want to review the
subsection of Chapter 1 on namespaces .

 12 Streams and File I/O

www.itpub.net

I/O Streams 517

 12.1 I/O Streams

 Good Heavens! For more than forty years I have been speaking prose
without knowing it.

MOLIÈRE, Le Bourgeois Gentilhomme

 A stream is a flow of characters (or other kind of data). If the flow is into your
program, the stream is called an input stream . If the flow is out of your program, the
stream is called an output stream . If the input stream flows from the keyboard, then
your program will take input from the keyboard. If the input stream flows from a file,
then your program will take its input from that file. Similarly, an output stream can go
to the screen or to a file.

 Although you may not realize it, you have already been using streams in your
programs. The cin that you have already used is an input stream connected to the
keyboard, and cout is an output stream connected to the screen. These two streams
are automatically available to your program as long as it has both an include directive
that names the header file <iostream> and a using directive for the std namespace.
You can define other streams that come from or go to files; once you have defined
them, you can use them in your program in the same way you use the streams cin

and cout . For example, suppose your program defines a stream called inStream that
comes from some file. (We will tell you how to define it shortly.) You can then fill an
int variable named theNumber with a number from this file by using the following in
your program:

int theNumber;
inStream >> theNumber;

 Similarly, if your program defines an output stream named outStream that goes to
another file, then you can output the value of the variable theNumber to this other file.
The following will output the string "theNumber is " followed by the contents of the
variable theNumber to the output file that is connected to the stream outStream :

outStream << "theNumber is " << theNumber << endl;

 Once the streams are connected to the desired files, your program can do file I/O the
same way it does I/O using the keyboard and screen.

 File I/O

 The files we will use for I/O in this chapter are text files; that is, they are the same kind
of files as those that contain your C++ programs.

 When your program takes input from a file, it is said to be reading from the file;
when your program sends output to a file, it is said to be writing to the file. There
are other ways of reading input from a file, but the method given in this subsection
reads the file from the beginning to the end (or as far as the program gets before

stream

input
stream

output
stream

cin and
cout are
streams

reading
and writing

518 CHAPTER 12 Streams and File I/O

ending). Using this method, your program is not allowed to back up and read
anything in the file a second time. This is exactly what happens when your program
takes input from the keyboard, so it should not seem new or strange. (As we will
see, your program can reread a file starting from the beginning of the file, but this
is starting over, not backing up.) Similarly, for the method presented here, your
program writes output into a file starting at the beginning of the file and proceeding
forward. Your program is not allowed to back up and change any output that it has
previously written to the file. This is exactly what happens when your program sends
output to the screen: You can send more output to the screen, but you cannot back
up and change the screen output. The way that you get input from a file into your
program or send output from your program into a file is to connect your program to
the file by means of a stream.

 To send output to a file, your program must first connect the file to a (stream) object
of the class ofstream . To read input from a file, your program must first connect the
file to a (stream) object of the class ifstream . The classes ifstream and ofstream are
defined in the <fstream> library and placed in the std namespace. Thus, to do both
file input and file output, your program would contain

#include <fstream>
using namespace std;

 or

#include <fstream>
using std::ifstream;
using std::ofstream;

 A stream must be declared just as you would declare any other class variable. Thus,
you can declare inStream to be an input stream for a file and outStream to be an
output stream for another file as follows:

ifstream inStream;
ofstream outStream;

 Stream variables, such as inStream and outStream declared previously, must each
be connected to a file. This is called opening the file and is done with the member
function named open . For example, suppose you want the input stream inStream
connected to the file named infile.txt . Your program must then contain the
following before it reads any input from this file:

inStream.open("infile.txt");

 You can specify a pathname (a directory or folder) when giving the file name. The
details of how to specify a pathname vary a little from system to system, so consult with
a local guru for the details (or do a little trial-and-error programming). In our examples
we will use simple file names, which assumes that the file is in the same directory
(folder) as the one in which your program is running.

<fstream>

declaring
streams

connecting a
stream to a file

open

pathnames

www.itpub.net

I/O Streams 519

 Once you have declared an input stream variable and connected it to a file using
the open function, your program can take input from the file using the extraction
operator, >> , with the input stream variable used the same way as cin . For example,
the following reads two input numbers from the file connected to inStream and places
them in the variables oneNumber and anotherNumber :

int oneNumber, anotherNumber;
inStream >> oneNumber >> anotherNumber;

 An output stream is opened (that is, connected to a file) in the same way as just
described for input streams. For example, the following declares the output stream
outStream and connects it to the file named outfile.txt :

ofstream outStream;
outStream.open("outfile.txt");

 When used with a stream of type ofstream , the member function open will create
the output file if it does not already exist. If the output file already exists, the
member function open will discard the contents of the file so that the output file is
empty after the call to open . (We will discuss other ways of opening a file a bit later
in this chapter.)

 After a file is connected to the stream outStream with a call to open , the program
can send output to that file using the insertion operator << . For example, the following
writes two strings and the contents of the variables oneNumber and anotherNumber
to the file that is connected to the stream outStream (which in this example is the file
named outfile.txt):

outStream << "oneNumber = " << oneNumber
 << " anotherNumber = " << anotherNumber;

 Overloading of >> and << Applies to Files
As we pointed out in Chapter 8, if you overload >> and <<, then those overloadings apply to
file input and output streams the same as they apply to cin and cout. (If you have not yet
read Chapter 8, you can ignore this remark. It will be repeated for you in Chapter 8.)

 Notice that when your program is dealing with a file, it is as if the file had two
names. One is the usual name for the file that is used by the operating system, which is
the external file name . In our sample code the external file names were infile.txt
and outfile.txt . The external file name is in some sense the “real name” for the file.
The conventions for spelling these external file names vary from one system to another.
The names infile.txt and outfile.txt that we used in our examples may or may

external file
name

520 CHAPTER 12 Streams and File I/O

not look like file names on your system. You should name your files following whatever
conventions are used on your operating system. Although the external file name is the
real name for the file, it is typically used only once in a program. The external file name
is given as an argument to the function open , but after the file is opened, the file is
always referred to by naming the stream that is connected to the file. Thus, within your
program, the stream name serves as a second name for the file.

 A File Has Two Names
Every input and every output file used by your program has two names. The external file
name is the real name of the file, but it is used only in the call to the member function open,
which connects the file to a stream. After the call to open, you always use the stream name
as the name of the file.

close

 The sample program in Display 12.1 reads three numbers from one file and writes
their sum, as well as some text, to another file.

 Every file should be closed when your program is finished getting input from the
file or sending output to the file. Closing a file disconnects the stream from the file. A
file is closed with a call to the function close . The following lines from the program in
 Display 12.1 illustrate how to use the function close :

inStream.close();
outStream.close();

 Notice that the function close takes no arguments. If your program ends normally
but without closing a file, the system will automatically close the file for you. However,
it is good to get in the habit of closing files for at least two reasons. First, the system
will only close files for you if your program ends normally. If your program ends
abnormally due to an error, the file will not be closed and may be left in a corrupted
state. If your program closes files as soon as it is finished with them, file corruption
is less likely. Second, you may want your program to send output to a file and later
read that output back into the program. To do this, your program should close the file
after it is finished writing to the file, and then reopen the file with an input stream.
(It is possible to open a file for both input and output, but this is done in a slightly
different way.)

 A less commonly used member function, but one you may eventually need, is
flush , which is a member function of every output stream. For reasons of efficiency,
output is often buffered —that is, temporarily stored someplace—before it is actually
written to a file. The member function flush flushes the output stream so that all
output that may have been buffered is physically written to the file. An invocation of

www.itpub.net

I/O Streams 521

 Display 12.1 Simple File Input/Output

 1 //Reads three numbers from the file infile.txt, sums the numbers,
 2 //and writes the sum to the file outfile.txt.
 3 #include <fstream>
 4 using std::ifstream;
 5 using std::ofstream;
 6 using std::endl;

 7 int main()
 8 {
 9 ifstream inStream;
10 ofstream outStream;

11 inStream.open("infile.txt");
12 outStream.open("outfile.txt");

13 int first, second, third;
14 inStream >> first >> second >> third;
15 outStream << "The sum of the first 3\n"
16 << "numbers in infile.txt\n"
17 << "is " << (first + second + third)
18 << endl;

19 inStream.close();
20 outStream.close();

21 return 0;
22 }

 Sample Dialogue

 Infile.txt Outfile.txt
 (Not changed by program) (After program is run)

There is no output to the screen
and no input from the keyboard.

A better version of this program
is given in Display 12.3.

1

2

3

4

The sum of the first 3
numbers in infile.txt
is 6

522 CHAPTER 12 Streams and File I/O

 PITFALL: Restrictions on Stream Variables

 You declare a stream variable (one of type ifstream or ofstream) in the usual way,
but these variables cannot be used in some of the ways that other variables are used.
You cannot use an assignment statement to assign a value to a stream variable. You
can have a parameter of a stream type (ifstream , ofstream , or any other stream
type), but it must be a call-by-reference parameter. It cannot be a call-by-value
parameter. ■

close automatically invokes flush , so you very seldom need to use flush . The syntax
for flush is indicated by the following example:

outStream.flush();

 Appending to a File

 When sending output to a file, your code must first use the member function open to
open a file and connect it to a stream of type ofstream . The way we have done this
 thus far , with a single argument for the file name always yields an empty file. If a file of
the specified name already exists, its old contents are lost. There is an alternative way to
open a file so that the output from your program will be appended to the file after any
data already in the file.

 To append your output to a file named "important.txt" , you would use a two-
argument version of open , as illustrated by the following:

ofstream outStream;
outStream.open("important.txt", ios::app);

 If the file "important.txt" does not exist, this will create an empty file with that
name to receive your program’s output; if the file already exists, then all the output
from your program will be appended to the end of the file, so that old data in the file is
not lost. This is illustrated in Display 12.2 .

 The second argument ios::app is a defined constant in the class ios . The class
ios is defined in the <iostream> library (and also in some other stream libraries). The
definition of the class ios is placed in the std namespace, so either of the following
will make ios (and hence ios::app) available to your program:

#include <iostream>
using namespace std;

 or

#include <iostream>
using std::ios;

ios::app

www.itpub.net

I/O Streams 523

 Display 12.2 Appending to a File

 1 //Appends data to the end of the file alldata.txt.
 2 #include <fstream>
 3 #include <iostream>
 4 using std::ofstream;
 5 using std::cout;
 6 using std::ios;

 7 int main()
 8 {
 9 cout << "Opening data.txt for appending.\n";
10 ofstream fout;
11 fout.open("data.txt", ios::app);

12 fout << "5 6 pick up sticks.\n"
13 << "7 8 ain't C++ great!\n";

14 fout.close();
15 cout << "End of appending to file.\n";

16 return 0;
17 }

 Sample Dialogue

Data.txt
(After program is run)

Screen Output

Opening data.txt for appending.
End of appending to file

Data.txt
(Before program is run)

1 2 buckle my shoe.

3 4 shut the door.
1 2 buckle my shoe.

3 4 shut the door.

5 6 pick up sticks.

7 8 ain't C++ great!

524 CHAPTER 12 Streams and File I/O

 Appending to a File
If you want to append data to a file so that it goes after any existing contents of the file,
open the file as follows.

 SYNTAX

Output_Stream.open(File_Name, ios::app);

 EXAMPLE

ofstream outStream;
outStream.open("important.txt", ios::app);

 TIP: Another Syntax for Opening a File

 Each of the classes ifstream and ofstream has constructors that allow you to
specify a file name and sometimes other parameters for opening a file. A few examples
will make the syntax clear.

 The two statements

ifstream inStream;
inStream.open("infile.txt");

 can be replaced by the following equivalent line:

ifstream inStream("infile.txt");

 The two statements

ofstream outStream;
outStream.open("outfile.txt");

 can be replaced by the following equivalent line:

ofstream outStream("outfile.txt");

 As our final example, the two lines

ofstream outStream;
outStream.open("important.txt", ios::app);

 are equivalent to the following:

ofstream outStream("important.txt", ios::app); ■

www.itpub.net

I/O Streams 525

 Display 12.3 File I/O with Checks on open

 1 //Reads three numbers from the file infile.txt and writes the sum to the
 2 //file outfile.txt.
 3 #include <fstream>
 4 #include <iostream>
 5 #include <cstdlib> //for exit
 6 using std::ifstream;
 7 using std::ofstream;
 8 using std::cout;
 9 using std::endl;

10 int main()
11 {
12 ifstream inStream;
13 ofstream outStream;

14 inStream.open("infile.txt");
15 if (inStream.fail())
16 {
17 cout << "Input file opening failed.\n";
18 exit(1);
19 }

20 outStream.open("outfile.txt");
21 if (outStream.fail())
22 {
23 cout << "Output file opening failed.\n";
24 exit(1);
25 }

26 int first, second, third;
27 inStream >> first >> second >> third;
28 outStream << "The sum of the first 3\n"
29 << "numbers in infile.txt\n"
30 << "is " << (first + second + third) << endl;

31 inStream.close();
32 outStream.close();
33 return 0;
34 }

Sample Dialogue (if the file infile.txt does not exist)

Input file opening failed.

526 CHAPTER 12 Streams and File I/O

the member
function fail

 TIP: Check That a File Was Opened Successfully

 A call to open can be unsuccessful for a number of reasons. For example, if you try to
open an input file and there is no file with the external name that you specified, then
the call to open will fail. As another example, an attempt to open an output file could
fail because the file exists and your program (that is, your account) does not have
write permission for the file. When such things happen, you may not receive an error
message and your program may simply proceed to do something unexpected. Thus,
you should always follow a call to open with a test to see whether the call to open was
successful, and end the program (or take some other appropriate action) if the call to
open was unsuccessful.

 You can use the member function named fail to test whether or not a stream
operation has failed. There is a member function named fail for each of the
classes ifstream and ofstream . The fail function takes no arguments and
returns a bool value.

 You should place a call to fail immediately after each call to open ; if the call
to open fails, the function fail will return true . For example, if the following call
to open fails, then the program will output an error message and end; if the call
succeeds, the fail function returns false and the program will continue.

inStream.open("stuff.txt");
if (inStream.fail())
{

cout << "Input file opening failed.\n";
exit(1);

}

 Display 12.3 contains the program from Display 12.1 rewritten to include tests
to see if the input and output fi les were opened successfully. It processes fi les in
exactly the same way as the program in Display 12.1 . In particular, assuming that
the fi le infile.txt exists and has the contents shown in Display 12.1 , the program
in Display 12.3 will create the fi le outfile.txt that is shown in Display 12.1 .
However, if there were something wrong and one of the calls to open failed, then
the program in Display 12.3 would end and send an appropriate error message to
the screen. For example, if there were no fi le named infile.txt , then the call to
inStream.open would fail, the program would end, and an error message would
be written to the screen. Notice that we used cout to output the error message; this
is because we want the error message to go to the screen, as opposed to going to a
fi le. Since this program uses cout to output to the screen (as well as doing fi le I/O),
we have added an include directive for the header fi le <iostream> . (Actually, your
program does not need to have #include <iostream> when your program has
#include <fstream> , but it causes no problems to include it, and it reminds you
that the program is using screen output in addition to fi le I/O.) ■

www.itpub.net

I/O Streams 527

 Summary of File I/O Statements
In this example the input comes from a file with the name infile.txt, and the output
goes to a file with the name outfile.txt.
 ■ Place the following include directives in your program file:

#include <fstream>
#include <iostream>
#include <cstdlib>

 Add the following using directives (or something similar):

using std::ifstream;
using std::ofstream;
using std::cout;
using std::endl; //if endl is used.

 ■ Choose a stream name for the input stream and declare it to be a variable of type
ifstream. Choose a stream name for the output file and declare it to be of type
ofstream. For example,

ifstream inStream;
ofstream outStream;

 ■ Connect each stream to a file using the member function open with the external file
name as an argument. Remember to use the member function fail to test that the
call to open was successful:

inStream.open("infile.txt");
if (inStream.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

outStream.open("outfile.txt");
if (outStream.fail())
{
 cout << "Output file opening failed.\n";
 exit(1);
}

 ■ Use the stream inStream to get input from the file infile.txt just like you use cin
to get input from the keyboard. For example,

inStream >> someVariable >> someOtherVariable;

(continued)

 For file I/O

 For cout

 For exit

528 CHAPTER 12 Streams and File I/O

 Character I/O

 Chapter 9 described character I/O from the keyboard with cin and to the screen with
cout . Character I/O from a file works the same way as character I/O with the keyboard
and screen. Just use an input stream connected to a file in place of cin or an output
stream connected to a file in place of cout . In particular, get , getline , putback ,

 Summary of File I/O Statements (continued)

■ Use the stream outStream to send output to the file outfile.txt just like you use
cout to send output to the screen. For example,

outStream << "someVariable = "
 << someVariable << endl;

 ■ Close the streams using the function close :

inStream.close();
outStream.close();

 Self-Test Exercises

 1. Suppose you are writing a program that uses a stream called fin , which will be
connected to an input fi le, and a stream called fout , which will be connected to
an output fi le. How do you declare fin and fout ? What include directive, if
any, do you need to place in your program fi le?

 2. Suppose you are continuing to write the program discussed in the previous
exercise and you want your program to take its input from the fi le stuff1.txt
and send its output to the fi le stuff2.txt . What statements do you need to
place in your program in order to connect the stream fin to the fi le stuff1.txt
and to connect the stream fout to the fi le stuff2.txt ? Be sure to include checks
to make sure that the openings were successful.

 3. Suppose that you are still writing the same program that we discussed in the
previous two exercises and you reach the point at which you no longer need to
get input from the fi le stuff1.txt and no longer need to send output to the fi le
stuff2.txt . How do you close these fi les?

 4. Suppose you want to change the program in Display 12.1 so that it sends its
output to the screen instead of the fi le outfile.txt . (The input should still
come from the fi le infile.txt .) What changes do you need to make to the
program?

 5. A programmer has read half of the lines in a fi le. What must the programmer do
to the fi le to enable reading the fi rst line a second time?

www.itpub.net

I/O Streams 529

peek , and ignore work the same for file input as they do for keyboard input; 1 put
works the same for file output as it does for screen output.

 Checking for the End of a File

 A common way of processing an input file is to use a loop that processes data from the
file until the end of the file is reached. There are two standard ways to test for the end
of a file. The most straightforward way is to use the eof member function.

 Every input-file stream has a member function called eof that can be used to test for
reaching the end of the input file. The function eof takes no arguments, so if the input
stream is called fin , then a call to the function eof is written

fin.eof()

 This is a Boolean expression that can be used to control a while loop, do-while loop,
or an if-else statement. This expression returns true if the program has read past the
end of the input file; otherwise, it returns false .

 Since we usually want to test that we are not at the end of a file, a call to the member
function eof is typically used with a not in front of it. Recall that in C++ the symbol
! is used to express not. For example, the entire contents of the file connected to the
input stream inStream can be written to the screen with the following while loop:

inStream.get(next);
while (! inStream.eof())
{

cout << next;
inStream.get(next);

}

 The previous while loop reads each character from the input file into the char variable
next using the member function get , and then it writes the character to the screen.
After the program has passed the end of the file, the value of inStream.eof()

changes from false to true . Thus,

(! inStream.eof())

 changes from true to false and the loop ends.
 Notice that inStream.eof() does not become true until the program attempts

to read one character beyond the end of the file. For example, suppose the file contains
the following (without any newline character after the c):

ab
c

1 If you have not yet read about getline, putback, peek, or ignore , do not be concerned. They
are not used in this chapter, except for one brief reference to ignore at the very end of this chapter.
You can ignore that one reference to ignore .

eof member
function

ending an
input loop

with the
eof function

 If you prefer, you can
use cout.put(next) here.

530 CHAPTER 12 Streams and File I/O

 This is actually the following list of four characters:

ab<the newline character '\n' >c

 The loop shown will read an 'a' and write it to the screen, then read a 'b' and write it to
the screen, then read the newline character '\n' and write it to the screen, and then read
a 'c' and write it to the screen. At that point the loop will have read all the characters in
the file. However, inStream.eof() will still be false . The value of inStream.eof()
will not change from false to true until the program tries to read one more character.
That is why the previous while loop ends with inStream.get(next) . The loop needs
to read one extra character in order to end the loop.

 There is a special end-of-file marker at the end of a file. The member function eof
does not change from false to true until this end-of-file marker is read. That is why
the previous while loop could read one character beyond what you think of as the last
character in the file. However, this end-of-file marker is not an ordinary character and
should not be manipulated like an ordinary character. You can read this end-of-file
marker, but you should not write it out again. If you write out the end-of-file marker,
the result is unpredictable. The system automatically places this end-of-file marker at
the end of each file for you.

 To complicate things, the implementation of eof on some compilers will return
true without having to read the end-of-file marker, so you may need to check your
compiler’s documentation or write a short program to determine your compiler’s
behavior.

 The second way to check for the end of the file is to note (and use) the fact that a
read with an extraction operator actually returns a Boolean value. The expression

(inStream >> next)

 returns true if the read was successful and returns false when your code attempts to
read beyond the end of the file. For example, the following will read all the numbers
in a file of integers connected to the input stream inStream and compute their sum in
the variable sum :

double next, sum = 0;
while (inStream >> next)
 sum = sum + next;
cout << "the sum is " << sum << endl;

 The previous loop may look a bit peculiar, because inStream >> next reads
a number from the stream inStream and returns a Boolean value. An expression
involving the extraction operator >> is simultaneously both an action and a Boolean
condition.2 If there is another number to be input, then the number is read and the
Boolean value true is returned, so the body of the loop is executed one more time.

the macho way
to test for end

of file

2 Technically, the Boolean condition works this way: The returned value of the operator >> is an input
stream reference (istream& or ifstream&) , as explained in Chapter 8 . This stream reference is
automatically converted to a bool value. The resulting value is true if the stream was able to extract
data, and false otherwise.

www.itpub.net

I/O Streams 531

If there are no more numbers to be read in, then nothing is input and the Boolean
value false is returned, so the loop ends. In this example the type of the input variable
next was double , but this method of checking for the end of the file works the same
way for other data types, such as int and char .

 This second method of testing for the end of a file is preferred by many C++
programmers for what appears to be a cultural reason. It was commonly used in C
programming. It is also possible that, depending on implementation details, this
second method might be a bit more efficient. In any event, whether you use this second
method or not, you need to know it so you can understand other programmers’ code.

 An illustration of using the eof member function is given in Display 12.4 .

 Display 12.4 Checking for the End of a File (part 1 of 2)

(continued)

 1 //Copies story.txt to numstory.txt,
 2 //but adds a number to the beginning of each line.
 3 //Assumes story.txt is not empty.
 4 #include <fstream>
 5 #include <iostream>
 6 #include <cstdlib>

 7 using std::ifstream;
 8 using std::ofstream;
 9 using std::cout;

10 int main()
11 {
12 ifstream fin;
13 ofstream fout;

14 fin.open("story.txt");
15 if (fin.fail())
16 {
17 cout << "Input file opening failed.\n";
18 exit(1);
19 }

20 fout.open("numstory.txt");
21 if (fout.fail())
22 {
23 cout << "Output file opening failed.\n";
24 exit(1);
25 }

532 CHAPTER 12 Streams and File I/O

26
27 char next;
28 int n = 1;
29 fin.get(next);
30 fout << n << " ";
31 while (! fin.eof())
32 {
33 fout << next;
34 if (next = = '\n')
35 {
36 n++;
37 fout << n << ' ';
38 }
39 fin.get(next);
40 }

41 fin.close();
42 fout.close();

43 return 0;
44 }

 Sample Dialogue

Display 12.4 Checking for the End of a File (part 2 of 2)

Story.txt
(Not changed by program)

The little green men had
pointed heads and orange
toes with one long curly
hair on each toe.

Numstory.txt
(After program is run)

1 The little green men had

2 pointed heads and orange

3 toes with one long curly

4 hair on each toe.

Notice that the loop ends with a read (fin.get).
The member function fin.eof does not return
true until your program tries to read one more
character after reading the last character in the file.

There is no output to the screen
and no input from the keyboard.

 Self-Test Exercises

 6. What output will be produced when the following lines are executed, assuming
the fi le list.txt contains the data shown (and assuming the lines are
embedded in a complete and correct program with the proper include and
using directives)?

www.itpub.net

Tools for Stream I/O 533

 12.2 Tools for Stream I/O

 You shall see them on a beautiful quarto page, where a neat rivulet of

text shall meander through a meadow of margin.

RICHARD BRINSLEY SHERIDAN, The School for Scandal

 File Names as Input

 Thus far, we have written the literal file names for our input and output files into the
code of our programs. We did this by giving the file name as the argument to a call to
the function open , as in the following example:

inStream.open("infile.txt");

 You can instead read the file name in from the keyboard, as illustrated by the following:

char fileName[16];
ifstream inStream;

 Self-Test Exercises (continued)

ifstream ins;

ins.open("list.txt");

int count = 0, next;

while (ins >> next)

{

 count++;

 cout << next << endl;

}

ins.close();

cout << count;

 The fi le list.txt contains the following three numbers (and nothing more):

1 2

3

 7. Write the defi nition for a void function called toScreen . The function
toScreen has one formal parameter called fileStream , which is of type
ifstream . The precondition and postcondition for the function are given next.

//Precondition: The stream fileStream has been connected
//to a file with a call to the member function open. The
//file contains a list of integers (and nothing else).
//Postcondition: The numbers in the file connected to
//fileStream have been written to the screen one per line.
//(This function does not close the file.)

534 CHAPTER 12 Streams and File I/O

cout << "Enter file name (maximum of 15 characters):\n";
cin >> fileName;
inStream.open(fileName);

 Note that our code reads the file name as a C-string. The member function open
takes an argument that is a C-string. You cannot use a string variable as an argument
to open , and there is no predefined type cast operator to convert from a string object
to a C-string. However, as an alternative, you can read the file name into a string

variable and use the string member function c_str() to produce the corresponding
C-string value for open . The code would be as follows:

string fileName;
ifstream inStream;

cout << "Enter file name:\n";
getline(cin, filename);
inStream.open(fileName.c_str());

 Note that when you use a string variable for the file name, there is essentially no limit
to the size of the file name. 3

 Formatting Output with Stream Functions

 You can control the format of your output to a file or to the screen with commands
that determine such details as the number of spaces between items and the number of
digits after the decimal point. For example, in Chapter 1 we gave the following “magic
formula” to use for outputting amounts of money:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

 We are now in a position to explain these and other formulas for formatting output.
 The first thing to note is that you can use these formatting commands on any

output stream. Output streams connected to a file have these same member functions
as the object cout . If outStream is a file output stream (of type ofstream), you can
format output in the same way:

outStream.setf(ios::fixed);
outStream.setf(ios::showpoint);
outStream.precision(2);

 To explain this magic formula, we will consider the member functions in reverse order.

as a C-string

as a string
object

3 The lack of accommodation for the type string within the iostream library is because iostream
was written before the string type was added to the C++ libraries.

www.itpub.net

Tools for Stream I/O 535

 Every output stream has a member function named precision . When your program
executes a call to precision such as the previous one for the stream outStream , then
from that point on in your program, any number with a decimal point that is output
to that stream will be written with a total of two significant figures or with two digits
after the decimal point, depending on when your compiler was written. The following
is some possible output from a compiler that sets two significant digits:

23. 2.2e7 2.2 6.9e-1 0.00069

 The following is some possible output from a compiler that sets two digits after the
decimal point:

23.56 2.26e7 2.21 0.69 0.69e-4

 In this book, we assume the compiler sets two digits after the decimal point. Of course,
you can use a different argument than 2 to obtain more or less precision.

 Every output stream has a member function named setf that can be used to set
certain flags. These flags are constants in the class ios , which is in the std namespace.
When set with a call to setf , the flags determine certain behaviors of the output
stream. Following are the two calls to the member function setf with the stream
outStream as the calling object:

outStream.setf(ios::fixed);
outStream.setf(ios::showpoint);

 Each of these flags is an instruction to format output in one of two possible ways. What
it causes the stream to do depends on the flag.

 The flag ios::fixed causes the stream to output floating-point numbers in what
is called fixed-point notation , which is a fancy phrase for the way we normally write
numbers. If the flag ios::fixed is set (by a call to setf), then all floating-point
numbers (such as numbers of type double) that are output to that stream will be
written in ordinary everyday notation, rather than e -notation.

 The flag ios::showpoint tells the stream to always include a decimal point in
floating-point numbers. If the number to be output has a value of 2.0 , then it will be
output as 2.0 and not simply as 2 ; that is, the output will include the decimal point
even if all the digits after the decimal point are 0 . Some common flags and the actions
they cause are described in Display 12.5 .

 You can set multiple flags with a single call to setf . Simply connect the various
flags with '|' symbols, as illustrated: 4

outStream.setf(ios::fixed | ios::showpoint | ios::right);

precision

setf

flag

ios::fixed

fixed-point
notation

ios::
showpoint

4 The | operator is bitwise-or. You are literally or-ing a bitwise mask that indicates the flag settings,
although you need not be aware of this low level detail.

536 CHAPTER 12 Streams and File I/O

 Display 12.5 Formatting Flags for setf

 FLAG MEANING OF SETTING THE FLAG DEFAULT

ios::fixed Floating-point numbers are not written in e-notation.
(Setting this flag automatically unsets the flag
ios::scientific.)

Not set

ios::scientific Floating-point numbers are written in e-notation. (Setting
this flag automatically unsets the flag ios::fixed.) If
neither ios::fixed nor ios::scientific is set, then
the system decides how to output each number.

Not set

ios::showpoint A decimal point and trailing zeros are always shown for
floating-point numbers. If it is not set, a number with all
zeros after the decimal point might be output without the
decimal point and following zeros.

Not set

ios::showpos A plus sign is output before positive integer values. Not set

ios::right If this flag is set and some field-width value is given with
a call to the member function width, then the next item
output will be at the right end of the space specified by
width. In other words, any extra blanks are placed before
the item output. (Setting this flag automatically unsets the
flag ios::left.)

Set

ios::left If this flag is set and some field-width value is given with
a call to the member function width, then the next item
output will be at the left end of the space specified by
width. In other words, any extra blanks are placed after
the item output. (Setting this flag automatically unsets the
flag ios::right.)

Not set

ios::dec Integers are output in decimal (base 10) notation. Set

ios::oct Integers are output in octal (base 8) notation. Not set

ios::hex Integers are output in hexadecimal (base 16) notation. Not set

ios::uppercase An uppercase E is used instead of a lowercase
e in scientific notation for floating-point numbers.
Hexadecimal numbers are output using uppercase letters.

Not set

ios::showbase Shows the base of an output number (leading O for octal,
leading Ox for hexadecimal).

Not set

www.itpub.net

Tools for Stream I/O 537

 Output streams have other member functions besides precision and setf . One
very commonly used formatting function is width . For example, consider the following
call to width made by the stream cout :

cout << "Start Now";
cout.width(4);
cout << 7 << endl;

 This code will cause the following line to appear on the screen:

Start Now 7

 This output has exactly three spaces between the letter 'w' and the number 7 . The
width function tells the stream how many spaces to use when giving an item as output.
In this case the number 7 occupies only one space and width is set to use four spaces,
so three of the spaces are blank. If the output requires more space than you specified in
the argument to width , then as much additional space as is needed will be used. The
entire item is always output, no matter what argument you give to width .

width

 The Class ios
The class ios has a number of important defined constants, such as ios::app (used to
indicate that you are appending to a file) and the flags listed in Display 12.5. The class ios
is defined in libraries for output streams, such as <iostream> and <fstream>. One way
to make the class ios and hence all these constants (all these flags) available to your code
is the following:

#include <iostream> //or #include <fstream> or both
using std::ios;

 Any flag that is set may be unset. To unset a flag, use the function unsetf . For
example, the following will cause your program to stop including plus signs on positive
integers that are output to the stream cout :

cout.unsetf(ios::showpos);

 When a flag is set, it remains set until it is unset. The effect of a call to precision
stays in effect until the precision is reset. However, the member function width

behaves differently. A call to width applies only to the next item that is output. If
you want to output 12 numbers, using four spaces to output each number, then you
must call to width 12 times. If this becomes a nuisance, you may prefer to use the
manipulator setw that is described in the next subsection.

unsetf

538 CHAPTER 12 Streams and File I/O

 Manipulators

 A manipulator is a function that is called in a nontraditional way. Manipulators are
placed after the insertion operator << , just as if the manipulator function call were
an item to be output. Like traditional functions, manipulators may or may not have
arguments. We have already seen one manipulator, endl . This subsection discusses
two manipulators called setw and setprecision .

 The manipulator setw and the member function width (which you have already
seen) do exactly the same thing. You call the setw manipulator by writing it after the
insertion operator, << , as if it were to be sent to the output stream , and this in turn
calls the member function width . For example, the following will output the numbers
10 , 20 , and 30 , using the field widths specified:

cout << "Start" << setw(4) << 10
 << setw(4) << 20 << setw(6) << 30;

 The preceding statement will produce the following output:

Start 10 20 30

 (There are two spaces before the 10 , two spaces before the 20 , and four spaces before
the 30 .)

 Like the member function width , a call to setw applies only to the next item
output, but it is easier to include multiple calls to setw than it is to make multiple calls
to width .

 The manipulator setprecision does the same thing as the member function
precision (which you have already seen). However, a call to setprecision is
written after the insertion operator, << , in a manner similar to how you call the setw
manipulator. For example, the following will output the numbers listed using the
number of digits after the decimal point that are indicated by the call to setprecision :

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout << "$" << setprecision(2) << 10.3 << endl
 << "$" << 20.5 << endl;

 The previous statement will produce the following output:

$10.30
$20.50

 When you set the number of digits after the decimal point using the manipulator
setprecision , then just as was the case with the member function precision , the
setting stays in effect until you reset it to some other number by another call to either
setprecision or precision .

 To use either of the manipulators setw or setprecision , you must include the
following directive in your program:

#include <iomanip>
using namespace std;

manipulator

setw

setprecision

<iomanip>

www.itpub.net

Tools for Stream I/O 539

 Or, you must use one of the other ways of specifying the names and namespace, such
as the following:

#include <iomanip>
using std::setw;
using std::setprecision;

 Saving Flag Settings

 A function should not have unwanted or unexpected side effects. For example, a
function to output amounts of money might contain

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

 After the function invocation ends, these settings will still be in effect. If you do not
want such side effects, you can save and restore the original settings.

 The function precision has been overloaded so that with no arguments it returns
the current precision setting so the setting can later be restored.

 The flags set with setf are easy to save and restore. The member function flags
is overloaded to provide a way to save and then restore the flag settings. The member
function cout.flags() returns a value of type long that codes all the flag settings.
The flags can be reset by using this long value as an argument to cout.flags . These
techniques work the same for file output streams as they do for cout .

 For example, a function to save and restore these settings could be structured as
follows:

void outputStuff(ofstream& outStream)
{

int precisionSetting = outStream.precision();
long flagSettings = outStream.flags();

 outStream.setf(ios::fixed);
 outStream.setf(ios::showpoint);
 outStream.precision(2);

//Do whatever you want here.
 outStream.precision(precisionSetting);
 outStream.flags(flagSettings);
}

 Another way to restore settings is

cout.setf(0, ios::floatfield);

 An invocation of the member function setf with these arguments will restore the
default setf settings. Note that these are the default values, not necessarily the settings
before the last time they were changed. Also note that the default setting values are
implementation-dependent. Finally, note that this does not reset precision settings
or any settings that are not set with setf .

540 CHAPTER 12 Streams and File I/O

 More Output Stream Member Functions

 Display 12.6 summarizes some of the formatting member functions for the class
ostream and some of the manipulators. Remember that to use the manipulators you
need the following (or something similar):

#include <iomanip>
using namespace std;

 Display 12.6 Formatting Tools for the Class ostream

 FUNCTION DESCRIPTION
CORRESPONDING
MANIPULATOR

setf(ios_Flag) Sets flags as described in Display 12.5 setiosflags(ios_
Flag)

unsetf(ios_Flag) Unsets flag resetiosflags(ios_
Flag)

setf(0,
ios::floatfield)

Restores default flag settings None

precision(int) Sets precision for floating-point number
output

setprecision(int)

precision() Returns the current precision setting None

width(int) Sets the output field width; applies only to
the next item output

setw(int)

fill(char) Specifies the fill character when the
output field is larger than the value output;
the default is a blank

setfill(char)

 Self-Test Exercises

 8. What output will be produced when the following lines are executed?

cout << "*";
cout.width(5);
cout << 123
 << "*" << 123 << "*" << endl;
cout << "*" << setw(5) << 123
 << "*" << 123 << "*" << endl;

www.itpub.net

Tools for Stream I/O 541

 Self-Test Exercises (continued)

 9. What output will be produced when the following lines are executed?

cout << "*" << setw(5) << 123;
cout.setf(ios::left);
cout << "*" << setw(5) << 123;
cout.setf(ios::right);
cout << "*" << setw(5) << 123 << "*" << endl;

 10. What output will be produced when the following lines are executed?

cout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;
cout.setf(ios::showpos);
cout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;
cout.unsetf(ios::showpos);
cout.setf(ios::left);
cout << "*" << setw(5) << 123 << "*"
 << setw(5) << 123 << "*" << endl;

 11. What output will be sent to the fi le stuff.txt when the following lines are
executed?

ofstream fout;
fout.open("stuff.txt");
fout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;
fout.setf(ios::showpos);
fout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;
fout.unsetf(ios::showpos);
fout.setf(ios::left);
fout << "*" << setw(5) << 123 << "*"
 << setw(5) << 123 << "*" << endl;

 12. What output will be produced when the following line is executed (assuming
the line is embedded in a complete and correct program with the proper
include and using directives)?

cout << "*" << setw(3) << 12345 << "*" << endl;

542 CHAPTER 12 Streams and File I/O

 Display 12.7 Formatting Output (part 1 of 3)

 1 //Reads all the numbers in the file rawdata.dat and writes the numbers
 2 //to the screen and to the file neat.dat in a neatly formatted way.
 3 #include <iostream>
 4 #include <fstream>
 5 #include <cstdlib>
 6 #include <iomanip>

 7 using std::ifstream;
 8 using std::ofstream;
 9 using std::cout;
10 using std::endl;
11 using std::ios;
12 using std::setw;

13 void makeNeat(ifstream& messyFile, ofstream& neatFile,
14 int numberAfterDecimalpoint, int fieldWidth);
15 //Precondition: The streams messyFile and neatFile have been
16 //connected to two different files. The file named messyFile contains
17 //only floating-point numbers.
18 //Postcondition: The numbers in the file connected to messyFile have
19 //been written to the screen and to the file connected to the stream
20 //neatFile. The numbers are written one per line, in fixed-point
21 //notation (that is, not in e-notation), with numberAfterDecimalpoint
22 //digits after the decimal point; each number is preceded by a plus or
23 //minus sign and each number is in a field of width fieldWidth. (This

//function does not close the file.)
24 int main()

 EXAMPLE: Cleaning Up a File Format

 The program in Display 12.7 takes its input from the file rawdata.txt and writes
its output, in a neat format, both to the screen and to the file neat.txt . The
program copies numbers from the file rawdata.txt to the file neat.txt , but it uses
formatting instructions to write them in a neat way. The numbers are written one
per line in a field of width 12, which means that each number is preceded by enough
blanks so that the blanks plus the number occupy 12 spaces. The numbers are written
in ordinary notation; that is, they are not written in e-notation. Each number is
written with five digits after the decimal point and with a plus or minus sign. The
program uses a function, named makeNeat , that has formal parameters for the input-
file stream and the output-file stream.

Needed for setw

Stream parameters must
be call-by-reference parameters.

www.itpub.net

Tools for Stream I/O 543

Display 12.7 Formatting Output (part 2 of 3)

25 {
26 ifstream fin;
27 ofstream fout;

28 fin.open("rawdata.txt");
29 if (fin.fail())
30 {
31 cout << "Input file opening failed.\n";
32 exit(1);
33 }
34
35 fout.open("neat.txt");
36 if (fout.fail())
37 {
38 cout << "Output file opening failed.\n";
39 exit(1);
40 }
41 makeNeat(fin, fout, 5, 12);

42 fin.close();
43 fout.close();
44 cout << "End of program.\n";
45 return 0;
46 }

47 //Uses <iostream>, <fstream>, and <iomanip>:
48 void makeNeat(ifstream& messyFile, ofstream& neatFile,
49 int numberAfterDecimalpoint, int fieldWidth)
50 {
51 neatFile.setf(ios::fixed);
52 neatFile.setf(ios::showpoint);
53 neatFile.setf(ios::showpos);
54 neatFile.precision(numberAfterDecimalpoint);

55 cout.setf(ios::fixed);
56 cout.setf(ios::showpoint);
57 cout.setf(ios::showpos);
58 cout.precision(numberAfterDecimalpoint);

59 double next;
60 while (messyFile >> next)
61 {
62 cout << setw(fieldWidth) << next << endl;
63 neatFile << setw(fieldWidth) << next << endl;
64 }
65 }

(continued)

setf and precision
behave the same for a file
output stream as they do
for cout.

Satisfied if there is a
next number to read

Works the same for file output
streams as it does for cout

544 CHAPTER 12 Streams and File I/O

Display 12.7 Formatting Output (part 3 of 3)

Sample Dialogue
Rawdata.txt

10.37 -9.89897
2.313 -8.950 15.0

7.33333 92.8765
-1.237568432e2

(Not changed by program)

(After program is run)
neat.txt

+10.37000
-9.89897
+2.31300
-8.95000

+15.00000
+7.33333

+92.87650
-123.75684

Screen Output

 +10.37000
 -9.89897
 +2.31300
 -8.95000
 +15.00000
 +7.33333
 +92.87650
 -123.75684

End of program.

 EXAMPLE: Editing a Text File

 The program discussed here is a very simple example of text editing applied to files.
This program can be used to automatically generate C++ advertising material from
existing C advertising material (in a rather simplistic way). The program takes its
input from a file that contains advertising copy that says good things about C and
writes similar advertising copy about C++ in another file. The file that contains the C
advertising copy is called cad.txt , and the new file that receives the C++ advertising
copy is called cppad.txt . The program is shown in Display 12.8 . The program
simply reads every character in the file cad.txt and copies the characters to the file
cppad.txt . Every character is copied unchanged, except that when the uppercase
letter 'C' is read from the input file, the program writes the string "C++" to the
output file. This program assumes that whenever the letter 'C' occurs in the input
file, it names the C programming language; so this change is exactly what is needed to
produce the updated advertising copy.

 Notice that the line breaks are preserved when the program reads characters from
the input file and writes the characters to the output file. The newline character '\n'
is treated just like any other character. It is read from the input file with the member
function get , and it is written to the output file using the insertion operator, << .
We must use the member function get to read the input (rather than the extraction
operator, >>) because we want to read whitespace.

www.itpub.net

Tools for Stream I/O 545

 Display 12.8 Editing a File of Text (part 1 of 2)

1 //Program to create a file called cplusad.txt that is identical

2 //to the file cad.txt except that all occurrences of 'C' are replaced

3 //by "C++". Assumes that the uppercase letter 'C' does not occur in

4 //cad.txt except as the name of the C programming language.
5 #include <fstream>
6 #include <iostream>
7 #include <cstdlib>
8 using std::ifstream;
9 using std::ofstream;
10 using std::cout;

11 void addPlusPlus(ifstream& inStream, ofstream& outStream);
12 //Precondition: inStream has been connected to an input file with open.
13 //outStream has been connected to an output file with open.
14 //Postcondition: The contents of the file connected to inStream have been
15 //copied into the file connected to outStream, but with each 'C' replaced
16 //by "C++". (The files are not closed by this function.)

17 int main()
18 {
19 ifstream fin;
20 ofstream fout;

21 cout << "Begin editing files.\n";

22 fin.open("cad.txt");
23 if (fin.fail())
24 {
25 cout << "Input file opening failed.\n";
26 exit(1);
27 }

28 fout.open("cppad.txt");
29 if (fout.fail())
30 {
31 cout << "Output file opening failed.\n";
32 exit(1);
33 }

(continued)

546 CHAPTER 12 Streams and File I/O

34 addPlusPlus(fin, fout);
35 fin.close();
36 fout.close();

37 cout << "End of editing files.\n";
38 return 0;
39 }
40 void addPlusPlus(ifstream& inStream, ofstream& outStream)
41 {
42 char next;

43 inStream.get(next);
44 while (! inStream.eof())
45 {
46 if (next = = 'C')
47 outStream << "C++";
48 else
49 outStream << next;

50 inStream.get(next);
51 }
52 }

 Sample Dialogue

Display 12.8 Editing a File of Text (part 2 of 2)

Screen Output

Begin editing files.
End of editing files.

cad.txt

C is one of the world's most modern
programming languages. There is no
language as versatile as C, and C
is fun to use.

(Not changed by program)

cppad.txt

C++ is one of the world's most
modern programming languages. There
is no language as versatile as C++,
and C++ is fun to use.

(After program is run)

www.itpub.net

Stream Hierarchies: A Preview of Inheritance 547

 12.3 Stream Hierarchies: A Preview of
Inheritance

 One very useful way to organize classes is by means of the “derived from” relationship.
When we say that one class is derived from another class we mean that the derived
class was obtained from the other class by adding features. For example, the class of
input-file streams is derived from the class of all input streams by adding additional
member functions such as open and close . The stream cin belongs to the class of
all input streams, but does not belong to the class of input-file streams because cin
has no member functions named open and close . This section introduces the notion
of a derived class as a way to think about and organize the predefined stream classes.
 (Chapter 14 shows how to use the idea of a derived class to define classes of your own.)

 Inheritance among Stream Classes

 Both the predefined stream cin and an input-file stream are input streams. So in some
sense they are similar. For example, you can use the extraction operator, >> , with either
kind of stream. On the other hand, an input-file stream can be connected to a file using
the member function open , but the stream cin has no member function named open . An
input-file stream is a similar but different kind of stream than cin . An input-file stream is
of type ifstream . The object cin is an object of the class istream (spelled without the
'f'). The classes ifstream and istream are different but closely related types. The class
ifstream is a derived class of the class istream . Let us see what that means.

 When we say that some class D is a derived class of some other class B, it means that
class D has all the features of class B but it also has added features. For example, any
stream of type istream (without the 'f') can be used with the extraction operator, >> .
The class ifstream (with the 'f') is a derived class of the class istream , so an object
of type ifstream can be used with the extraction operator, >> . An object of the class
ifstream has all the properties of an object of type istream . In particular, an object
of the class ifstream is also an object of type istream .

 However, ifstream has added features so that you can do more with an object of
type ifstream than you can with an object that is only of type istream . For example,
one added feature is that a stream of type ifstream can be used with the function
open . The stream cin is only of type istream and not of type ifstream . You cannot
use cin with the function open . Notice that the relationship between the classes
ifstream and istream is not symmetric. Every object of type ifstream is of type
istream (a file input stream is an input stream), but an object of type istream need
not be of type ifstream (the object cin is of type istream but not of type ifstream).

 The idea of a derived class is really quite common. An example from everyday
life may help to make the idea clearer. The class of all convertibles, for instance, is a
derived class of the class of all automobiles. Every convertible is an automobile, but
a convertible is not just an automobile. A convertible is a special kind of automobile
with special properties that other kinds of automobiles do not have. If you have a
convertible, you can lower the top so that the car is open. (You might say that a
convertible has an “ open ” function as an added feature.)

derived class

548 CHAPTER 12 Streams and File I/O

 If D is a derived class of the class B, then every object of type D is also of type B.
A convertible is also an automobile. A file input stream (object of the class ifstream)
is also an input stream (also an object of the class istream). So, if we use istream
as the type for a function parameter, rather than using ifstream , then more objects
can be plugged in for the parameter. Consider the following two function definitions,
which differ only in the type of the parameter (and the function name):

void twoSumVersion1(ifstream& sourceFile) //ifstream with an 'f'
{

int n1, n2;
 sourceFile >> n1 >> n2;
 cout << n1 << " + " << n2 << " = " << (n1 + n2) << endl;
}

 and

void twoSumVersion2(istream& sourceFile) //istream without an 'f'
{

int n1, n2;
 sourceFile >> n1 >> n2;
 cout << n1 << " + " << n2 << " = " << (n1 + n2) << endl;
}

 With twoSumVersion1 , the argument must be of type ifstream . So if fileIn is a file
input stream connected to a file, then

twoSumVersion1(fileIn);

 is legal, but

twoSumVersion1(cin); //ILLEGAL

 is not legal, because cin is not of type ifstream . The object cin is only a stream and
only of type istream ; cin is not a file input stream.

 The function twoSumVersion2 is more versatile. Both of the following are legal:

twoSumVersion2(fileIn);
twoSumVersion2(cin);

 The moral is clear: Use istream , not ifstream , as a parameter type whenever you
can. When choosing a parameter type, use the most general type you can. (To draw a
real-life analogy consider the following: You might prefer to own a convertible, but you
would not want a garage that could only hold a convertible. What if you borrowed a
sedan from a friend? You’d still want to be able to park the sedan in your garage.)

 You cannot always use the parameter type istream instead of the parameter type
ifstream . If you define a function with a parameter of type istream , then that
parameter can only use istream member functions. In particular, it cannot use the
functions open and close . If you cannot keep all calls to the member functions open
and close outside the function definition, then you must use a parameter of type
ifstream .

 So far we have discussed two classes for input streams: istream and its derived
class ifstream . The situation with output streams is similar. Chapter 1 introduced

ostream and
ofstream

www.itpub.net

Stream Hierarchies: A Preview of Inheritance 549

the output streams cout and cerr , which are in the class ostream . This chapter
introduced the file output streams, which are in the class ofstream (with an 'f').
The class ostream is the class of all output streams. The streams cout and cerr are of
type ostream , but not of type ofstream . In contrast to cout or cerr , an output-file
stream is declared to be of type ofstream . The class ofstream of output-file streams
is a derived class of the class ostream . For example, the following function writes the
word "Hello" to the output stream given as its argument.

void sayHello(ostream& anyOutStream)
{
 anyOutStream << "Hello";
}

 The first of the following calls writes "Hello" to the screen; the second writes "Hello"
to the file with the external file name afile.txt .

ofstream fout;
fout.open("afile.txt");
sayHello(cout);
sayHello(fout);

 Note that an output-file stream is of type ofstream and of type ostream .
 Derived classes are often discussed using the metaphor of inheritance and family

relationships. If class D is a derived class of class B, then class D is called a child of
class B and class B is called a parent of class D. The derived class is said to inherit the
member functions of its parent class. For example, every convertible inherits the fact
that it has four wheels from the class of all automobiles, and every input-file stream
inherits the extraction operator, >> , from the class of all input streams. This is why the
topic of derived classes is often called inheritance.

inheritance

child

parent

 EXAMPLE: Another newLine Function

 As an example of how you can make a stream function more versatile, consider the
function newLine that we defined in Display 9.2 . That function works only for input
from the keyboard, which is input from the predefined stream cin . The function
newLine in Display 9.2 has no arguments. Next we have rewritten the function
newLine so that it has a formal parameter of type istream for the input stream.

//Uses <iostream>:
void newLine(istream& inStream)
{

char symbol;
do

 {
 inStream.get(symbol);
 } while (symbol != '\n');
}

(continued)

550 CHAPTER 12 Streams and File I/O

 Now, suppose your program contains this new version of the function newLine . If
your program is taking input from an input stream called fin (which is connected to
an input file), the following will discard all the input left on the line currently being
read from the input file:

newLine(fin);

 If your program is also reading some input from the keyboard, the following will
discard the remainder of the input line that was typed in at the keyboard:

newLine(cin);

 If your program has only the previous rewritten version of newLine , which takes a
stream argument such as fin or cin , you must always give the stream name, even
if the stream name is cin . But thanks to overloading, you can have both versions of
the function newLine in the same program: the version with no arguments that is
given in Display 9.2 and the version with one argument of type istream that we just
defined. In a program with both definitions of newLine , the following two calls are
equivalent:

newLine(cin);

 and

newLine();

 You do not really need two versions of the function newLine . The version with one
argument of type istream can serve all your needs. However, many programmers
find it convenient to have a version with no arguments for keyboard input, since
keyboard input is used so frequently.

 An alternative to having two overloaded versions of the newLine function is to
use a default argument (as discussed in Chapter 4) . In the following code, we have
rewritten the newLine function a third time.

//Uses <iostream>:
void newLine(istream& inStream = cin)
{

char symbol;
do

 {
 inStream.get(symbol);
 } while (symbol != '\n');
}

EXAMPLE: (continued)

www.itpub.net

Stream Hierarchies: A Preview of Inheritance 551

 If we call this function as

newLine();

 the formal parameter takes the default argument cin . If we call this as

newLine(fin);

 the formal parameter takes the argument fin .
 An alternative to using this newLine function is to use the function ignore ,

which we discussed in Chapter 9 . The function ignore is a member of every input
file stream as well as a member of cin .

EXAMPLE: (continued)

 Making Stream Parameters Versatile

If you want to define a function that takes an input stream as an argument and you want
that argument to be cin in some cases and an input-file stream in other cases, then use a
formal parameter of type istream (without an 'f'). However, an input-file stream, even
if used as an argument of type istream, must still be declared to be of type ifstream
(with an 'f').

Similarly, if you want to define a function that takes an output stream as an argument and
you want that argument to be cout in some cases and an output-file stream in other cases,
then use a formal parameter of type ostream. However, an output-file stream, even if used
as an argument of type ostream, must still be declared to be of type ofstream (with an
'f'). You cannot open or close a stream parameter of type istream or ostream. Open
these objects before passing them to your function and close them after the function call.

The stream classes istream and ostream are defined in the iostream library and placed
in the std namespace. One way to make them available to your code is the following:

#include <iostream>
using std::istream;
using std::ostream;

(continued)

 Self-Test Exercises

 13. What is the type of the stream cin ? What is the type of the stream cout ?

 14. Define a function called copyChar that takes one argument that is an input
stream. When called, copyChar will read one character of input from the
input stream given as its argument and will write that character to the screen.
You should be able to call your function using either cin or an input-file
stream as the argument to your function copyChar . (If the argument is an

552 CHAPTER 12 Streams and File I/O

input-file stream, then the stream is connected to a file before the function
is called, so copyChar will not open or close any files.) For example, the
first of the following two calls to copyChar will copy a character from the
file stuff.txt to the screen, and the second will copy a character from
the keyboard to the screen:

ifstream fin;
fin.open("stuff.txt");
copyChar(fin);
copyChar(cin);

 15. Defi ne a function called copyLine that takes one argument that is an input
stream. When called, copyLine reads one line of input from the input stream
given as its argument and writes that line to the screen. You should be able
to call your function using either cin or an input-fi le stream as the argument
to your function copyLine . (If the argument is an input-fi le stream, then the
stream is connected to a fi le before the function is called, so copyLine will
not open or close any fi les.) For example, the fi rst of the following two calls
to copyLine will copy a line from the fi le stuff.txt to the screen, and the
second will copy a line from the keyboard to the screen:

ifstream fin;
fin.open("stuff.txt");
copyLine(fin);
copyLine(cin);

 16. Defi ne a function called sendLine that takes one argument that is an output
stream. When called, sendLine reads one line of input from the keyboard
and outputs the line to the output stream given as its argument. You should
be able to call your function using either cout or an output-fi le stream as the
argument to your function sendLine . (If the argument is an output-fi le stream,
then the stream is connected to a fi le before the function is called, so sendLine
will not open or close any fi les.) For example, the fi rst of the following calls to
sendLine will copy a line from the keyboard to the fi le morestuf.txt , and the
second will copy a line from the keyboard to the screen:

ofstream fout;
fout.open("morestuf.txt");
cout << "Enter 2 lines of input:\n";
sendLine(fout);
sendLine(cout);

 17. Is the following statement true or false? If it is false, correct it. In either event,
explain it carefully.

 A function written using a parameter of class ifstream or ofstream can be
called with istream or ostream arguments, respectively.

Self-Test Exercises (continued)

www.itpub.net

Stream Hierarchies: A Preview of Inheritance 553

 Parsing Strings with the stringstream Class

 We can look to the stringstream class for another example of inheritance. This class
is derived from the iostream class which in turn is derived from the istream class.
The stringstream class allows you to manipulate a string using the >> operator which
is inherited from istream . This means that you can manipulate the string using the
same format that you already learned to process files, keyboard input, and console
output. The stringstream class is useful when you need to create a string from
variables of other data types or when you need to read variables of other data types
from a string. To use the class we first must include it:

#include <sstream>
using std::stringstream;

 Next create an object of type stringstream :

stringstream ss;

 If you want to clear and initialize the stringstream to an empty string then use the
following two instructions. The clear function is necessary to clear out any error
status that may be stored with the stringstream . The str function is used to set the
stringstream to an initial string. In the following code we set the stringstream
object to a blank string although you can initialize it to another string if you like.

ss.clear();
ss.str("");

 To create a stringstream ss from other variables use the stream insertion operator
as if you were outputting variables to cout . Instead of displaying the variables to the
console they will be appended to the stringstream object. For example, given an int
variable num set to 10 and a char variable c set to ‘x’ the following code inserts “x 10”
into ss .

ss << c << " " << num;

 We can use the str() method to return the value of the stringstream as a string.

string s;
s = ss.str(); // Sets s to the string "x 10"

 To extract variables from a string, add the string to a stringstream object and then
use the stream extraction operator as if you were reading variables from cin . Instead of
reading the values from the keyboard they will be read from the string. For example,
given the stringstream variable ss set to “x 10” we can read the variables back out
with the following code:

// If ss = "x 10" then c is set to 'x' and num is set to 10
ss >> c >> num;

 In its simplest form you can use a stringstream to convert a single numeric value to
a string and vice versa.

554 CHAPTER 12 Streams and File I/O

 An example using the stringstream class is given in Display 12.9 . In this example
we start with a string containing a person’s name and the person’s scores. For example,
if Luigi has three scores that are 70, 100, and 90 then the string is “Luigi 70 100 90”.
The program uses the stringstream stream extraction operator to read the name and
each score as an integer. The scores are added together, the average calculated, and then
the name and average are put into a string using the stringstream stream insertion
operator. In our example, the resulting string is “Name: Luigi Average: 86”.

 Display 12.9 Demonstration of the stringstream Class (part 1 of 2)

1 //Demonstration of the stringstream class. This program takes
2 //a string with a name followed by scores. It uses a
3 //stringstream to extract the name as a string, the scores
4 //as integers, then calculates the average score. The name
5 //and average are placed into a new string.
6 #include <iostream>
7 #include <string>
8 #include <sstream>

9 using namespace std;

10 int main()
11 {
12 stringstream ss;
13 string scores = "Luigi 70 100 90";

14 // Clear the stringstream
15 ss.str("");
16 ss.clear();

17 //Put the scores into the stringstream
18 ss << scores;
19
20 // Extract the name and average the scores
21 string name = "";
22 int total = 0, count = 0, average = 0;
23 int score;
24 ss >> name; //Read the name
25 while (ss >> score) // Read until the end of the string
26 {
27 count++;
28 total += score;
29 }
30 if (count > 0)
31 {
32 average = total / count;
33 }

VideoNote

Walkthrough
of the
string-
stream demo

www.itpub.net

Stream Hierarchies: A Preview of Inheritance 555

34 // Clear the stringstream
35 ss.clear();
36 ss.str("");
37 // Put the name and average into the stringstream
38 ss << "Name: " << name << " Average: " << average;

39 // Output as a string
40 cout << ss.str() << endl;

41 return 0;
42 }

 Sample Dialogue

Name: Luigi Average: 86

Display 12.9 Demonstration of the stringstream Class (part 2 of 2)

 Self-Test Exercises

 18. Given the statement int num = 10; use the stringstream class to convert
num into a string variable named s .

 19. Given the statement string s = 10; use the stringstream class to convert s
into a int variable named num .

 20. The following code is supposed to compute the total from a list of numbers
stored in a string . This is accomplished by putting the string into a
stringstream and then using the getline function to extract values separated
by a comma. Another stringstream object is then used to convert the fi eld
from a string to a double . However, the code does not quite calculate the
correct total. What is wrong?

stringstream ssList, ssNum;
string numbers = "1.1, 1.2, 1.3";

double total = 0;
double num;

ssList.clear();
ssList.str(numbers);

string field;
while (getline(ssList, field, ','))
{

ssNum.str(field);
ssNum >> num;
total += num;

}
cout << total << endl;

556 CHAPTER 12 Streams and File I/O

 12.4 Random Access to Files

 Any time, any where.

 Common response to a challenge for a confrontation

 The streams for sequential access to files, which we discussed in the previous sections
of this chapter, are the ones most often used for file access in C++. However, some
applications that require very rapid access to records in very large databases require
some sort of random access to particular parts of a file. Such applications might best be
done with specialized database software. But perhaps you are given the job of writing
such a package in C++, or perhaps you are just curious about how such things are done
in C++. C++ does provide for random access to files so that your program can both
read from and write to random locations in a file. This section gives a brief glimpse of
this random access to files. This is not a complete tutorial on random access to files,
but will let you know the name of the main stream class used and the important issues
you will encounter.

 If you want to be able to both read and write to a file in C++, you use the stream
class fstream that is defined in the <fstream> library. The definition of fstream is
placed in the std namespace.

 Details about opening a file and connecting it to a stream in the class fstream are
basically the same as discussed for the classes ifstream and ofstream , except that
fstream has a second argument to open . This second argument specifies whether the
stream is used for input, output, or both input and output. For example, a program
that does both input and output to a file named "stuff" might start as follows:

#include <fstream>
using namespace std;

int main()
{

fstream rwStream;
rwStream.open("stuff", ios::in | ios::out);

 If you prefer, you may use the following in place of the last two of the previous lines:

fstream rwStream("stuff", ios::in | ios::out);

 After this, your program can read from the file "stuff" using the stream fstream
and can also write to the file "stuff" using the same stream. There is no need to
close and reopen the file when you change from reading to writing or from writing to
reading. Moreover, you have random access for reading and writing to any location in
the file. However, there are other complications.

 At least two complications arise when reading and writing with random access via
an fstream : (1) You normally work in bytes using the type char or arrays of char and
need to handle type conversions on your own, and (2) you typically need to position a
pointer (indicating where the read or write begins) before each read or write.

www.itpub.net

Random Access to Files 557

 The constraints of finding a position and replacing one portion of a file with new
data mean that most such random-access I/O is done by reading or writing records (in
the form of structs or classes). One record (or an integral number of records) is read
or written after each positioning of the pointer.

 Each fstream object has a member function named seekp that is used to position
the put-pointer at the location where you wish to write ("put") data. The function
seekp takes a single argument, which is the address of the first byte to be written next.
The first byte in the file is numbered zero. For example, to position the pointer in the
file connected to the fstream rwStream at the 1000th byte, the invocation would be
as follows:

rwStream.seekp(1000);

 Of course, you need to know how many bytes a record requires. The sizeof
operator can be used to determine the number of bytes needed for an object of a
class or struct . Actually, sizeof can be applied to any type, object, or value. It
returns the size of its argument in bytes. The operator sizeof is part of the core
C++ language and requires no include directive or using directive. Some sample
invocations are as follows:

sizeof(s) (where s is string s = "Hello";)
sizeof(10)
sizeof(double)
sizeof(MyStruct) (where MyStruct is a defined type)

 Each of these returns an integer giving the size of its argument in bytes.
 To position the put-pointer at the 100th record of type MyStruct in a file containing

nothing but records of type MyStruct , the invocation of seekp would be

rwStream.seekp(100*sizeof(MyStruct) - 1);

 The member function seekg is used to position the get-pointer to indicate where
reading (“getting”) of the next byte will take place. It is completely analogous to seekp .

 With the setup we have shown, you can write to the file "stuff" and read from the
file "stuff" using the fstream rwStream with the member functions put and get .
There is also a member function write that can write multiple bytes and a member
function read that can read multiple bytes.

 Theoretically, you now know enough to do random-access file I/O. In reality,
this is just a taste of what is involved. This section was designed to let you
know what it is all about in a general sort of way. If you intend to do any real
programming of random-access file I/O, you should consult a more advanced and
more specialized book .

sizeof

558 CHAPTER 12 Streams and File I/O

 Chapter Summary

• A stream of type ifstream can be connected to a file with a call to the member
function open . Your program can then take input from that file.

• A stream of type ofstream can be connected to a file with a call to the member
function open . Your program can then send output to that file.

• You should use the member function fail to check whether a call to open was
successful.

• Stream member functions, such as width , setf , and precision , can be used to
format output. These output functions work the same for the stream cout , which is
connected to the screen, and for output streams connected to files.

• A function may have formal parameters of a stream type, but they must be call-by-
reference parameters. They cannot be call-by-value parameters. The type ifstream
can be used for an input-file stream, and the type ofstream can be used for an
output-file stream. (See the next summary point for other type possibilities.)

• If you use istream (spelled without the "f") as the type for an input stream param-
eter, then the argument corresponding to that formal parameter can be either the
stream cin or an input-file stream of type ifstream (spelled with the "f"). If you
use ostream (spelled without the "f") as the type for an output stream parameter,
then the argument corresponding to that formal parameter can be either the stream
cout , the stream cerr , or an output-file stream of type ofstream (spelled with
the "f").

• The member function eof can be used to test when a program has reached the end
of an input file.

• The same input and output functions you use to manipulate files can be used to
 manipulate strings through the stringstream class. The stringstream class pro-
vides a simple way to create a string from variables of other data types or to read
variables of other data types from a string.

 Answers to Self-Test Exercises

 1. The streams fin and fout are declared as follows:

ifstream fin;
ofstream fout;

 The include directive that goes at the top of your file is

#include <fstream>

 Since the definitions are placed in the std namespace you should also have one of
the following (or something similar).

www.itpub.net

Answers to Self-Test Exercises 559

using std::ifstream;
using std::ofstream;

 or

using namespace std;

 2. fin.open("stuff1.txt");
if (fin.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

fout.open("stuff2.txt");
if (fout.fail())
{
 cout << "Output file opening failed.\n";
 exit(1);
}

 3. fin.close();
fout.close();

 4. You need to replace the stream outStream with the stream cout . Note that you
do not need to declare cout , you do not need to call open with cout , and you do
not need to close cout .

 5. This is “starting over.” The file must be closed and opened again. This action puts
the read position at the start of the file, ready to be read again.

 6. 1
2
3
3

 7. void toScreen(ifstream& fileStream)

{
int next;
while (fileStream >> next)

 cout << next << endl;
}

 8. * 123*123*
* 123*123*

 Each of the spaces contains exactly two blank characters. Notice that a call to
width or to setw only lasts for one output item.

 9. * 123*123 * 123*

 Each of the spaces consists of exactly two blank characters.

560 CHAPTER 12 Streams and File I/O

 10. * 123*123*
* +123*+123*
*123 *123 *

 There is just one space between the '*' and the '+' on the second line. Each of
the other spaces contains exactly two blank characters.

 11. The output to the file stuff.txt will be exactly the same as the output given in
the answer to Self-Test Exercise 10 .

 12. *12345*

 Notice that the entire integer is output even though this requires more space than
was specified by setw .

 13. cin is of type istream ; cout is of type ostream.

 14. void copyChar(istream& sourceFile)

{
char next;

 sourceFile.get(next);
 cout << next;
}

 15. void copyLine(istream& sourceFile)
{

char next;
do

 {
 sourceFile.get(next);
 cout << next;
 } while (next != '\n');
}

 16. void sendLine(ostream& targetStream)
{

char next;
do

 {
 cin.get(next);
 targetStream << next;
 } while (next != '\n');
}

 17. False. The situation stated here is the reverse of the correct situation. Any stream
that is of type ifstream is also of type istream , so a formal parameter of type
istream can be replaced by an argument of type ifstream in a function call, and
similarly for the streams ostream and ofstream .

 18. int num = 10;
stringstream ss("");
ss << num;
string s = ss.str();

www.itpub.net

Programming Projects 561

 19. int num;
string s = "10";
stringstream ss(s);
ss >> num;

 20. The stringstring variable ssNum that is used to convert field to a double needs
to be cleared for each new string that is processed. This can be accomplished by
invoking the clear function inside the while loop.

stringstream ssList, ssNum;
string numbers = "1.1, 1.2, 1.3";

double total = 0;
double num;

ssList.clear();
ssList.str(numbers);

string field;
while (getline(ssList, field, ','))
{

ssNum.clear();
 ssNum.str(field);
 ssNum >> num;
 total += num;
}
cout << total << endl;

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a program that will search a file of numbers of type int and write the largest
and the smallest numbers to the screen. The file contains nothing but numbers of
type int separated by blanks or line breaks.

 2. Write a program that takes its input from a file of numbers of type double and
outputs the average of the numbers in the file to the screen. The file contains noth-
ing but numbers of type double separated by blanks and/or line breaks.

 3. a. Compute the median of a data file. The median is the number that has the
same number of data elements greater than the number as there are less than
the number. For purposes of this problem, you are to assume that the data is
sorted (that is, is in increasing order). The median is the middle element of the
file if there are an odd number of elements, or is the average of the two middle
elements if the file has an even number of elements. You will need to open the
file, count the members, close the file and calculate the location of the middle
of the file, open the file again (recall the “start over” discussion at the beginning
of this chapter), count up to the file entries you need, and calculate the middle.

www.myprogramminglab.com

562 CHAPTER 12 Streams and File I/O

 b. For a sorted file, a quartile is one of three numbers: The first has one-fourth the
data values less than or equal to it, one-fourth the data values between the first and
second numbers (up to and including the second number), one-fourth the data
points between the second and the third (up to and including the third number),
and one-fourth above the third quartile. Find the three quartiles for the data file you
used for part a. Note that “one-fourth” means as close to one-fourth as possible.

Hint : You should recognize that having done part a you have one-third of your
job done. (You have the second quartile already.) You also should recognize that
you have done almost all the work toward finding the other two quartiles as well.

 4. Write a program that takes its input from a file of numbers of type double . The
program outputs to the screen the average and standard deviation of the numbers
in the file. The file contains nothing but numbers of type double separated by
blanks and/or line breaks. The standard deviation of a list of numbers n

1
, n

2
, n

3
,

and so forth, is defined as the square root of the average of the following numbers:

 (n
1

- a)2 , (n
2

- a)2 , (n
3

- a)2 , and so forth

 The number a is the average of the numbers n
1
 , n

2
 , n

3
 , and so forth.

Hint : Write your program so that it first reads the entire file and computes the
 average of all the numbers, then closes the file, then reopens the file and com-
putes the standard deviation. You will find it helpful to first do Programming
Project 12.2 and then modify that program to obtain the program for this project.

 5. Write a program that gives and takes advice on program writing. The program
starts by writing a piece of advice to the screen and asking the user to type in a
 different piece of advice. The program then ends. The next person to run the pro-
gram receives the advice given by the person who last ran the program. The advice
is kept in a file, and the contents of the file change after each run of the program.
You can use your editor to enter the initial piece of advice in the file so that the
first person who runs the program receives some advice. Allow the user to type in
advice of any length (any number of lines long). The user is told to end his or her
advice by pressing the Return key two times. Your program can then test to see that
it has reached the end of the input by checking to see when it reads two consecutive
occurrences of the character '\n' .

 6. Write a program that merges the numbers in two files and writes all the numbers
into a third file. Your program takes input from two different files and writes its
output to a third file. Each input file contains a list of numbers of type int in
sorted order from the smallest to the largest. After the program is run, the output
file will contain all the numbers in the two input files in one longer list in sorted
order from smallest to largest. Your program should define a function that is called
with the two input-file streams and the output-file stream as three arguments.

 7. Write a program to generate personalized junk mail. The program takes input
both from an input file and from the keyboard. The input file contains the text of
a letter, except that the name of the recipient is indicated by the three characters
#N# . The program asks the user for a name and then writes the letter to a second
file but with the three letters #N# replaced by the name. The three-letter string #N#
will occur exactly once in the letter.

www.itpub.net

Programming Projects 563

Hint : Have your program read from the input file until it encounters the three
characters #N# , and have it copy what it reads to the output file as it goes. When it
encounters the three letters #N# , it then sends output to the screen asking for the
name from the keyboard. You should be able to figure out the rest of the details.
Your program should define a function that is called with the input- and output-
file streams as arguments. If this is being done as a class assignment, obtain the file
names from your instructor.

Harder version: Allow the string #N# to occur any number of times in the file. In
this case the name is stored in two string variables. For this version assume that
there is a first name and last name but no middle names or initials.

 8. Write a program to compute numeric grades for a course. The course records are
in a file that will serve as the input file. The input file is in the following format:
Each line contains a student’s last name, then one space, then the student’s first
name, then one space, then ten quiz scores all on one line. The quiz scores are
whole numbers and are separated by one space. Your program will take its input
from this file and send its output to a second file. The data in the output file will
be the same as the data in the input file except that there will be one additional
number (of type double) at the end of each line. This number will be the average
of the student’s ten quiz scores. Use at least one function that has file streams as all
or some of its arguments.

 9. Enhance the program you wrote for Programming Project 12.8 in all the
f ollowing ways.

■ The list of quiz scores on each line will contain ten or fewer quiz scores. (If there
are fewer than ten quiz scores that means that the student missed one or more
quizzes.) The average score is still the sum of the quiz scores divided by 10 . This
amounts to giving the student a 0 for any missed quiz.

■ The output file will contain a line (or lines) at the beginning of the file explaining
the output. Use formatting instructions to make the layout neat and easy to read.

■ After placing the desired output in an output file, your program will close all files
and then copy the contents of the “output” file to the “input” file so that the net
effect is to change the contents of the input file.

 Use at least two functions that have file streams as all or some of their arguments.

 10. Write a program that will compute the average word length (average number of
characters per word) for a file that contains some text. A word is defined to be
any string of symbols that is preceded and followed by one of the following at
each end: a blank, a comma, a period, the beginning of a line, or the end of a line.
Your program should define a function that is called with the input-file stream
as an argument. This function should also work with the stream cin as the input
stream, although the function will not be called with cin as an argument in this
program. If this is being done as a class assignment, obtain the file names from
your instructor.

564 CHAPTER 12 Streams and File I/O

 11. Write a program that will correct a C++ program that has errors in which o perator,
<< or >> , it uses with cin and cout . The program replaces each (i ncorrect) occur-
rence of

cin <<

 with the corrected version

cin >>

 and each (incorrect) occurrence of

cout >>

 with the corrected version

cout <<

 For an easier version, assume that there is always exactly one blank symbol between
any occurrence of cin and a following << , and similarly assume that there is always
exactly one blank space between each occurrence of cout and a following >> . For
a harder version, allow for the possibility that there may be any number of blanks,
even zero blanks, between cin and << and between cout and >> ; in this harder
case, the replacement corrected version has only one blank between the cin or
cout and the following operator. The program to be corrected is in one file and the
corrected version is output to a second file. Your program should define a function
that is called with the input- and output-file streams as arguments. (Hint: Even if
you are doing the harder version, you will probably find it easier and quicker to
first do the easier version and then modify your program so that it performs the
harder task.)

 12. Write a program that allows the user to type in any one-line question and then
answers that question. The program will not really pay any attention to the ques-
tion, but will simply read the question line and discard all that it reads. It always
gives one of the following answers:

Im not sure but I think you will find the answer in Chapter #N.

That's a good question.

If I were you, I would not worry about such things.

That question has puzzled philosophers for centuries.

I don't know. I'm just a machine.

Think about it and the answer will come to you.

I used to know the answer to that question, but I've forgotten it.

The answer can be found in a secret place in the woods.

 These answers are stored in a file (one answer per line), and your program simply
reads the next answer from the file and writes it out as the answer to the question.
After your program has read the entire file, it simply closes the file, reopens the file,
and starts down the list of answers again.

www.itpub.net

Programming Projects 565

 Whenever your program outputs the first answer, it should replace the two symbols
#N with a number between 1 and 20 (including the possibility of 1 and 20). In order
to choose a number between 1 and 20, your program should initialize a variable to
20 and decrease the variable’s value by 1 each time it outputs a number so that the
chapter numbers count backward from 20 to 1. When the variable reaches the value
0 , your program should change its value back to 20 . Give the number 20 the name
NUMBER_OF_CHAPTERS with a global named constant declaration using the const
modifier. (Hint: Use the function newLine defined in this chapter.)

 13. This project is the same as Programming Project 13.12 except that in this project
your program will use a more sophisticated method for choosing the answer to a
question. When your program reads a question, it counts the number of characters
in the question and stores the number in a variable named count . It then responds
with answer number count%ANSWERS . The first answer in the file is answer num-
ber 0, the next is answer number 1, then 2, and so forth. ANSWERS is defined in a
constant declaration, as shown next, so that it is equal to the number of answers in
the answer file:

const int ANSWERS = 8;

 This way you can change the answer file so that it contains more or fewer answers
and you need to change only the constant declaration to make your program work
correctly for a different number of possible answers. Assume that the answer listed
first in the file will always be the following, even if the answer file is changed:

I'm not sure but I think you will find the answer in Chapter #N.

 When replacing the two characters #N with a number, use the number
(count%NUMBER_OF_CHAPTERS + 1) , where count is the variable discussed
 previously, and NUMBER_OF_CHAPTERS is a global named constant defined to be
equal to the number of chapters in this book.

 14. This program numbers the lines found in a text file.

 Write a program that reads text from a file and outputs each line preceded by a
line number. Print the line number right-adjusted in a field of three spaces. Follow
the line number with a colon, then one space, then the text of the line. You should
get a character at a time, and write code to ignore leading blanks on each line.
You may assume that the lines are short enough to fit within a line on the screen.
Otherwise, allow default printer or screen output behavior if the line is too long
(that is, wrap or truncate).

 A somewhat harder version determines the number of spaces needed in the field
for the line numbers by counting lines before processing the lines of the file. This
version of the program should insert a new line after the last complete word that
will fit within a 72-character line.

 15. In this program you are to process text to create a KWIX table (Key Word In
 conteXt table). The idea is to produce a list of keywords (not programming language
keywords, rather words that have important technical meaning in a discussion),

566 CHAPTER 12 Streams and File I/O

then for each instance of each keyword, place the keyword, the line number of the
context, and the keyword in its context in the table. There may be more than one
context for a given keyword. The sequence of entries within a keyword is to be the
order of occurrence in the text. For this problem, “context” is a user-selected num-
ber of words before the keyword, the keyword itself, and a user-selected number of
words after the keyword.

 The table has an alphabetized column of keywords followed by a line number(s)
where the keyword occurs, followed by a column of all contexts within which
the keyword occurs. See the following example. For a choice of text consult your
instructor.

Hints: To get your list of keywords, you should choose and type in several para-
graphs from the text, then omit from your paragraph “boring” words such as forms
of the verb “to be”; pronouns such as I, me, he, she, her, you, us, them, who,
which, etc. Finally, sort the keyword list and remove duplicates. The better job you
do at this, the more useful output you will get.

Example: A paragraph and its KWIX Listing:

 There are at least two complications when reading and writing with random access
via an fstream : (1) You normally work in bytes using the type char or arrays of
char and need to handle type conversions on your own, and (2) you typically need
to position a pointer (indicating where the read or write begins) before each read
or write.

 KWIX Listing:

 Keyword Line Number Keyword in Context
 access 2 with random access via
 arrays 3 char or arrays of
 bytes 2 work in bytes using
 char 3 the type char or
 char 3 array of char and
 conversions 3 handle type conversions on

 The table is longer than these sample entries.

 16. The text file words.txt , which is included in the source code for this book , con-
tains an alphabetically sorted list of English words. Note that the words are in
mixed upper- and lowercase.

 Write a program that reads this file and finds the longest word that contains only
a single vowel (a, e, i, o, u). Output this word (there will actually be several ties for
the longest word. Your program only needs to output one of these words).

 17. The text file words.txt , which is included in the source code for this book , con-
tains an alphabetically sorted list of English words. Note that the words are in
mixed upper and lowercase.

 Write a program that reads this file and finds the longest word that reverses to a
different word. For example, “stun” reverses to make the word “nuts” but is only
four letters long. Find the longest such word. In writing your program you can use
the information that the words.txt file contains exactly 45,407 words.

Solution to
Programming
Project 12.17

VideoNote

www.itpub.net

Programming Projects 567

 Depending on the speed of your computer and your implementation, execution of
this program may take from minutes to hours.

 18. The text files boynames.txt and girlnames.txt , which are included in the
source code on this book’s website , contain a list of the 1,000 most popular boy
and girl names in the United States for the year 2003 as compiled by the Social
Security Administration.

 These are blank-delimited files where the most popular name is listed first, the
second most popular name is listed second, and so on to the 1,000th most popular
name, which is listed last. Each line consists of the first name, followed by a blank
space, followed by the number of registered births in the year using that name. For
example, the girlnames.txt file begins with

 Emily 25494
 Emma 22532
 Madison 19986

 This indicates that Emily is the most popular name with 25,494 registered nam-
ings, Emma is the second most popular with 22,532, and Madison is the third
most popular with 19,986.

 Write a program that reads both the girl’s and boy’s files into memory using arrays.
Then, allow the user to input a name. The program should search through both
arrays and, when there is a match, output the popularity and number of namings.
The program should also indicate if there is no match.

 For example, if the user enters the name “Justice,” the program should output

 Justice is ranked 456 in popularity among girls with 655 namings.

 Justice is ranked 401 in popularity among boys with 653 namings.

 If the user enters the name “Walter,” the program should output

 Walter is not ranked among the top 1000 girl names.

 Walter is ranked 356 in popularity among boys with 775 namings.

 19. HTML files use tags enclosed in angle brackets to denote formatting instructions.
For example, indicates bold and <I> indicates italics. If a web browser is dis-
playing an HTML document that contains < or >, it may mistake these symbols
for tags. This is a common problem with C++ files, which contain many <’s and
>’s. For example, the line "#include <iostream>" may result in the browser
interpreting <iostream> as a tag.

 To avoid this problem, HTML uses special symbols to denote < and >. The <
symbol is created with the string < while the > symbol is created with the
string > .

 Write a program that reads in a C++ source file and converts all < symbols to
& It; and all > symbols to >. Also add the tag <PRE> to the beginning of the
file and </PRE> to the end of the file. This tag preserves whitespace and formatting
in the HTML document. Your program should output the HTML file to disk.

568 CHAPTER 12 Streams and File I/O

 As an example, given the following input file,

#include <iostream>

int main()

{

int x=4;

if (x < 3) x++;

 cout << x << endl;

}

 the program should produce a text file with the following contents:

<PRE>

#include <iostream>

int main()

{

int x=4;

if (x < 3) x++;

 cout << x << endl;

}

</PRE>

 You can test your output file by opening it with a web browser. The contents
should appear identical to the original source code.

 20. Write a class that tracks the five highest scores for a game. The scores should be
stored in a file and include the player’s name as a string and the player’s score as an
integer. The list of top scores should initially consist of the name Anonymous and
scores of 0. The class should support the following functions:

■ A way to output to the screen the name and score of the top five players. The
scores should be listed in order, with the highest score first and the lowest
score last.

■ A function that takes a new name and score. If the score is higher than any of the
top five scores then it should be added to the file and the lowest score discarded.
Otherwise, the top list should remain unchanged.

 Include an appropriate constructor or destructor if necessary, along with any helper
functions. Write a main function that tests your class by simulating several score
entries and outputting the high score list.

 21. The text file words.txt , which is included in the source code for this book ,
 contains an alphabetically sorted list of English words. Note that the words are in
mixed upper and lowercase.

 Write a program to read each word in, one line at a time, and help you find the word
that has the most consecutive vowels. Only use the letters a, e, i, o, and u as vowels.

 For example, the word “aqueous” has four consecutive vowels. However, there is a
word in the list with five consecutive vowels. What is it?

www.itpub.net

Programming Projects 569

 22. Re-do or do for the first time Programming Project 9.10 from Chapter 9 . How-
ever, instead of hard-coding the trivia data, your program should read the questions
in from a text file named trivia.txt . The format of the text file should be

 <number of questions, N>

 <question 1>

 <answer 1>

 <dollar amount for 1>

 <question 2>

 <Answer 2>

 <dollar amount for 2>

 . . .

 <question N>

 <answer N>

 <dollar amount for N>

 For example, here is a very short file with two questions:

 2

 Creator of the C++ programming language?

 Bjarne Stroustrup

 10.00

 The geometric figure most like a lost parrot?

 Polygon

 20.00

 23. This Programming Project requires that you complete Programming Project 9.11 ,
which asked you to write a function to determine if two strings are anagrams. The
text file words.txt , which is included in the source code on this book’s website,
contains an alphabetically sorted list of English words. Write a program that reads
each word into an array or vector. Next, input a word from the console and output
every word in the array or vector that is an anagram of the input word.

 24. A comma-separated values or CSV file is a simple text format used to store a list
of records. A comma is used as a delimiter to separate the fields for each record.
This format is commonly used to transfer data between a spreadsheet or database.
In this Programming Project, consider a store that sells products abbreviated as A,
B, C, D, E, etc. Customers can rate each product from 1–5 where 1 is poor and 5
is excellent. The ratings are stored in a CSV file where each row contains the cus-
tomer’s rating for each product. Here is a sample file with three customer ratings
and five products:

 A,B,C,D,E

 3,0,5,1,2

 1,1,4,2,1

 0,0,5,1,3

 The first line in this file format lists the products. The digit 0 indicates that a cus-
tomer did not rate a product. In this case the first customer rated A as 3, C as 5,

570 CHAPTER 12 Streams and File I/O

D as 1, and E as 2. Product B was not rated. The third customer rated C as 5, D
as 1, and E as 3. The third customer did not rate A or B.

 Create a text file in this format with sample ratings. Then write a program that
reads in the text file and uses the first line to determine the number of products.
The program should output the average rating for each product. Customers that
did not rate a product should not be considered when computing the average rat-
ing for that product. The easiest solution to process the data may be to use the
getline function with a comma as a delimiter and to create vectors or dynamic
arrays to store the count and sum of the ratings. Your program should work with
an arbitrary number of products and customer ratings.

 25. One problem using cin to read directly into a variable such as an int is that if the
user enters non-integer data then the program will continue with erroneous data
and usually crash. A solution to this problem is to input data as a string , perform
input validation, and then convert the string to an integer. Write a function that
prompts the user to enter an integer. The program should use getline to read the
user’s input into a string. Then use the stringstream class to extract an integer
from the string. If an integer cannot be extracted then the user should be prompted
to try again. The function should return the extracted integer.

Solution to
Programming
Project 12.25

VideoNote

www.itpub.net

 13.3 THINKING RECURSIVELY 593
 Recursive Design Techniques 593
 Binary Search 594
 Coding 596
 Checking the Recursion 600
 Efficiency 600

 13.1 RECURSIVE VOID FUNCTIONS 573
 Example: Vertical Numbers 573
 Tracing a Recursive Call 576
 A Closer Look at Recursion 579
 Pitfall: Infinite Recursion 580
 Stacks for Recursion 582
 Pitfall: Stack Overflow 583
 Recursion versus Iteration 584

 13.2 RECURSIVE FUNCTIONS THAT RETURN
A VALUE 585

 General Form for a Recursive Function That Returns
a Value 585

 Example: Another Powers Function 586
 Mutual Recursion 591

 13 Recursion

 Chapter Summary 602 Answers to Self-Test Exercises 603 Programming Projects 607

 After a lecture on cosmology and the structure of the solar system,

William James was accosted by a little old lady.

 “Your theory that the sun is the center of the solar system, and the

earth is a ball which rotates around it has a very convincing ring to it,

Mr. James, but it’s wrong. I’ve got a better theory,” said the little old lady.

 “And what is that, madam?” inquired James politely.

 “That we live on a crust of earth which is on the back of a giant turtle.”

 Not wishing to demolish this absurd little theory by bringing to bear the

masses of scientific evidence he had at his command, James decided

to gently dissuade his opponent by making her see some of the

inadequacies of her position.

 “If your theory is correct, madam,” he asked, “what does this turtle

stand on?”

 “You’re a very clever man, Mr. James, and that’s a very good question”

replied the little old lady, “but I have an answer to it. And it is this: the

first turtle stands on the back of a second, far larger, turtle, who stands

directly under him.”

 “But what does this second turtle stand on?” persisted James patiently.

To this the little old lady crowed triumphantly. “It’s no use, Mr. James—

it’s turtles all the way down.”

 J. R. ROSS, Constraints on Variables in Syntax

 Introduction
 A function definition that includes a call to itself is said to be recursive . Like most
modern programming languages, C++ allows functions to be recursive. If used with a
little care, recursion can be a useful programming technique. This chapter introduces
the basic techniques needed for defining successful recursive functions. There is
nothing in this chapter that is truly unique to C++. If you are already familiar with
recursion, you can safely skip this chapter.

 This chapter uses material from Chapters 1 to 5 only. Sections 13.1 and 13.2 do not
use any material from Chapter 5 , so you can cover recursion any time after Chapter 4 .
If you have not read Chapter 11 , you may find it helpful to review the section of
 Chapter 1 on namespaces.

13 Recursion

www.itpub.net

 Recursive void Functions 573

 13.1 Recursive void Functions

 I remembered too that night which is at the middle of the Thousand
and One Nights when Scheherazade (through a magical oversight
of the copyist) begins to relate word for word the story of the Thousand
and One Nights, establishing the risk of coming once again to the night
when she must repeat it, and thus to infinity.

 JORGE LUIS BORGES, The Garden of Forking Paths

 When you are writing a function to solve a task, one basic design technique is to
break the task into subtasks. Sometimes it turns out that at least one of the subtasks
is a smaller example of the same task. For example, if the task is to search a list for a
particular value, you might divide this into the subtask of searching the first half of the
list and the subtask of searching the second half of the list. The subtasks of searching
the halves of the list are “smaller” versions of the original task. Whenever one subtask is
a smaller version of the original task to be accomplished, you can solve the original task
using a recursive function. We begin with a simple example to illustrate this technique.

 Recursion
In C++ a function definition may contain a call to the function being defined. In such cases
the function is said to be recursive.

 EXAMPLE: Vertical Numbers

 Display 13.1 contains a demonstration program for a recursive function named
writeVertical that takes one (nonnegative) int argument and writes that int
to the screen, with the digits going down the screen one per line. For example, the
invocation

 writeVertical(1234);

 would produce the output

 1
 2
 3
 4

 The task to be performed by writeVertical may be broken down into the following
two cases:
■ Simple case: If n < 10, then write the number n to the screen.

 After all, if the number is only one digit long, the task is trivial.

(continued)

574 CHAPTER 13 Recursion

 Display 13.1 A Recursive void Function

1 //Program to demonstrate the recursive function writeVertical.
2 #include <iostream>
3 using std::cout;
4 using std::endl;

5 void writeVertical(int n);
6 //Precondition: n >= 0.
7 //Postcondition: The number n is written to the screen vertically,
8 //with each digit on a separate line.

9 int main()
10 {
11 cout << "writeVertical(3):" << endl;
12 writeVertical(3);

13 cout << "writeVertical(12):" << endl;
14 writeVertical(12);

15 cout << "writeVertical(123):" << endl;
16 writeVertical(123);

17 return 0;
18 }

19 //uses iostream:
20 void writeVertical(int n)
21 {
22 if (n < 10)
23 {
24 cout << n << endl;
25 }
26 else //n is two or more digits long:
27 {
28 writeVertical(n / 10);
29 cout << (n % 10) << endl;
30 }
31 }

 Sample Dialogue
writeVertical(3):
3
writeVertical(12):
1
2
writeVertical(123):
1
2
3

www.itpub.net

 Recursive void Functions 575

■ Recursive case: If n >= 10, then do two subtasks:

 1. Output all the digits except the last digit.
 2. Output the last digit.

 For example, if the argument were 1234 , the first subtask would output

 1
 2
 3

 and the second subtask would output 4 . This decomposition into subtasks can be
used to derive the function definition.

 Subtask 1 is a smaller version of the original task, so we can implement this subtask
with a recursive call. Subtask 2 is just the simple case we listed previously. Thus, an
outline of our algorithm for the function writeVertical with parameter n is given
by the following pseudocode:

 if (n < 10)
 {
 cout << n << endl;
 }
 else //n is two or more digits long:
 {
 writeVertical(the number n with the last digit removed);
 cout << the last digit of n << endl;
 }

 If you observe the following identities, it is easy to convert this pseudocode to a
complete C++ function definition:

 n / 10 is the number n with the last digit removed.
 n % 10 is the last digit of n .

 For example, 1234 / 10 evaluates to 123 , and 1234 % 10 evaluates to 4 .
 The complete code for the function is as follows:

 void writeVertical(int n)
 {
 if (n < 10)
 {
 cout << n << endl;
 }
 else //n is two or more digits long :
 {
 writeVertical(n / 10);
 cout << (n % 10) << endl;
 }
 }

Recursive subtask

EXAMPLE: (continued)

576 CHAPTER 13 Recursion

 Tracing a Recursive Call

 Let’s see exactly what happens when the following function call is made (as in
 Display 13.1):

 writeVertical(123);

 When this function call is executed, the computer proceeds just as it would with any
function call. The argument 123 is substituted for the parameter n , and the body of
the function is executed. After the substitution of 123 for n , the code to be executed is
equivalent to the following:

 Computation will
stop here until the recursive
call returns.

 if (123 < 10)
 {
 cout << 123 << endl;
 }
 else //n is two or more digits long:
 {
 writeVertical(123 / 10);
 cout << (123 % 10) << endl;
 }

 Since 123 is not less than 10 , the else part is executed. However, the else part begins
with the function call

 writeVertical(n / 10);

 which (since n is equal to 123) is the call

 writeVertical(123 / 10);

 which is equivalent to

 writeVertical(12);

 When execution reaches this recursive call, the current function computation is placed
in suspended animation and the recursive call is executed. When this recursive call is
finished, the execution of the suspended computation will return to this point and the
suspended computation will continue from there.

 The recursive call

 writeVertical(12);

 is handled just like any other function call. The argument 12 is substituted for the
parameter n , and the body of the function is executed. After substituting 12 for n , there
are two computations, one suspended and one active, as follows:

www.itpub.net

 Recursive void Functions 577

 Since 12 is not less than 10 , the else part is executed. However, as you already
saw, the else part begins with a recursive call. The argument for the recursive call is
n / 10 , which in this case is equivalent to 12 / 10 . So this second computation of
the function writeVertical is suspended and the following recursive call is executed:

 writeVertical(12 / 10);

 which is equivalent to

 writeVertical(1);

 At this point there are two suspended computations waiting to resume, and the
computer begins to execute this new recursive call, which is handled just like all the
previous recursive calls. The argument 1 is substituted for the parameter n , and the body
of the function is executed. At this point, the computation looks like the following:

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 cout << 123%10 << endl;
}

if (12 < 10)
{
 cout << 12 << endl;
}
else //n is two or more digits long:
{
 writeVertical(12 / 10);
 cout << (12 % 10) << endl;
}

Computation will
stop here until
the recursive call
returns.

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 cout << 123%10 << endl;
}

if (12 < 10)
{
 cout << 12 << endl;
}
else //n is two or more digits long:
{
 writeVertical(12/10);
 cout << 12%10 << endl;
}

if (1 < 10)
{
 cout << 1 << endl;
}
else //n is two or more digits long:
{
 writeVertical(1 / 10);
 cout << (1 % 10) << endl;
}

No recursive
call this time

578 CHAPTER 13 Recursion

 When the body of the function is executed this time, something different happens.
Since 1 is less than 10 , the Boolean expression in the if-else statement is true, so the
statement before the else is executed. That statement is simply a cout statement that
writes the argument 1 to the screen, and so the call writeVertical(1) writes 1 to the
screen and ends without any recursive call.

 When the call writeVertical(1) ends, the suspended computation that is waiting
for it to end resumes where that suspended computation left off, as shown by the
following:

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 cout << 123%10 << endl;
}

if (12 < 10)
{
 cout << 12 << endl;
}
else //n is two or more digits long:
{
 writeVertical(12 / 10);
 cout << (12 % 10) << endl;
}

Computation resumes here.

 When this suspended computation resumes, it executes a cout statement that outputs
the value 12 % 10 , which is 2 . That ends that computation, but there is yet another
suspended computation waiting to resume.

 When this last suspended computation resumes, the situation is as follows:

 if (123 < 10)
 {
 cout << 123 << endl;
 }
 else //n is two or more digits long:
 {
 writeVertical(123 / 10);
 cout << (123 % 10) << endl;
 }

 Computation resumes here.

 This last suspended computation outputs the value 123%10 , which is 3 . The execution
of the original function call then ends. And, sure enough, the digits 1 , 2 , and 3 have
been written to the screen one per line, in that order.

www.itpub.net

 Recursive void Functions 579

 A Closer Look at Recursion

 The definition of the function writeVertical uses recursion. Yet we did nothing
new or different in evaluating the function call writeVertical(123) . We treated it
just like any of the function calls we saw in previous chapters . We simply substituted
the argument 123 for the parameter n and then executed the code in the body of the
function definition. When we reached the recursive call

 writeVertical(123 / 10);

 we simply repeated this process one more time.
 The computer keeps track of recursive calls in the following way. When a function is

called, the computer plugs in the arguments for the parameter(s) and begins to execute
the code. If it should encounter a recursive call, it temporarily stops its computation
because it must know the result of the recursive call before it can proceed. It saves
all the information it needs to continue the computation later on, and proceeds to
evaluate the recursive call. When the recursive call is completed, the computer returns
to finish the outer computation.

 The C++ language places no restrictions on how recursive calls are used in function
definitions. However, in order for a recursive function definition to be useful, it must
be designed so that any call of the function must ultimately terminate with some piece
of code that does not depend on recursion. The function may call itself, and that
recursive call may call the function again. The process may be repeated any number of
times. However, the process will not terminate unless eventually one of the recursive
calls does not depend on recursion in order to return a value. The general outline of a
successful recursive function definition is as follows:
■ One or more cases in which the function accomplishes its task by using one or

more recursive calls to accomplish one or more smaller versions of the task.

■ One or more cases in which the function accomplishes its task without the use of
any recursive calls. These cases without any recursive calls are called base cases or
stopping cases .

 Often an if-else statement determines which of the cases will be executed. A
typical scenario is for the original function call to execute a case that includes a recursive
call. That recursive call may in turn execute a case that requires another recursive call.
For some number of times each recursive call produces another recursive call, but
eventually one of the stopping cases should apply. Every call of the function must
eventually lead to a stopping case or else the function call will never end because of
an infinite chain of recursive calls. (In practice, a call that includes an infinite chain of
recursive calls will usually terminate abnormally rather than actually running forever.)

 The most common way to ensure that a stopping case is eventually reached is to write
the function so that some (positive) numeric quantity is decreased on each recursive
call and to provide a stopping case for some “small” value. This is how we designed
the function writeVertical in Display 13.1 . When the function writeVertical is
called, that call produces a recursive call with a smaller argument. This continues with
each recursive call producing another recursive call until the argument is less than 10 .
When the argument is less than 10 , the function call ends without producing any more
recursive calls, and the process works its way back to the original call and then ends.

how recursion
works

how recursion
ends

base case or
stopping case

580 CHAPTER 13 Recursion

 General Form of a Recursive Function Definition
The general outline of a successful recursive function definition is as follows:

■ One or more cases that include one or more recursive calls to the function being defined.
These recursive calls should solve “smaller” versions of the task performed by the
function being defined.

■ One or more cases that include no recursive calls. These cases without any recursive
calls are called base cases or stopping cases .

 PITFALL: Infinite Recursion

 In the example of the function writeVertical discussed in the previous subsections,
the series of recursive calls eventually reached a call of the function that did not
involve recursion (that is, a stopping case was reached). If, on the other hand, every
recursive call produces another recursive call, then a call to the function will, in
theory, run forever. This is called infinite recursion . In practice, such a function will
typically run until the computer runs out of resources and the program terminates
abnormally.

 Examples of infi nite recursion are not hard to come by. The following is a syntacti-
cally correct C++ function defi nition that might result from an attempt to defi ne an
alternative version of the function writeVertical :

 void newWriteVertical(int n)
 {
 newWriteVertical(n / 10);
 cout << (n % 10) << endl;
 }

 If you embed this definition in a program that calls this function, the compiler will
translate the function definition to machine code and you can execute the machine
code. Moreover, the definition even has a certain reasonableness to it. It says that
to output the argument to newWriteVertical , first output all but the last digit
and then output the last digit. However, when called, this function will produce
an infinite sequence of recursive calls. If you call newWriteVertical(12) , that
execution will stop to execute the recursive call newWriteVertical (12 / 10) ,
which is equivalent to newWriteVertical(1) . The execution of that recursive call
will, in turn, stop to execute the recursive call

 newWriteVertical(1 / 10);

 which is equivalent to

 newWriteVertical(0);

infinite
recursion

www.itpub.net

 Recursive void Functions 581

 PITFALL (continued)

That, in turn, will stop to execute the recursive call newWriteVertical(0 / 10);
which is also equivalent to

 newWriteVertical(0);

 and that will produce another recursive call to again execute the same recursive
function call newWriteVertical(0); , and so on, forever. Since the definition of
newWriteVertical has no stopping case, the process will proceed forever (or until
the computer runs out of resources). ■

 Self-Test Exercises
 1. What is the output of the following program?

 #include <iostream>
 using std::cout;
 void cheers(int n);

 int main()
 {
 cheers(3);
 return 0;
 }
 void cheers(int n)
 {
 if (n == 1)
 {
 cout << "Hurray\n";
 }
 else
 {
 cout << "Hip ";
 cheers(n - 1);
 }
 }

 2. Write a recursive void function that has one parameter that is a positive integer
and that writes out that number of asterisks (*) to the screen, all on one line.

 3. Write a recursive void function that has one parameter that is a positive integer.
When called, the function writes its argument to the screen backward. That is,
if the argument is 1234 , it outputs the following to the screen:

 4321

(continued)

582 CHAPTER 13 Recursion

 Self-Test Exercises (continued)

4. Write a recursive void function that takes a single int argument n and writes the
integers 1, 2, ... , n .

 5. Write a recursive void function that takes a single int argument n and writes
integers n, n-1, ... , 3, 2, 1 . (Hint: Notice that you can get from the code
for Self-Test Exercise 4 to that for this exercise, or vice versa, by an exchange of as
little as two lines.)

 Stacks for Recursion

 To keep track of recursion (and a number of other things), most computer systems
make use of a structure called a stack. A stack is a very specialized kind of memory
structure that is analogous to a stack of paper. In this analogy, there is an inexhaustible
supply of extra blank sheets of paper. To place some information in the stack, it is
written on one of these sheets of paper and placed on top of the stack of papers. To
place more information in the stack, a clean sheet of paper is taken, the information
is written on it, and this new sheet of paper is placed on top of the stack. In this
straightforward way, more and more information may be placed on the stack.

 Getting information out of the stack is also accomplished by a very simple procedure.
The top sheet of paper can be read, and when it is no longer needed, it is thrown away.
There is one complication: Only the top sheet of paper is accessible. In order to read,
say, the third sheet from the top, the top two sheets must be thrown away. Since the
last sheet that is put on the stack is the first sheet taken off the stack, a stack is often
called a last-in/first-out memory structure.

 Using a stack, the computer can easily keep track of recursion. Whenever a function
is called, a new sheet of paper is taken. The function definition is copied onto this
sheet of paper, and the arguments are plugged in for the function parameters. Then
the computer starts to execute the body of the function definition. When it encounters
a recursive call, it stops the computation it is doing on that sheet in order to compute
the value returned by the recursive call. But before computing the recursive call, it
saves enough information so that when it does finally determine the value returned by
the recursive call, it can continue the stopped computation. This saved information is
written on a sheet of paper and placed on the stack. A new sheet of paper is used for the
recursive call. The computer writes a second copy of the function definition on this new
sheet of paper, plugs in the arguments for the function parameters, and starts to execute
the recursive call. When it gets to a recursive call within the recursively called copy, it
repeats the process of saving information on the stack and using a new sheet of paper
for the new recursive call. This process is illustrated in the earlier subsection entitled
 “Tracing a Recursive Call.” Even though we did not call it a stack at the time, the figures
of computations placed one on top of the other illustrate the actions of the stack.

 This process continues until some recursive call to the function completes its
computation without producing any more recursive calls. When that happens, the

stack

last-in/first-out

Recursion
and the Stack

VideoNote

www.itpub.net

 Recursive void Functions 583

computer turns its attention to the top sheet of paper on the stack. This sheet contains
the partially completed computation that is waiting for the recursive computation that
just ended. Thus, it is possible to proceed with that suspended computation. When
that suspended computation ends, the computer discards that sheet of paper and the
suspended computation that is below it on the stack becomes the computation on top
of the stack. The computer turns its attention to the suspended computation that is now
on the top of the stack, and so forth. The process continues until the computation on
the bottom sheet is completed. Depending on how many recursive calls are made and
how the function definition is written, the stack may grow and shrink in any fashion.
Notice that the sheets in the stack can only be accessed in a last-in/first-out fashion, but
that is exactly what is needed to keep track of recursive calls. Each suspended version is
waiting for the completion of the version directly above it on the stack.

 Needless to say, computers do not have stacks of paper. This is just an analogy. The
computer uses portions of memory rather than pieces of paper. The content of one
of these portions of memory (“sheets of paper”) is called an activation frame . These
activation frames are handled in the last-in/first-out manner we just -discussed. (These
activation frames do not contain a complete copy of the function definition, but
merely reference a single copy of the function definition. However, an activation frame
contains enough information to allow the computer to act as if the activation frame
contained a complete copy of the function definition.)

activation
frame

 Stack
A stack is a last-in/first-out memory structure. The first item referenced or removed from a
stack is always the last item entered into the stack. Stacks are used by computers to keep
track of recursion (and for other purposes).

 PITFALL: Stack Overflow

 There is always some limit to the size of the stack. If there is a long chain in which a
function makes a recursive call to itself, and that call results in another recursive call,
and that call produces yet another recursive call, and so forth, then each recursive
call in this chain will cause another activation frame to be placed on the stack. If
this chain is too long, the stack will attempt to grow beyond its limit. This is an
error condition known as a stack overflow . If you receive an error message that says
“stack overflow,” it is likely that some function call has produced an excessively long
chain of recursive calls. One common cause of stack overflow is infinite recursion. If
a function is recursing infinitely, then it will eventually try to make the stack exceed
any stack size limit. ■

stack overflow

584 CHAPTER 13 Recursion

 Recursion versus Iteration

 Recursion is not absolutely necessary. In fact, some programming languages do not
allow it. Any task that can be accomplished using recursion can also be done in some
other way without using recursion. For example, Display 13.2 contains a nonrecursive
version of the function given in Display 13.1 . The nonrecursive version of a function
typically uses a loop (or loops) of some sort in place of recursion. For this reason, the
nonrecursive version is usually referred to as an iterative version . If the definition of
the function writeVertical given in Display 13.1 is replaced by the version given in
 Display 13.2 , the output will be the same. As is true in this case, a recursive version of a
function can sometimes be much simpler and more elegant than an iterative version so
a gain in efficiency is not always preferable.

 Display 13.2 Iterative Version of the Function in Display 13.1

1 //Uses iostream:
2 void writeVertical(int n)
3 {
4 int nsTens = 1;
5 int leftEndPiece = n;
6 while (leftEndPiece > 9)
7 {
8 leftEndPiece = leftEndPiece / 10;
9 nsTens = nsTens * 10;
10 }
11 //nsTens is a power of ten that has the same number
12 //of digits as n. For example, if n is 2345, then
13 //nsTens is 1000.

14 for (int powerOf10 = nsTens;
15 powerOf10 > 0; powerOf10 = powerOf10 / 10)
16 {
17 cout << (n / powerOf10) << endl;
18 n = n % powerOf10;
19 }
20 }

iterative
version

tail recursion
 Most modern compilers will convert certain simple recursive functions to equivalent

iterative ones automatically for you. A function that uses tail recursion has the
property that no further computation occurs after the recursive call; the function
immediately returns. In the next section, when we cover recursive functions that
return a value, then a function is tail recursive if the value of a recursive call is
returned without modification. In such cases, a tail recursive function can be easily
converted to an equivalent iterative solution. Check your compiler’s documentation
and optimization flags to see if this operation is available.

www.itpub.net

 Recursive Functions That Return a Value 585

 A recursively written function that is not tail recursive will usually run slower and
use more storage than an equivalent iterative version. The computer must do a good
deal of work manipulating the stack in order to keep track of the recursion. However,
since the system does all this for you automatically, using recursion can sometimes
make your job as a programmer easier by producing code that is easier to understand.

efficiency

 Self-Test Exercises

 6. If your program produces an error message that says “stack overfl ow,” what is a
likely source of the error?

 7. Write an iterative version of the function cheers defi ned in Self-Test Exercise 1 .

 8. Write an iterative version of the function defi ned in Self-Test Exercise 2 .

 9. Write an iterative version of the function defi ned in Self-Test Exercise 3 .

 10. Trace the recursive solution you made to Self-Test Exercise 4 .

 11. Trace the recursive solution you made to Self-Test Exercise 5 .

 13.2 Recursive Functions That Return a Value

 To iterate is human, to recurse divine.

 ANONYMOUS

 General Form for a Recursive Function That Returns a Value

 The recursive functions you have seen thus far are all void functions, but recursion is
not limited to void functions. A recursive function can return a value of any type. The
technique for designing recursive functions that return a value is basically the same as
that for void functions. An outline for a successful recursive function definition that
returns a value is as follows:
■ One or more cases in which the value returned is computed in terms of calls to the

same function (that is, using recursive calls). As was the case with void functions,
the arguments for the recursive calls should intuitively be “smaller.”

■ One or more cases in which the value returned is computed without the use of any
recursive calls. These cases without any recursive calls are called base cases or stopping
cases (just as they were with void functions).

 This technique is illustrated in the next programming example.

586 CHAPTER 13 Recursion

 EXAMPLE: Another Powers Function

 Chapter 3 introduced the predefined function pow that computes powers. For
example, pow(2.0, 3.0) returns 2.03.0, so the following sets the variable result

equal to 8.0 :

 double result = pow(2.0, 3.0);

 The function pow takes two arguments of type double and returns a value of type
double . Display 13.3 contains a recursive definition for a function that is similar but
that works with the type int rather than double . This new function is called power .
For example, the following will set the value of result2 equal to 8 , since 23 is 8:

 int result2 = power(2, 3);

 Our main reason for defining the function power is to have a simple example of a
recursive function, but there are situations in which the function power would be
preferable to the function pow . The function pow returns a value of type double ,
which is only an approximate quantity. The function power returns a value of type
int , which is an exact quantity. In some situations, you might need the additional
accuracy provided by the function power .

 The definition of the function power is based on the following formula:

xn is equal to xn-1 * x

 Translating this formula into C++ says that the value returned by power(x, n)

should be the same as the value of the expression

 power(x, n - 1)*x

 The definition of the function power given in Display 13.3 does return the following
value for power :

 (x, n), provided n > 0.

 The case where n is equal to 0 is the stopping case. If n is 0 , then power(x, n)
simply returns 1 (since x0 is 1).

 Let’s see what happens when the function power is called with some sample values.
First consider the following simple expression:

 power(2, 0)

 When the function is called, the value of x is set equal to 2 , the value of n is set
equal to 0 , and the code in the body of the function definition is executed. Since the
value of n is a legal value, the if-else statement is executed. Since this value of n is
not greater than 0 , the return statement after the else is used, so the function call
returns 1 . Thus, the following would set the value of result3 equal to 1 :

 int result3 = power(2, 0);

(continued)

www.itpub.net

 Recursive Functions That Return a Value 587

 Display 13.3 The Recursive Function power

1 //Program to demonstrate the recursive function power.
2 #include <iostream>
3 #include <cstdlib>
4 using std::cout;
5 using std::endl;

6 int power(int x, int n);
7 //Precondition: n >= 0.
8 //Returns x to the power n.

9 int main()
10 {
11 for (int n = 0; n < 4; n++)
12 cout << "3 to the power " << n
13 << " is " << power(3, n) << endl;

14 return 0;
15 }

16 //uses iostream and cstdlib:
17 int power(int x, int n)
18 {
19 if (n < 0)
20 {
21 cout << "Illegal argument to power.\n";
22 exit(1);
23 }
24 if (n > 0)
25 return (power(x, n - 1) * x);
26 else // n == 0
27 return (1);
28 }

 Sample Dialogue
3 to the power 0 is 1
 3 to the power 1 is 3
 3 to the power 2 is 9
 3 to the power 3 is 27

588 CHAPTER 13 Recursion

 EXAMPLE: (continued)

Now let’s look at an example that involves a recursive call. Consider the expression

 power(2, 1)

 When the function is called, the value of x is set equal to 2 , the value of n is set equal
to 1 , and the code in the body of the function definition is executed. Since this value
of n is greater than 0 , the following return statement is used to determine the value
returned:

 return (power(x, n - 1) * x);

 which in this case is equivalent to

 return (power(2, 0) * 2);

 At this point, the computation of power(2, 1) is suspended, a copy of this suspended
computation is placed on the stack, and the computer then starts a new function
call to compute the value of power(2, 0) . As you have already seen, the value of
power(2, 0) is 1 . After determining the value of power(2, 0) , the computer
replaces the expression power(2, 0) with its value of 1 and resumes the suspended
computation. The resumed computation determines the final value for power(2, 1)
from the preceding return statement as follows:

 power(2, 0) * 2 is 1 * 2, which is 2.

 Thus, the final value returned for power(2, 1) is 2 . So, the following would set the
value of result4 equal to 2 :

 int result4 = power(2, 1);

 Larger numbers for the second argument will produce longer chains of recursive calls.
For example, consider the statement

 cout << power(2, 3);

 The value of power(2, 3) is calculated as follows:

 power(2, 3) is power(2, 2)*2
 power(2, 2) is power(2, 1)*2
 power(2, 1) is power(2, 0)*2
 power(2, 0) is 1 (stopping case)

 When the computer reaches the stopping case power(2, 0) , there are three
suspended computations. After calculating the value returned for the stopping case,
it resumes the most recently suspended computations to determine the value of
power(2, 1) . After that, the computer completes each of the other suspended
computations, using each value computed as a value to plug into another suspended
computation, until it reaches and completes the computation for the original call,
power(2, 3) . The details of the entire computation are illustrated in Display 13.4 .

www.itpub.net

 Recursive Functions That Return a Value 589

Sequence of recursive calls
1

power(2, 0) *2

 power(2, 1) *2

 power(2, 2) *2

 power(2, 3)

Start Here

How the final value is computed
1

 1 *2

 1*2 is 2

 2 *2

 2*2 is 4

 4 *2

 4*2 is 8

 8

power(2, 3) is 8

 Display 13.4 Evaluating the Recursive Function Call power(2,3)

 Self-Test Exercises

 12. What is the output of the following program?

 #include <iostream>
 using std::cout;
 using std::endl;

 int mystery(int n);
 //Precondition n >= 1.

 int main()
 {
 cout << mystery(3) << endl;
 return 0;
 }

(continued)

590 CHAPTER 13 Recursion

 Self-Test Exercises (continued)

 int mystery(int n)
 {
 if (n <= 1)
 return 1;
 else
 return (mystery(n - 1) + n);
 }

13. What is the output of the following program? What well-known mathematical

function is rose ?

 #include <iostream>
 using std::cout;
 using std::endl;

 int rose(int n);
 //Precondition: n >= 0.

 int main()
 {
 cout << rose(4) << endl;
 return 0;
 }

 int rose(int n)
 {
 if (n <= 0)
 return 1;
 else
 return (rose(n - 1) * n);
 }

 14. Redefi ne the function power so that it also works for negative exponents. In
order to do this, you will also have to change the type of the value returned
to double . The function declaration and header comment for the redefi ned
version of power are as follows:

 double power(int x, int n);
 //Precondition: If n < 0, then x is not 0.
 //Returns x to the power n.

Hint: x-n is equal to 1/(xn).

www.itpub.net

 Recursive Functions That Return a Value 591

 Mutual Recursion

 In our examples so far, the recursive function directly invoked the same function.
However, it is possible to have a recursive function that indirectly invokes itself
through another function. When two or more functions recursively call each other, it is
called mutual recursion .

 As a simple example, let’s say that we are given a string consisting of 0s and 1s.
We want to determine if there are an even number of 1s in the string. Our strategy
is to examine the symbols in the string from left to right and end up in the function
evenNumberOfOnes when the number of 1s encountered so far is even, and to end up
in the function oddNumberOfOnes when the number of 1s encountered so far is odd.
Initially we call the function evenNumberOfOnes . If the string is empty, then zero
1s is considered even, so the function returns true . On the other hand, if the string
starts with a 1, then remove the 1 and call the function oddNumberOfOnes because the
leading 1 just resulted in an odd number of 1s. Finally, if the string starts with a 0, then
remove the 0 and call the function evenNumberOfOnes again because the leading 0 did
not change the string from even to odd.

 The function oddNumberOfOnes follows a similar strategy. If the string is empty,
then the function returns false to indicate that the number of 1s is not even. If the
string starts with a 1, then remove the 1 and call the function evenNumberOfOnes

because the leading 1 just caused us to switch back to an even number of 1s. Finally, if
the string starts with a 0, then remove the 0 and call the function oddNumberOfOnes

again because the leading 0 did not change the string from odd to even.
 For example, the input of “10011” is calculated as

evenNumberOfOnes("10011")
 oddNumberOfOnes("0011")
 oddNumberOfOnes("011")
 oddNumberOfOnes("11")
 evenNumberOfOnes("1")
 oddNumberOfOnes("")
 return false

 Every time the leading character is a 1, we toggle between evenNumberOfOnes
and oddNumberOfOnes . By ending up in the function oddNumberOfOnes after all
the characters in the string have been examined, we can conclude that there is an odd
number of 1s and false is returned back through the chain of recursive calls.

 The mutually recursive functions are implemented in Display 13.5 . The substr
function is used to “remove” the first character of the string. By specifying a start index
of 1 and no parameter for the length of the substring, the substr function returns
everything in the string from index 1 to the end, skipping the character at index 0. This
particular program would be easier to write iteratively, but the idea presented here can
be extended to more sophisticated parsers that are easier to understand and implement
using mutual recursion.

mutual
recursion

Walkthrough
of Mutual
Recursion

VideoNote

592 CHAPTER 13 Recursion

 Display 13.5 Mutual Recursion to Determine if a String Has an Even Number of 1s

1 // uses iostream and string

2 // If the recursive calls end in this function with an empty string
3 // then we had an even number of 1s.
4 bool evenNumberOfOnes(string s)
5 {
6 if (s.length() == 0)
7 return true ; // Is even
8 else if (s[0]=='1')
9 return oddNumberOfOnes(s.substr(1));
10 else
11 return evenNumberOfOnes(s.substr(1));
12 }

13 // if the recursive calls ends in this function with an empty string
14 // then we had an odd number of 1s.
15 bool oddNumberOfOnes(string s)
16 {
17 if (s.length() == 0)
18 return false ; // Not even
19 else if (s[0]=='1')
 20 return evenNumberOfOnes(s.substr(1));
21 else
22 return oddNumberOfOnes(s.substr(1));
23 }

24 int main ()
25 {
26 string s = "10011";
27
28 if (evenNumberOfOnes(s))
29 cout << "Even number of ones." << endl;
30 else
31 cout << "Odd number of ones." << endl;
32 return 0;
33 }

 Sample Dialogue

Odd number of ones.

www.itpub.net

Thinking Recursively 593

 13.3 Thinking Recursively

 There are two kinds of people in the world, those who divide the world

into two kinds of people and those who do not.

 ANONYMOUS

 Recursive Design Techniques

 When defining and using recursive functions, you do not want to be continually aware
of the stack and the suspended computations. The power of recursion comes from the
fact that you can ignore that detail and let the computer do the bookkeeping for you.
Consider the example of the function power in Display 13.3 . The way to think of the
definition of power is as follows:

 power(x, n)

 returns

 power(x, n - 1)*x

 Since xn is equal to xn-1*x , this is the correct value to return, provided that the
computation will always reach and correctly compute a stopping case. So, after
checking that the recursive part of the definition is correct, all you need to check is that
the chain of recursive calls will always reach a stopping case and that the stopping case
always returns the correct value.

 When designing a recursive function, you need not trace out the entire
sequence of recursive calls for the instances of that function in your program.

 Self-Test Exercises

 15. Are the functions in Display 13.5 tail recursive?

 16. The function even should return true if the number is even, and it should
return false if the number is odd, but it is incomplete. Write the function odd
so that it works correctly.

 bool even(int num)
{
 if (num == 0)
 return true;
 else
 return odd(num - 1);
}

594 CHAPTER 13 Recursion

If the function returns a value, all you need do is check that the following three
properties are satisfied:

 1. There is no infi nite recursion. (A recursive call may lead to another recursive
call, which may lead to another, and so forth, but every such chain of recursive
calls eventually reaches a stopping case.)

 2. Each stopping case returns the correct value for that case.
 3. For the cases that involve recursion: If all recursive calls return the correct value,

then the fi nal value returned by the function is the correct value.

 For example, consider the function power in Display 13.3 .

 1. There is no infi nite recursion: The second argument to power(x, n) is decreased
by 1 in each recursive call, so any chain of recursive calls must eventually reach the
case power(x, 0) , which is the stopping case. Thus, there is no infi nite recursion.

 2. Each stopping case returns the correct value for that case: The only stopping case
is power(x, 0) . A call of the form power(x, 0) always returns 1 , and the
correct value for x0 is 1. So the stopping case returns the correct value.

 3. For the cases that involve recursion, if all recursive calls return the correct value,
then the fi nal value returned by the function is the correct value: The only case that
involves recursion is when n > 1. When n > 1, power(x, n) returns

 power(x, n - 1) * x

 To see that this is the correct value to return, note that if power(x, n - 1) returns
the correct value, then power(x, n - 1) returns xn-1 and so power(x, n) returns

 xn-1 * x

 which is xn, and that is the correct value for power(x, n) .

 That is all you need to check to be sure that the definition of power is correct. (The
preceding technique is known as mathematical induction , a concept that you may have
heard about in a mathematics class. However, you do not need to be familiar with the
term mathematical induction in order to use this technique.)

 We gave you three criteria to use in checking the correctness of a recursive function
that returns a value. Basically the same rules can be applied to a recursive void function.
If you show that your recursive void function definition satisfies the following three
criteria, then you will know that your void function performs correctly:

 1. There is no infi nite recursion.
 2. Each stopping case performs the correct action for that case.
 3. For each of the cases that involve recursion, if all recursive calls perform their

actions correctly, then the entire case performs correctly.

 Binary Search

 This subsection develops a recursive function that searches an array to determine
whether it contains a specified value. For example, the array may contain a list of
numbers for credit cards that are no longer valid. A store clerk needs to search the list
to see if a customer’s card is valid or invalid.

criteria for
void functions

criteria for
functions

that return
a value

www.itpub.net

Thinking Recursively 595

 The indexes of the array a are the integers 0 through finalIndex . To make the task
of searching the array easier, we will assume that the array is sorted. Hence, we know
the following:

 a[0] ≤ a[1] ≤ a[2] ≤ ... ≤ a[finalIndex]

 When searching an array, you are likely to want to know both whether the value
is in the list and, if it is, where it is in the list. For example, if we are searching for a
credit card number, then the array index may serve as a record number. Another array
indexed by these same indexes may hold a phone number or other information to use
for reporting the suspicious card. Hence, if the sought-after value is in the array, we
will want our function to tell where that value is in the array.

 Now let us proceed to produce an algorithm to solve this task. It will help to
visualize the problem in very concrete terms. Suppose the list of numbers is so long
that it takes a book to list them all. This is in fact how invalid credit card numbers
are distributed to stores that do not have access to computers. If you are a clerk and
are handed a credit card, you must check to see if it is on the list and hence invalid.
How would you proceed? Open the book to the middle and see if the number is
there. If it is not and it is smaller than the middle number, then work backward
toward the beginning of the book. If the number is larger than the middle number,
work your way toward the end of the book. This idea produces our first draft of an
algorithm:

 found = false ; //so far .
 mid = approximate midpoint between 0 and finalIndex;
 if (key == a[mid])
 {
 found = true ;
 location = mid;
 }
 else if (key < a[mid])
 search a[0] through a[mid - 1];
 else if (key > a[mid])
 search a[mid + 1] through a[finalIndex];

 Since the searchings of the shorter lists are smaller versions of the very task we
are designing the algorithm to perform, this algorithm naturally lends itself to
the use of recursion. The smaller lists can be searched with recursive calls to the
algorithm itself.

 Our pseudocode is a bit too imprecise to be easily translated into C++ code. The
problem has to do with the recursive calls. There are two recursive calls shown:

 search a[0] through a[mid - 1];

 and

 search a[mid + 1] through a[finalIndex];

 To implement these recursive calls, we need two more parameters. A recursive call
specifies that a subrange of the array is to be searched. In one case, it is the elements
indexed by 0 through mid - 1 . In the other case, it is the elements indexed by mid + 1

algorithm—
first version

596 CHAPTER 13 Recursion

through finalIndex . The two extra parameters will specify the first and last indexes of
the search, so we will call them first and last . Using these parameters for the lowest
and highest indexes, instead of 0 and finalIndex , we can express the pseudocode
more precisely, as follows:

 To search a[first] through a[last] do the following:
 found = false ; //so far.
 mid = approximate midpoint between first and last;
 if (key == a[mid])
 {
 found = true ;
 location = mid;
 }
 else if (key < a[mid])
 search a[first] through a[mid - 1];
 else if (key > a[mid])
 search a[mid + 1] through a[last];

 To search the entire array, the algorithm would be executed with first set equal to
0 and last set equal to finalIndex . The recursive calls will use other values for first
and last . For example, the first recursive call would set first equal to 0 and last
equal to the calculated value mid - 1 .

 As with any recursive algorithm, we must ensure that our algorithm ends rather than
producing infinite recursion. If the sought-after number is found on the list, then there
is no recursive call and the process terminates, but we need some way to detect when
the number is not on the list. On each recursive call the value of first is increased or
the value of last is decreased. If they ever pass each other and first actually becomes
larger than last , we will know that there are no more indexes left to check and that
the number key is not in the array. If we add this test to our pseudocode, we obtain a
complete solution, as shown in Display 13.6 .

 Coding

 Now we can routinely translate the pseudocode into C++ code. The result is shown in
 Display 13.7 . The function search is an implementation of the recursive algorithm
given in Display 13.6 . A diagram of how the function performs on a sample array is
given in Display 13.8 .

 Notice that the function search solves a more general problem than the original
task. Our goal was to design a function to search an entire array, yet the search

function will let us search any interval of the array by specifying the index bounds
first and last . This is common when designing recursive functions. Frequently, it
is necessary to solve a more general problem in order to be able to express the recursive
algorithm. In this instance, we wanted only the answer in the case where first and
last are set equal to 0 and finalIndex . However, the recursive calls will set them to
values other than 0 and finalIndex .

stopping case

algorithm—
final version

algorithm—
first refinement

www.itpub.net

Thinking Recursively 597

 Display 13.6 Pseudocode for Binary Search

 int a[Some_Size_Value];

Algorithm to Search a[first] through a[last]

 //Precondition:
 //a[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]

 To locate the value key:
 if (first > last) //A stopping case
 found = false ;
 else
 {

 mid = approximate midpoint between first and last;
 if (key == a[mid]) //A stopping case
 {
 found = false ;
 location = mid;
 }
 else if key < a[mid] //A case with recursion
 search a[first] through a[mid - 1];
 else if key > a[mid] //A case with recursion
 search a[mid + 1] through a[last];
 }

 Display 13.7 Recursive Function for Binary Search (part 1 of 2)

 1 //Program to demonstrate the recursive function for binary search.
2 #include 6iostream7
3 using std::cin;
4 using std::cout;
5 using std::endl;
6 const int ARRAY_SIZE = 10;

7 void search(const int a[], int first, int last,
8 int key, bool & found, int & location);
9 //Precondition: a[first] through a[last] are sorted in increasing

//order.
10 //Postcondition: if key is not one of the values a[first] through

//a[last], then found == false; otherwise, a[location] == key
11 //and found == true.
12 int main()
13 {
14 int a[ARRAY_SIZE];
15 const int finalIndex = ARRAY_SIZE - 1;

(continued)

598 CHAPTER 13 Recursion

16 int key, location;
17 bool found;
18 cout << "Enter number to be located: ";
19 cin >> key;
20 search(a, 0, finalIndex, key, found, location);

21 if (found)
22 cout << key << " is in index location "

23 << location << endl;
24 else
25 cout << key << " is not in the array." << endl;

26 return 0;
27 }
28 void search(const int a[], int first, int last,
29 int key, bool& found, int& location)

30 {
31 int mid;
32 if (first > last)
33 {
34 found = false ;

35 }
36 else
37 {
38 mid = (first + last)/2;

39 if (key == a[mid])
40 {
41 found = true ;
42 location = mid;
43 }
44 else if (key > a[mid])
45 {
46 search(a, first, mid - 1, key, found, location);
47 }
48 else if (key > a[mid])
49 {
50 search(a, mid + 1, last, key, found, location);
51 }
52 }
53 }

This portion of the program contains some code to fill and sort the array a.
The exact details are irrelevant to this example.

Display 13.7 Recursive Function for Binary Search (part 2 of 2)

www.itpub.net

Thinking Recursively 599

key is 63

54 a[0] 15

55 a[1] 20

56 a[2] 35

57 a[3] 41

58 a[4] 57

59 a[5] 63

60 a[6] 75

61 a[7] 80

62 a[8] 85

63 a[9] 90

54 a[0] 15

55 a[1] 20

56 a[2] 35

57 a[3] 41

58 a[4] 57

59 a[5] 63

60 a[6] 75

61 a[7] 80

62 a[8] 85

63 a[9] 90

54 a[0] 15

55 a[1] 20

56 a[2] 35

57 a[3] 41

58 a[4] 57

59 a[5] 63

60 a[6] 75

61 a[7] 80

62 a[8] 85

63 a[9] 90

 first == 0

mid = (0 + 9)/2

last == 9

mid = (5 + 9)/2

first == 5

last == 9

last == 6

mid = (5 + 6)/2 which is 5
a[mid] is a[5] == 63
found = TRUE;
location = mid;

first == 5

next

next

Not in
this half

Not here

 Display 13.8 Execution of the Function search

600 CHAPTER 13 Recursion

 Checking the Recursion

 The subsection entitled “Recursive Design Techniques” gave three criteria that you
should check to ensure that a recursive void function definition is correct. Let’s check
these three things for the function search given in Display 13.7 .

 1. There is no infi nite recursion: On each recursive call the value of first is increased
or the value of last is decreased. If the chain of recursive calls does not end in
some other way, then eventually the function will be called with first larger than
last , which is a stopping case.

 2. Each stopping case performs the correct action for that case: There are two stopping
cases, when first > last and when key == a[mid] . Let’s consider each case.

 If first > last, there are no array elements between a[first] and a[last] so
 key is not in this segment of the array. (Nothing is in this segment of the array!)
So, if first > last, the function search correctly sets found equal to false .

 If key == a[mid] , the algorithm correctly sets found equal to true and
 location equal to mid . Thus, both stopping cases are correct.

 3. For each of the cases that involve recursion, if all recursive calls perform their actions
correctly, then the entire case performs correctly: There are two cases in which there
are recursive calls, when key < a[mid] and when key > a[mid] . We need to
check each of these two cases.

 First, suppose key < a[mid]. In this case, since the array is sorted, we know
that if key is anywhere in the array, then key is one of the elements a[first]
through a[mid- 1]. Thus, the function needs only to search these elements,
which is exactly what the recursive call

 search(a, first, mid - 1, key, found, location);

 does. So if the recursive call is correct, then the entire action is correct.

 Next, suppose key > a[mid]. In this case, since the array is sorted, we know
that if key is anywhere in the array, then key is one of the elements a[mid +
1] through a[last]. Thus, the function needs only to search these elements,
which is exactly what the recursive call

 search(a, mid + 1, last, key, found, location);

 does. So if the recursive call is correct, then the entire action is correct. Thus, in
both cases the function performs the correct action (assuming that the recursive
calls perform the correct action).

 The function search passes all three of our tests, so it is a good recursive function
definition.

 Efficiency

 The binary search algorithm is extremely fast compared with an algorithm that simply
tries all array elements in order. In the binary search, you eliminate about half the array

www.itpub.net

Thinking Recursively 601

from consideration right at the start. You then eliminate a quarter, then an eighth
of the array, and so forth. These savings add up to a dramatically fast algorithm. For
an array of 100 elements, the binary search will never need to compare more than
7 array elements to the key. A simple serial search could compare as many as 100 array
elements to the key, and on the average will compare about 50 array elements to the key.
Moreover, the larger the array is, the more dramatic the savings will be. On an array with
1000 elements, the binary search will need only to compare about 10 array elements
to the key value, as compared to an average of 500 for the simple serial search
algorithm.

 An iterative version of the function search is given in Display 13.9 . On some
systems the iterative version will run more efficiently than the recursive version. The
algorithm for the iterative version was derived by mirroring the recursive version.
In the iterative version, the local variables first and last mirror the roles of the
parameters in the recursive version, which are also named first and last . As this
example illustrates, it often makes sense to derive a recursive algorithm even if you
expect to later convert it to an iterative algorithm.

 Display 13.9 Iterative Version of Binary Search (part 1 of 2)

Function Declaration
 void search(const int a[], int lowEnd, int highEnd,
 int key, bool & found, int & location);
//Precondition: a[lowEnd] through a[highEnd] are sorted in
//increasing order.
//Postcondition: If key is not one of the values a[lowEnd]
//through a[highEnd], then found == false; otherwise,
//a[location] == key and found == true.

 Function Definition
 void search(const int a[], int lowEnd , int highEnd,

 int key, bool & found, int & location)

{
 int first = lowEnd;
 int last = highEnd;
 int mid;

 found = false ; //so far
 while ((first <= last) && !(found))
 {
 mid = (first + last)/2;
 if (key == a[mid])
 {
 found = true ;
 location = mid;

(continued)

602 CHAPTER 13 Recursion

 }
 else if (key < a[mid])
 {
 last = mid - 1;
 }
 else if (key > a[mid])
 {
 first = mid + 1;
 }
 }
}

Display 13.9 Iterative Version of Binary Search (part 2 of 2)

 Self-Test Exercises

 17. Write a recursive function defi nition for the following function:

 int squares(int n);
 //Precondition: n >= 1
//Returns the sum of the squares of the numbers 1 through n.

 For example, squares(3) returns 14 because 1 2 + 2 2 + 3 2 is 14.

 Chapter Summary

• If a problem can be reduced to smaller instances of the same problem, then a recursive
solution is likely to be easy to find and implement.

• A recursive algorithm for a function definition normally contains two kinds of cases:
one or more cases that include at least one recursive call and one or more stopping
cases in which the problem is solved without any recursive calls.

• Mutual recursion occurs when two or more functions recursively call each other.

• When writing a recursive function definition, always check to see that the function
will not produce infinite recursion .

• When you define a recursive function, use the three criteria given in the subsection
 “Recursive Design Techniques” to check that the function is correct.

• When designing a recursive function to solve a task, it is often necessary to solve a
more general problem than the given task. This may be required to allow for the
proper recursive calls, since the smaller problems may not be exactly the same prob-
lem as the given task. For example, in the binary search problem, the task was to
search an entire array, but the recursive solution is an algorithm to search any portion
of the array (either all of it or a part of it).

www.itpub.net

Answers to Self-Test Exercises 603

 Answers to Self-Test Exercises

 1. Hip Hip Hurray
 2. using std::cout;
 void stars(int n)
 {

 cout << '*';

 if (n > 1)

 stars(n - 1);

 }

 The following is also correct, but is more complicated:

 void stars(int n)
 {

 if (n <= 1)

 {

 cout << '*';

 }

 else

 {

 stars(n - 1);

 cout << '*';

 }

 }

 3. using std::cout;
 void backward (int n)

 {

 if (n < 10)

 {

 cout << n;

 }

 else

 {

 cout << (n%10); //write last digit

 backward(n/10);//write the other digits backward

 }

 }

 4–5. The answer to Self-Test Exercise 4 is writeUp; . The answer to Self-Test Exercise 5
is writeDown; .

 #include<iostream>

 using std::cout;

 using std::endl;

604 CHAPTER 13 Recursion

 void writeDown(int n)

 {

 if (n >= 1)

 {

 cout << n << " "; //write while the

 //recursion winds

 writeDown(n - 1);

 }

 }

 //5

 void writeUp(int n)

 {
 if (n >= 1)

 {
 writeUp(n - 1);

 cout << n << " "; //write while the

 //recursion unwinds

 }

 }

 //testing code for both Self-Test Exercises 4 and 5

 int main()

 {

 cout << "calling writeUp(" << 10 << ")\n";

 writeUp(10);

 cout << endl;

 cout << "calling writeDown(" << 10 << ")\n";

 writeDown(10);

 cout << endl;

 return 0;

 }

 /* Test results

 calling writeUp(10)

 1 2 3 4 5 6 7 8 9 10

 calling writeDown(10)

 10 9 8 7 6 5 4 3 2 1*/

 6. An error message that says “stack overflow” is telling you that the computer has
attempted to place more activation frames on the stack than are allowed on your
system. A likely cause of this error message is infinite recursion.

 7. using std::cout;
 void cheers(int n)

 {

 while (n > 1)

www.itpub.net

Answers to Self-Test Exercises 605

 {

 cout << "Hip ";

 n--;

 }

 cout << "Hurray\n";

 }

 8. using std::cout;
 void stars(int n)

 {

 for (int count = 1; count <= n; count++)

 cout << '*';

 }

 9. using std::cout;

 void backward(int n)

 {
 while (n >= 10)

 {

 cout << (n%10); //write last digit

 n = n/10; //discard the last digit

 }

 cout << n;

 }

 10. Trace for Self-Test Exercise 4 . If n = 3 , the code to be executed is
 if (3 >= 1)

 {

 writeDown(3 - 1);

 }

 On the next recursion, n = 2 and the code to be executed is
 if (2 >= 1)

 {

 writeDown(2 - 1)

 }

On the next recursion, n = 1 and the code to be executed is

 if (1 >= 1)

 {

 writeDown(1 - 1)

 }

On the fi nal recursion, n = 0 and the true clause is not executed:

if (0 >= 1) // condition false

 {

 // this clause is skipped

 }

606 CHAPTER 13 Recursion

 The recursion unwinds, the cout << n << " "; line of code is executed for
each recursive call that was on the stack, with n = 3 , then n = 2 , and fi nally
n = 1. The output is 3 2 1 .

 11. Trace for Self-Test Exercise 5 . If n = 3 , the code to be executed is

if (3 >= 1)

 {

 cout << 3 << " ";

 writeUp(3 - 1);

 }

 On the next recursion, n = 2 and the code to be executed is

if (2 >= 1)

 {

 cout << 2 << " ";

 writeUp(2 - 1);

 }

 On the next recursion, n = 1 and the code to be executed is

if (1 >= 1)
 {

 cout << 1 << " ";

 writeUp(1 - 1);

 }

 On the final recursion, n = 0 and the code to be executed is

if (0 >= 1) // condition false, body skipped

{

 // skipped

 }

 The recursions unwind; the output (obtained by working through the stack)
is 1 2 3 .

 12. 6

 13. The output is 24 . The function is the factorial function, usually written n! and
defined as follows:

 n ! is equal to n *(n - 1)*(n - 2)*...*1

 14. //Uses iostream and cstdlib:
double power(int x, int n)

{

 if (n < 0 && x == 0)

 {

 cout << "Illegal argument to power.\n";

 exit(1);

 }

www.itpub.net

Programming Projects 607

 if (n < 0)

 return (1/power(x, -n));

 else if (n > 0)

 return (power(x, n - 1)*x);

 else // n == 0

 return (1.0);

}

 15. Yes, the functions simply return the recursive value with no further processing,
which makes them tail recursive.

 16. bool odd(int num)
{

 if (num == 0)

 return false ;

else

 return even(num - 1);

 }

 17. int squares(int n)
{

 if (n <= 1)

 return 1;
 else
 return (squares(n - 1) + n*n);
 }

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a recursive function definition for a function that has one parameter n of
type int and that returns the n th Fibonacci number. The Fibonacci numbers are
F

0
 is 1, F

1
 is 1, F

2
 is 2, F

3
 is 3, F

4
 is 5, and in general

F
i+2
 = F

i
 + F

i+1
 for i = 0, 1, 2, ...

 2. The formula for computing the number of ways of choosing r different things from
a set of n things is the following:

 C (n , r) = n !/(r !*(n - r)!)

 The factorial function n! is defi ned by

 n ! = n *(n -1)*(n -2)*...*1

 Discover a recursive version of the formula for C (n , r) and write a recursive func-
tion that computes the value of the formula. Embed the function in a program and
test it.

www.myprogramminglab.com

608 CHAPTER 13 Recursion

 3 . Write a recursive function that has an argument that is an array of characters and
two arguments that are array indexes. The function should reverse the order of
those entries in the array whose indexes are between the two bounds. For example,
if the array is

 a[1] == 'A' a[2] == 'B' a[3] == 'C' a[4] == 'D' a[5] == 'E'

 and the bounds are 2 and 5 , then after the function is run, the array elements
should be

 a[1] == 'A' a[2] == 'E' a[3] == 'D' a[4] == 'C' a[5] == 'B'

 Embed the function in a program and test it. After you have fully debugged this
function, define another function that takes a single argument that is an array that
contains a string value; the function should reverse the spelling of the string value
in the array argument. This function will include a call to the recursive definition
you did for the first part of this project. Embed this second function in a program
and test it.

 4. Write an iterative version of the recursive function in the previous project. Embed
it in a program and test it.

 5. Towers of Hanoi. There is a story about Buddhist monks who are playing this
puzzle with 64 stone disks. The story claims that when the monks finish moving
the disks from one post to a second via the third post, time will end. Eschatology
(concerns about the end of time) and theology will be left to those better qualified;
our interest is limited to the recursive solution to the problem.

 A stack of n disks of decreasing size is placed on one of three posts. The task is to
move the disks one at a time from the first post to the second. To do this, any disk
can be moved from any post to any other post, subject to the rule that you can
never place a larger disk over a smaller disk. The (spare) third post is provided to
make the solution possible. Your task is to write a recursive function that describes
instructions for a solution to this problem. We do not have graphics available, so
you should output a sequence of instructions that will solve the problem.

 Hint: If you could move n-1 of the disks from the first post to the third post using
the second post as a spare, the last disk could be moved from the first post to the
second post. Then by using the same technique (whatever that may be), you can
move the n-1 disks from the third post to the second post, using the first post
as a spare. There! You have the puzzle solved. You have only to decide what the
nonrecursive case is, what the recursive case is, and when to output instructions to
move the disks.

 6. (You need to have first completed Programming Project 13.1 to work on this
 project.) In this exercise, you will compare the efficiency of a recursive and an
iterative function to compute the Fibonacci number.

 a. Examine the recursive function computation of Fibonacci numbers. Note that
 each Fibonacci number is recomputed many times. To avoid this recomputation,

www.itpub.net

Programming Projects 609

do Programming Project 13.1 iteratively, rather than recursively; that is, do
the problem with a loop. You should compute each Fibonacci number once
on the way to the number requested and discard the numbers when they
are no longer needed.

 b. Time the solution for Programming Project 13.1 and Part a of this project in
 finding the 1 st , 3 rd , 5 th , 7 th , 9 th , 11 th , 13 th , and 15 th Fibonacci numbers. Determine
 how long each function takes. Compare and comment on your results.

 Hints: If you are running Linux, you can use the bash time utility. It gives real time
(as in wall clock time), user time (time measured by cpu cycles devoted to your
program), and sys time (cpu cycles devoted to tasks other than your program). If
you are running in some other environment, you will have to read your manual,
or ask your instructor, in order to find out how to measure the time a program
takes to run.

 7. (You need to have first completed Programming Project 13.6 to work on this
project.) When computing a Fibonacci number using the most straightforward
recursive function definition, the recursive solution recomputes each Fibonacci
number too many times. To compute F

i+2
= F

i
+ F

i+1
 , it computes all the numbers

computed in F i a second time in computing F
i+1

 . You can avoid this by saving the
numbers in an array while computing F

i
 . Write another version of your recursive

Fibonacci function based on this idea. In the recursive solution for calculating the
N th Fibonacci number, declare an array of size N. Array entry with index i stores
the ith (i … N) Fibonacci number as it is computed the first time. Then use the array
to avoid the second (redundant) recalculation of the Fibonacci numbers. Time this
solution as you did in Programming Project 13.6 , and compare it to your results
for the iterative solution.

 8. A savings account typically accrues savings using compound interest. If you deposit
$1000 with a 10% interest rate per year, after one year you will have $1100. If you
leave this money in the account for another year at 10% interest, you will have
$1210. After three years you will have $1331, and so on.

 Write a program that inputs the initial amount, an interest rate per year, and the
number of years the money will accrue compound interest. Write a recursive func-
tion that calculates the amount of money that will be in the savings account using
the input information.

 To verify your function, the amount should be equal to P(1+i)n , where P is the
amount initially saved, i is the interest rate per year, and n is the number of years.

 9 . We have n people in a room, where n is an integer greater than or equal to 1. Each
person shakes hands once with every other person. What is the total number, h(n) ,
of handshakes? Write a recursive function to solve this problem. To get you started,
if there are only one or two people in the room, then

 handshake(1) = 0
 handshake(2) = 1

 If a third person enters the room, he or she must shake hands with each of the
two people already there. This is two handshakes in addition to the number

Solution to
Programming
Project 13.9

VideoNote

610 CHAPTER 13 Recursion

of handshakes that would be made in a room of two people, or a total of three
handshakes.

 If a fourth person enters the room, he or she must shake hands with each of the
three people already there. This is three handshakes in addition to the number of
handshakes that would be made in a room of three people, or six handshakes.

 If you can generalize this to n handshakes, you should be able to write the
recursive solution.

 10. Consider a frame of bowling pins, where each * represents a pin:

Solution to
Programming
Project 13.11

VideoNote

 There are five rows and a total of fifteen pins. If we had only the top four rows,
there would be a total of ten pins. If we had only the top three rows, there would
be a total of six pins. If we had only the top two rows, there would be a total of
three pins. If we had only the top row, there would be a total of one pin.

 Write a recursive function that takes as input the number of rows, n , and outputs
the total number of pins that would exist in a pyramid with n rows. Your program
should allow for values of n that are larger than 5.

 11. Write a recursive function named contains with the following header:

 bool contains (char *haystack, char *needle)

 The function should return true if the C-string needle is contained within the
C-string haystack and false if needle is not in haystack . For example,

 contains("C++ programming", "ogra") should return true
 contains("C++ programming", "grammy") should return false

 You are not allowed to use the string class substr or find functions to
determine a match.

 12. The following diagram is an example of a deterministic finite state automaton , or
DFA. This particular DFA describes an algorithm to determine if a sequence of
characters is a properly formatted monetary amount with commas. For example,
“$1,000” and “$25” and “$551,323,991,391” are properly formatted but “1,000”
(no initial $) and “$1000” (missing comma) and “$5424,132” (missing comma)
are not.

*
* *
* * *

* * * *
* * * * *

www.itpub.net

$

State 0
1-9 0-9

State 1 State 2
0-9

State 3

0-9
State 4 State 5

0-9
State 6

0-9
State 7

, , ,

,

IsMoney

 The DFA works by starting in the oval labeled IsMoney. This is the initial state. If
the first character of the string is $, then we advance to the second character and
move to state 0. Otherwise we conclude the string is not a proper monetary amount.
In state 0, if the second character is a digit between 1 and 9, then we advance to
the third character and move to state 1. Otherwise we conclude the string is not
a proper monetary amount. In state 1, if we have no more characters left in the
string, then we conclude that the string is a monetary amount. This is called a
final state and is indicated by a bold oval. If the third character is a digit between
0 and 9, then we advance to the fourth character and move to state 2. Otherwise
if the third character is a comma then we advance to the fourth character and
move to state 4. Otherwise we conclude the string is not a proper monetary
amount. The rest of the DFA behaves in a similar manner.

 Write a program that uses recursion to implement the DFA. Your program should
have a separate function for each state in the DFA. Each function should invoke
the function corresponding to the next state indicated by the arrows in the dia-
gram. There is mutual recursion because of the loop from state 7 to state 4. Test
your solution with several strings and output whether each string is a properly
formatted monetary amount.

 This solution calls a function for every character in the string. However, the solu-
tion may be written in a tail-recursive manner, so it is possible that long strings will
not exhaust the stack if your compiler is efficient.

 13. A popular word game involves finding words from a grid of randomly generated
letters. Words must be at least three letters long and formed from adjoining letters.
Letters may not be reused and it is valid to move across diagonals. As an example,
consider the following 4 * 4 grid of letters.

Programming Projects 611

612 CHAPTER 13 Recursion

 A B C D

 E F G H

 I J K L

 M N O P

 The word “FAB” is valid (letters in the upper left corner) and the word “KNIFE”
is valid. The word “BABE” is not valid because the “B” may not be reused. The
word “MINE” is not valid because the “E” is not adjacent to the “N”.

 Write a program that uses a 4 * 4 two-dimensional array to represent the game
board. The program should randomly select letters for the board. You may wish
to select vowels with a higher probability than consonants. You may also wish to
always place a “U” next to a “Q” or to treat “QU” as a single letter. The program
should read the words from the text file words.txt (included on the website with
this book) and then use a recursive algorithm to determine if the word may be
formed from the letters on the game board. The program should output all valid
words from the file that are on the game board.

www.itpub.net

 Example: Partially Filled Array with Backup 638
 Pitfall: Same Object on Both Sides of the Assignment

Operator 647
 Example: Alternate Implementation of

PFArrayDBak 647
 Tip: A Class Has Access to Private Members of All

Objects of the Class 650
 Tip: “Is a” versus “Has a” 650
 Protected and Private Inheritance 651
 Multiple Inheritance 652

 14.1 INHERITANCE BASICS 614
 Derived Classes 614
 Constructors in Derived Classes 626
 Pitfall: Use of Private Member Variables from the

Base Class 626
 Pitfall: Private Member Functions Are Effectively Not

Inherited 628
 The protected Qualifier 628
 Redefinition of Member Functions 631
 Redefining versus Overloading 632
 Access to a Redefined Base Function 634
 Functions That Are Not Inherited 635

 14.2 PROGRAMMING WITH
INHERITANCE 636

 Assignment Operators and Copy Constructors in
Derived Classes 636

 Destructors in Derived Classes 637

 14 Inheritance

 Chapter Summary 653 Answers to Self-Test Exercises 653 Programming Projects 655

 Like mother, like daughter

 Common saying

 Introduction
 Object-oriented programming is a popular and powerful programming technique.
Among other things, it provides for a dimension of abstraction known as inheritance.
This means that a very general form of a class can be defined and compiled. Later,
more specialized versions of that class may be defined and can inherit the properties of
the general class. This chapter covers inheritance in general and, more specifically, how
it is realized in C++.

 This chapter does not use any of the material presented in Chapter 12 (file I/O)
or Chapter 13 (recursion). It also does not use the material in Section 7.3 of
 Chapter 7 , which covers vectors. Section 14.1 also does not use any material from
 Chapter 10 (pointers and dynamic arrays).

 14.1 Inheritance Basics

 If there is anything that we wish to change in the child, we should first
examine it and see whether it is not something that could better be
changed in ourselves.

 CARL GUSTAV JUNG, The Integration of the Personality

 Inheritance is the process by which a new class—known as a derived class —is created
from another class, called the base class . A derived class automatically has all the
member variables and all the ordinary member functions that the base class has, and
can have additional member functions and additional member variables.

 Derived Classes

 Suppose we are designing a record-keeping program that has records for salaried
employees and hourly employees. There is a natural hierarchy for grouping these
classes. These are all classes of people who share the property of being employees.

 Employees who are paid an hourly wage are one subset of employees. Another
subset consists of employees who are paid a fixed wage each month or week. Although
the program may not need any type corresponding to the set of all employees, thinking
in terms of the more general concept of employees can be useful. For example, all
employees have names and Social Security numbers, and the member functions for

 14 Inheritance

derived class

base class

www.itpub.net

Inheritance Basics 615

setting and changing names and Social Security numbers will be the same for salaried
and hourly employees.

 Within C++ you can define a class called Employee that includes all employees,
whether salaried or hourly, and then use this class to define classes for hourly employees
and salaried employees.

 The class Employee will also contain member functions that manipulate the data
fields of the class Employee . Displays 14.1 and 14.2 show one possible definition for
the class Employee .

 Display 14.1 Interface for the Base Class Employee

 1
 2 //This is the header file employee.h.
 3 //This is the interface for the class Employee.
 4 //This is primarily intended to be used as a base class to derive
 5 //classes for different kinds of employees.
 6 #ifndef EMPLOYEE_H
 7 #define EMPLOYEE_H

 8 #include <string>
 9 using std::string;

 10 namespace SavitchEmployees
 11 {

 12 class Employee
 13 {
 14 public:
 15 Employee();
 16 Employee(const string& theName, const string& theSsn);
 17 string getName() const;
 18 string getSsn() const;
 19 double getNetPay() const;
 20 void setName(const string& newName);
 21 void setSsn(const string& newSsn);
 22 void setNetPay(double newNetPay);
 23 void printCheck() const;
 24 private:
 25 string name;
 26 string ssn;
 27 double netPay;
 28 };

 29 } //SavitchEmployees

 30 #endif //EMPLOYEE_H

616 CHAPTER 14 Inheritance

 Display 14.2 Implementation for the Base Class Employee (part 1 of 2)

 1
 2 //This is the file employee.cpp.
 3 //This is the implementation for the class Employee.
 4 //The interface for the class Employee is in the header file employee.h.
 5 #include <string>
 6 #include <cstdlib>
 7 #include <iostream>
 8 #include "employee.h"
 9 using std::string;
 10 using std::cout;

 11 namespace SavitchEmployees
 12 {
 13 Employee::Employee() : name("No name yet"),
 ssn("No number yet"), netPay(0)
 14 {
 15 //deliberately empty
 16 }

 17 Employee::Employee(const string& theName, const string& theNumber)
 18 : name(theName), ssn(theNumber), netPay(0)
 19 {
 20 //deliberately empty
 21 }

 22 string Employee::getName() const
 23 {
 24 return name;
 25 }

 26 string Employee::getSsn() const
 27 {
 28 return ssn;
 29 }
 30
 31 double Employee::getNetPay() const
 32 {
 33 return netPay;
 34 }

 35 void Employee::setName(const string& newName)
 36 {
 37 name = newName;
 38 }

 39 void Employee::setSsn(const string& newSsn)

www.itpub.net

Inheritance Basics 617

 You can have an (undifferentiated) Employee object, but our reason for defining the
class Employee is so that we can define derived classes for different kinds of employees.
In particular, the function printCheck will always have its definition changed in
derived classes so that different kinds of employees can have different kinds of checks.
This is reflected in the definition of the function printCheck for the class Employee
(Display 14.2). It makes little sense to print a check for such an (undifferentiated)
Employee . We know nothing about this employee. Consequently, we implemented
the function printCheck of the class Employee so that the program stops with an
error message if printCheck is called for a base class Employee object. As you will see,
derived classes will have enough information to redefine the function printCheck to
produce meaningful employee checks.

 A class that is derived from the class Employee will automatically have all the
member variables of the class Employee (name , ssn , and netPay). A class that is
derived from the class Employee will also have all the member functions of the class
Employee , such as printCheck , getName , setName , and the other member functions
listed in Display 14.1 . This is usually expressed by saying that the derived class inherits
the member variables and member functions.

 The interface files with the class definitions of two derived classes of the class Employee
are given in Displays 14.3 (HourlyEmployee) and 14.4 (SalariedEmployee). We
have placed the class Employee and the two derived classes in the same namespace.
C++ does not require that they be in the same namespace, but since they are related
classes, it makes sense to put them in the same namespace. We will first discuss the
derived class HourlyEmployee , given in Display 14.3 .

inherits

 40 {
 41 ssn = newSsn;
 42 }

 43 void Employee::setNetPay (double newNetPay)
 44 {
 45 netPay = newNetPay;
 46 }

 47 void Employee::printCheck() const
 48 {
 49 cout << "\nERROR: printCheck FUNCTION CALLED FOR AN \n"
 50 << "UNDIFFERENTIATED EMPLOYEE. Aborting the program.\n"
 51 << "Check with the author of the program about this bug.\n";
 52 exit(1);
 53 }

 54 } //SavitchEmployees

Display 14.2 Implementation for the Base Class Employee (part 2 of 2)

618 CHAPTER 14 Inheritance

 Note that the definition of a derived class begins like any other class definition but
adds a colon, the reserved word public , and the name of the base class to the first line
of the class definition, as in the following (from Display 14.3):

class HourlyEmployee : public Employee

 {

 The derived class (such as HourlyEmployee) automatically receives all the member
variables and member functions of the base class (such as Employee) and can add
additional member variables and member functions.

 The definition of the class HourlyEmployee does not mention the member
variables name , ssn , and netPay , but every object of the class HourlyEmployee

 Display 14.3 Interface for the Derived Class HourlyEmployee

 1
 2 //This is the header file hourlyemployee.h.
 3 //This is the interface for the class HourlyEmployee.
 4 #ifndef HOURLYEMPLOYEE_H
 5 #define HOURLYEMPLOYEE_H

 6 #include <string>
 7 #include "employee.h"

 8 using std::string;

 9 namespace SavitchEmployees
 10 {

 11 class HourlyEmployee : public Employee
 12 {
 13 public:
 14 HourlyEmployee();
 15 HourlyEmployee(const string& theName, const string& theSsn,
 16 double theWageRate, double theHours);
 17 void setRate(double newWageRate);
 18 double getRate() const;
 19 void setHours(double hoursWorked);
 20 double getHours() const;
 21 void printCheck();
 22 private:
 23 double wageRate;
 24 double hours;
 25 };

 26 } //SavitchEmployees

 27 #endif //HOURLYEMPLOYEE_H

 List only the declaration of an
inherited member function if you
want to change the definition of
the function.

www.itpub.net

Inheritance Basics 619

has member variables named name , ssn , and netPay . The member variables name ,
ssn , and netPay are inherited from the class Employee . The class HourlyEmployee
declares two additional member variables named wageRate and hours . Thus, every
object of the class HourlyEmployee has five member variables named name , ssn ,
netPay , wageRate , and hours . Note that the definition of a derived class (such
as HourlyEmployee) lists only the added member variables. The member variables
defined in the base class are not mentioned. They are provided automatically to the
derived class.

 Just as it inherits the member variables of the class Employee , so too the class
HourlyEmployee inherits all the member functions from the class Employee . Thus, the
class HourlyEmployee inherits the member functions getName , getSsn , getNetPay ,
setName , setSsn , setNetPay , and printCheck from the class Employee .

 Display 14.4 Interface for the Derived Class SalariedEmployee

 1
 2 //This is the header file salariedemployee.h.
 3 //This is the interface for the class SalariedEmployee.
 4 #ifndef SALARIEDEMPLOYEE_H
 5 #define SALARIEDEMPLOYEE_H

 6 #include <string>
 7 #include "employee.h"

 8 using std::string;

 9 namespace SavitchEmployees
 10 {

 11 class SalariedEmployee : public Employee
 12 {
 13 public:
 14 SalariedEmployee();
 15 SalariedEmployee (const string& theName, const string& theSsn,
 16 double theWeeklySalary);
 17 double getSalary() const;
 18 void setSalary(double newSalary);
 19 void printCheck();
 20 private:
 21 double salary; //weekly
 22 };

 23 } //SavitchEmployees

 24 #endif //SALARIEDEMPLOYEE_H

620 CHAPTER 14 Inheritance

 In addition to the inherited member variables and member functions, a derived class
can add new member variables and new member functions. The new member variables
and the declarations for the new member functions are listed in the class definition. For
example, the derived class HourlyEmployee adds the two member variables wageRate
and hours and adds the new member functions setRate , getRate , setHours , and
getHours . This is shown in Display 14.3 . Note that you do not give the declarations
of the inherited member functions unless you want to change these definitions, which
is a point that we will discuss shortly. For now, do not worry about the details of the
constructor definition for the derived class. We will discuss constructors in the next
subsection.

 In the implementation file for the derived class, such as the implementation of
HourlyEmployee in Display 14.5 , give the definitions of all the added member
functions. Note that you do not give definitions for the inherited member functions
unless the definition of the member function is changed in the derived class, a point we
discuss next.

 Inherited Members
A derived class automatically has all the member variables and all the ordinary member
functions of the base class. (As discussed later in this chapter, there are some specialized
member functions, such as constructors, that are not automatically inherited.) These
members from the base class are said to be inherited. These inherited member functions
and inherited member variables are, with one exception, not mentioned in the definition of
the derived class but are automatically members of the derived class. As explained in the
text, you do mention an inherited member function in the definition of the derived class if
you want to change the definition of the inherited member function.

 Parent and Child Classes
When discussing derived classes, it is common to use terminology derived from family
relationships. A base class is often called a parent class. A derived class is then called a
child class. This makes the language of inheritance very smooth. For example, we can
say that a child class inherits member variables and member functions from its parent
class. This analogy is often carried one step further. A class that is a parent of a parent
of a parent of another class (or some other number of “parent of” iterations) is often
called an ancestor class. If class A is an ancestor of class B, then class B is often called a
descendant of class A.

 The definition of an inherited member function can be changed in the definition
of a derived class so that it has a meaning in the derived class that is different from
what it is in the base class. This is called redefining the inherited member function.
For example, the member function printCheck() is redefined in the definition of
the derived class HourlyEmployee . To redefine a member function definition, simply

redefining

www.itpub.net

Inheritance Basics 621

list it in the class definition and give it a new definition, just as you would do with a
member function that is added in the derived class. This is illustrated by the redefined
function printCheck() of the class HourlyEmployee (Displays 14.3 and 14.5).

 Display 14.5 Implementation for the Derived Class HourlyEmployee (part 1 of 2)

 1 //This is the file hourlyemployee.cpp.
 2 //This is the implementation for the class HourlyEmployee.
 3 //The interface for the class HourlyEmployee is in
 4 //the header file hourlyemployee.h.
 5 #include <string>
 6 #include <iostream>
 7 #include "hourlyemployee.h"
 8 using std::string;
 9 using std::cout;
 10 using std::endl;

 11 namespace SavitchEmployees
 12 {

 13 HourlyEmployee::HourlyEmployee() :Employee(),wageRate(0), hours(0)
 14 {
 15 //deliberately empty
 16 }

 17 HourlyEmployee::HourlyEmployee(const string& theName,
 18 const string& theNumber, double theWageRate,

double theHours)
 19 : Employ ee(theName, theNumber), wageRate(theWageRate),

hours(theHours)
 20 {
 21 //deliberately empty
 22 }

 23 void HourlyEmployee::setRate(double newWageRate)
 24 {
 25 wageRate = newWageRate;
 26 }

 27 double HourlyEmployee::getRate() const
 28 {
 29 return wageRate;
 30 }
 31
 32 void HourlyEmployee::setHours(double hoursWorked)
 33 {
 34 hours = hoursWorked;

(continued)

622 CHAPTER 14 Inheritance

SalariedEmployee is another example of a derived class of the class Employee .
The interface for the class SalariedEmployee is given in Display 14.4 , and
its implementation is given in Display 14.6 . An object declared to be of type
SalariedEmployee has all the member functions and member variables of Employee
plus the new members given in the definition of the class SalariedEmployee .
This is true even though the class SalariedEmployee lists none of the inherited
variables and lists only one function from the class Employee— namely, the function
printCheck , which will have its definition changed in SalariedEmployee . The class
SalariedEmployee , nonetheless, has the three member variables name , ssn , and
netPay , as well as the member variable salary . Notice that you do not have to
declare the member variables and member functions of the class Employee , such as
name and setName , in order for SalariedEmployee to have these members. The
class SalariedEmployee gets these inherited members automatically without the
programmer doing anything.

 Note that the class Employee has all the code that is common to the two classes
HourlyEmployee and SalariedEmployee . This saves you the trouble of writing
identical code two times: once for the class HourlyEmployee and once for the class
SalariedEmployee . Inheritance allows you to reuse the code in the class Employee .

Display 14.5 Implementation for the Derived Class HourlyEmployee (part 2 of 2)

 35 }
 36 double HourlyEmployee::getHours() const
 37 {
 38 return hours;
 39 }

 40 void HourlyEmployee::printCheck()
 41 {
 42 setNetPay(hours * wageRate);

 43 cout << "\n__\n";
 44 cout << "Pay to the order of " << getName() << endl;
 45 cout << "The sum of " << getNetPay() << " Dollars\n";
 46 cout << "__\n";
 47 cout << "Check Stub: NOT NEGOTIABLE\n";
 48 cout << "Employee Number: " << getSsn() << endl;
 49 cout << "Hourly Employee. \nHours worked: " << hours
 50 << " Rate: " << wageRate << " Pay: " << getNetPay() <<

endl;
 51 cout << "__\n";
 52 }

 53 } //SavitchEmployees

We have chosen to set netPay as part of
the printCheck function because that is
when it is used. In any event, this is an
accounting question, not a programming
question.
But, note that C++ allows us to drop the
const on the function printCheck when
we redefine it in a derived class.

www.itpub.net

Inheritance Basics 623

 Display 14.6 Implementation for the Derived Class SalariedEmployee (part 1 of 2)

 1
 2 //This is the file salariedemployee.cpp
 3 //This is the implementation for the class SalariedEmployee.
 4 //The interface for the class SalariedEmployee is in
 5 //the header file salariedemployee.h.
 6 #include <iostream>
 7 #include <string>
 8 #include "salariedemployee.h"
 9 using std::string;
 10 using std::cout;
 11 using std::endl;

 12 namespace SavitchEmployees
 13 {
 14 SalariedEmployee::SalariedEmployee() : Employee(), salary(0)
 15 {
 16 //deliberately empty
 17 }

 18 SalariedEmployee::SalariedEmployee(const string& theName,
 19 const string& theNumber,

double theWeeklyPay)
 20 : Employee(theName, theNumber), salary(theWeeklyPay)
 21 {
 22 //deliberately empty
 23 }

 24 double SalariedEmployee::getSalary() const
 25 {
 26 return salary;
 27 }

 28 void SalariedEmployee::setSalary(double newSalary)
 29 {
 30 salary = newSalary;
 31 }
 32
 33 void SalariedEmployee::printCheck()
 34 {
 35 setNetPay(salary);
 36 cout << "\n__\n";
 37 cout << "Pay to the order of " << getName() << endl;
 38 cout << "The sum of " << getNetPay() << " Dollars\n";
 39 cout << "___\n";
 40 cout << "Check Stub NOT NEGOTIABLE \n";
 41 cout << "Employee Number: " << getSsn() << endl; (continued)

624 CHAPTER 14 Inheritance

 42 cout << "Salaried Employee. Regular Pay: "
 43 << salary << endl;
 44 cout << "___\n";
 45 }
 46 } //SavitchEmployees

Display 14.6 Implementation for the Derived Class SalariedEmployee (part 2 of 2)

 Constructors in Derived Classes

 A constructor in a base class is not inherited in the derived class, but you can invoke a
constructor of the base class within the definition of a derived class constructor, which
is all you need or normally want. A constructor for a derived class uses a constructor
from the base class in a special way. A constructor for the base class initializes all the
data inherited from the base class. Thus, a constructor for a derived class begins with
an invocation of a constructor for the base class. The special syntax for invoking
the base class constructor is illustrated by the constructor definitions for the class
HourlyEmployee given in Display 14.5 . In what follows we have reproduced (with
minor changes in the line breaks to make it fit the text column) one of the constructor
definitions for the class HourlyEmployee taken from that display:

HourlyEmployee::HourlyEmployee(const string&theName,
const string& theNumber, double theWageRate,
double theHours)

 : Employee(theName, theNumber),
 wageRate(theWageRate), hours(theHours)
{

//deliberately empty
}

 The portion after the colon is the initialization section of the constructor definition for
the constructor HourlyEmployee::HourlyEmployee . The part Employee(theName,
theNumber) is an invocation of the two-argument constructor for the base class
Employee . Note that the syntax for invoking the base class constructor is analogous
to the syntax used to set member variables: The entry wageRate (theWageRate)
sets the value of the member variable wageRate to theWageRate ; the entry
Employee(theName, theNumber) invokes the base class constructor Employee with
the arguments theName and theNumber . Since all the work is done in the initialization
section, the body of the constructor definition is empty.

 In the following, we reproduce the other constructor for the class HourlyEmployee
from Display 14.5 :

HourlyEmployee::HourlyEmployee() : Employee(), wageRate(0),
hours(0)

{
 //deliberately empty
}

www.itpub.net

Inheritance Basics 625

 In this constructor definition, the default (zero-argument) version of the base class
constructor is called to initialize the inherited member variables. You should always
include an invocation of one of the base class constructors in the initialization section
of a derived class constructor.

 If a constructor definition for a derived class does not include an invocation
of a constructor for the base class, then the default (zero-argument) version of the
base class constructor will be invoked automatically. So, the following definition of
the default constructor for the class HourlyEmployee (with Employee() omitted) is
equivalent to the version we just discussed:

HourlyEmployee::HourlyEmployee() : wageRate(0), hours(0)
{
 //deliberately empty
}

 However, we prefer to always explicitly include a call to a base class constructor, even if
it would be invoked automatically.

 A derived class object has all the member variables of the base class. When a derived
class constructor is called, these member variables need to be allocated memory and
should be initialized. This allocation of memory for the inherited member variables
must be done by a constructor for the base class, and the base class constructor is the
most convenient place to initialize these inherited member variables. That is why you
should always include a call to one of the base class constructors when you define a
constructor for a derived class. If you do not include a call to a base class constructor
(in the initialization section of the definition of a derived class constructor), then the
default (zero-argument) constructor of the base class is called automatically. (If there is
no default constructor for the base class, an error occurs.)

 An Object of a Derived Class Has More Than One Type
In everyday experience, an hourly employee is an employee. In C++ the same sort of thing
holds. Since HourlyEmployee is a derived class of the class Employee, every object
of the class HourlyEmployee can be used anyplace an object of the class Employee
can be used. In particular, you can use an argument of type HourlyEmployee when a
function requires an argument of type Employee. You can assign an object of the class
HourlyEmployee to a variable of type Employee. (But be warned: You cannot assign a
plain old Employee object to a variable of type HourlyEmployee. After all, an Employee
is not necessarily an HourlyEmployee.) Of course, the same remarks apply to any base
class and its derived class. You can use an object of a derived class anyplace that an object
of its base class is allowed.

More generally, an object of a class type can be used anyplace that an object of any of its
ancestor classes can be used. If class Child is derived from class Ancestor and class
Grandchild is derived from class Child, then an object of class Grandchild can be
used anyplace an object of class Child can be used, and the object of class Grandchild
can also be used anyplace that an object of class Ancestor can be used.

626 CHAPTER 14 Inheritance

 The call to the base class constructor is the first action taken by a derived class
constructor. Thus, if class B is derived from class A and class C is derived from class B,
then when an object of class C is created, first a constructor for class A is called, then a
constructor for B is called, and finally the remaining actions of the class C constructor
are taken.

order of
constructor

 calls

 Constructors in Derived Classes
A derived class does not inherit the constructors of its base class. However, when defining
a constructor for the derived class, you can and should include a call to a constructor of the
base class (within the initialization section of the constructor definition).

If you do not include a call to a constructor of the base class, then the default (zero-
argument) constructor of the base class will automatically be called when the derived class
constructor is called.

 PITFALL: Use of Private Member Variables from the Base Class

 An object of the class HourlyEmployee (Displays 14.3 and 14.5) inherits a member
variable called name from the class Employee (Displays 14.1 and 14.2). For example,
the following would set the value of the member variable name of the object joe to
"Josephine" (it also sets the member variable ssn to "123-45-6789" and both
wageRate and hours to 0):

HourlyEmployee joe("Josephine", "123-45-6789", 0, 0);

 If you want to change joe.name to "Mighty-Joe", you can do so as follows:

joe.setName("Mighty-Joe");

 You must be a bit careful about how you manipulate inherited member variables such
as name . The member variable name of the class HourlyEmployee was inherited from
the class Employee , but the member variable name is a private member variable in the
definition of the class Employee . That means that name can only be directly accessed
within the definition of a member function in the class Employee . A member variable
(or member function) that is private in a base class is not accessible by name in the
definition of a member function for any other class, not even in a member function
definition of a derived class . Thus, although the class HourlyEmployee does have a
member variable named name (inherited from the base class Employee), it is illegal to
directly access the member variable name in the definition of any member function in
the class definition of HourlyEmployee .

www.itpub.net

Inheritance Basics 627

 PITFALL: (continued)

For example, the following are the first few lines from the body of the member
function Hourly Employee::printCheck (taken from Display 14.5):

void HourlyEmployee::printCheck()
{
 setNetPay(hours * wageRate);
 cout << "\n__\n";
 cout << "Pay to the order of " << getName() << endl;
 cout << "The sum of " << getNetPay() << " Dollars\n";

 You might have wondered why we needed to use the member function setNetPay
to set the value of the netPay member variable. You might be tempted to rewrite the
start of the member function definition as follows:

void HourlyEmployee::printCheck()
{
 netPay = hours * wageRate; Illegal use of netPay.

 As the comment indicates, this will not work. The member variable netPay is a
private member variable in the class Employee , and although a derived class like
HourlyEmployee inherits the variable netPay , it cannot access it directly. It must
use some public member function to access the member variable netPay . The correct
way to accomplish the definition of printCheck in the class HourlyEmployee is the
way we did it in Display 14.5 (part of which was displayed earlier).

 The fact that name and netPay are inherited variables that are private in the
base class also explains why we needed to use the accessor functions getName
and getNetPay in the defi nition of HourlyEmployee::printCheck instead of
simply using the variable names name and netPay . You cannot mention a private
inherited member variable by name. You must instead use public accessor and
mutator member functions (such as getName and setName) that were defi ned
in the base class. (Recall that an accessor function is a function that allows you to
 access member variables of a class and a mutator function is one that allows you to
change member variables of a class. Accessor and mutator functions are covered
in Chapter 6 .)

 The fact that a private member variable of a base class cannot be accessed in the
defi nition of a member function of a derived class often seems wrong to people.
After all, if you are an hourly employee and you want to change your name, nobody
says, “Sorry, name is a private member variable of the class Employee .” If you are an
hourly employee, you are also an employee. In Java, this is also true; an object of
the class HourlyEmployee is also an object of the class Employee . However, if C++
allowed access to private member variables and private member functions from a
derived class, then anytime you want to access a private member variable you could
simply create a derived class and access it in a member function of that class. This

(continued)

628 CHAPTER 14 Inheritance

 The protected Qualifier

 As you have seen, you cannot access a private member variable or private member
function in the definition or implementation of a derived class. There is a classification
of member variables and functions that allows them to be accessed by name in a derived
class, but not accessed anyplace else, such as in some class that is not a derived class.
If you use the qualifier protected , rather than private or public , before a member
variable or member function of a class, then for any class or function other than a
derived class the effect is the same as if the member variable were labeled private ;
however, in a derived class the variable can be accessed by name.

means that all private member variables would be accessible to anybody who wants
to put in a little extra effort. This scenario illustrates the problem, but the bigger
problem is unintentional errors rather than intentional subversion. If private member
variables of a class are accessible in member function defi nitions of a derived class,
then the member variables might be changed by mistake or in inappropriate ways.
(Remember, accessor and mutator functions can guard against inappropriate changes
to member variables.)

 We will discuss one possible way to get around this restriction on private member
variables of the base class in the subsection entitled “The protected Qualifi er” a bit
later in this chapter. ■

PITFALL: (continued)

 PITFALL: Private Member Functions Are Effectively
Not Inherited

 As noted in the previous Pitfall section, a member variable (or member function)
that is private in a base class is not directly accessible outside the interface and
implementation of the base class, not even in a member function definition for a derived
class . Note that private member functions are just like private variables in terms of
not being directly available. In the case of member functions, however, the restriction
is more dramatic. A private variable can be accessed indirectly via an accessor or
mutator member function. A private member function is simply not available. It is
just as if the private member function were not inherited.

 This should not be a problem. Private member functions should be used just as
helping functions, and so their use should be limited to the class in which they are
defi ned. If you want a member function to be used as a helping member function in
a number of inherited classes, then it is not just a helping function, and you should
make the member function public. ■

www.itpub.net

Inheritance Basics 629

 For example, consider the class HourlyEmployee , which was derived from
the base class Employee . We were required to use accessor and mutator member
functions to manipulate the inherited member variables in the definition of
HourlyEmployee::printCheck . If all the private member variables in the class
Employee were labeled with the keyword protected instead of private , the definition
of HourlyEmployee::printCheck in the derived class Employee could be simplified
to the following:

void HourlyEmployee::printCheck()
//Only works if the member variables of Employee are marked
//protected instead of private.
{
 netPay = hours * wageRate;

 cout << "\n__\n";
 cout << "Pay to the order of " << name << endl;
 cout << "The sum of " << netPay << " Dollars\n";
 cout << "__\n";
 cout << "Check Stub: NOT NEGOTIABLE\n";
 cout << "Employee Number: " << ssn << endl;
 cout << "Hourly Employee. \nHours worked: " << hours
 << " Rate: " << wageRate << " Pay: " << netPay << endl;
 cout << "__\n";
}

 In the derived class HourlyEmployee , the inherited member variables name , netPay ,
and ssn can be accessed by name provided they are marked as protected (as
opposed to private) in the base class Employee . However, in any class that is not
derived from the class Employee , these member variables are treated as if they are
marked private .

 Member variables that are marked protected in the base class act as though
they are also marked protected in any derived class. For example, suppose you
define a derived class PartTimeHourlyEmployee of the class HourlyEmployee .
The class PartTimeHourlyEmployee inherits all the member variables of the class
HourlyEmployee , including the member variables that HourlyEmployee inherits from
the class Employee . The class PartTimeHourlyEmployee will thus have the member
variables netPay , name , and ssn . If these member variables are marked protected in
the class Employee , then they can be used by name in the definitions of functions of
the class PartTimeHourlyEmployee .

 Except for derived classes (and derived classes of derived classes, etc.), a member
variable that is marked protected is treated the same as if it were marked private .

 We include this discussion of protected member variables primarily because you
will see them used and should be familiar with them. Many, but not all, programming
authorities say it is bad style to use protected member variables because doing so
compromises the principle of hiding the class implementation. They say that all member
variables should be marked private . If all member variables are marked private ,
the inherited member variables cannot be accessed by name in derived class function

protected

630 CHAPTER 14 Inheritance

definitions. However, this is not as bad as it sounds. The inherited private member
variables can be accessed indirectly by invoking inherited functions that either read or
change the private inherited variables. Since authorities differ on whether you should use
protected members, you will have to make your own decision on whether to utilize them.

 Protected Members
If you use the qualifier protected (rather than private or public) before a member
variable of a class, then for any class or function other than a derived class the effect is
the same as if the member variable were labeled private. However, in the definition of
a member function of a derived class, the variable can be accessed by name. Similarly, if
you use the qualifier protected before a member function of a class, then for any class or
function other than a derived class, the effect is the same as if the member variable were
labeled private. However, in the definition of a member function of a derived class, the
protected function can be used.

Protected members are inherited in the derived class as if they were marked protected
in the derived class. In other words, if a member is marked as protected in a base class,
then it can be accessed by name in the definitions of all descendant classes, not just in
those classes directly derived from the base class.

 Self-Test Exercises

 1. Is the following program legal (assuming appropriate #include and using
directives are added)?

void showEmployeeData(const Employee object);

int main()
{
 HourlyEmployee joe("Mighty Joe",

"123-45-6789", 20.50, 40);
SalariedEmployee boss("Mr. Big Shot",

"987-65-4321", 10500.50);
showEmployeeData(joe);
showEmployeeData(boss);

return 0;
}

void showEmployeeData(const Employee object)
{
 cout << "Name: " << object.getName() << endl;
 cout << "Social Security Number: "
 << object.getSsn() << endl;
}

www.itpub.net

Inheritance Basics 631

 Redefinition of Member Functions

 In the definition of the derived class HourlyEmployee (Display 14.3), we gave
the declaration for the new member functions setRate , getRate , setHours , and
getHours . We also gave the function declaration for only one of the member functions
inherited from the class Employee . The inherited member functions whose function
declarations were not given (such as setName and setSsn) are inherited unchanged.
They have the same definition in the class HourlyEmployee as they do in the base
class Employee . When you define a derived class like HourlyEmployee , you list only
the function declarations for the inherited member functions whose definitions you
want to change to have different definitions in the derived class. If you look at the
implementation of the class HourlyEmployee (Display 14.5), you will see that we have
redefined the inherited member function printCheck . The class SalariedEmployee
also gives a new definition to the member function printCheck , as shown in
 Display 14.6 . Moreover, the two classes give different definitions from each other.
The function printCheck is redefined in the derived classes.

 Self-Test Exercises (continued)

2. Give a defi nition for a class SmartBut that is a derived class of the base class
Smart given in the following. Do not bother with #include directives or
namespace details.

class Smart
{
public:
 Smart();

void printAnswer() const;
protected:

int a;
int b;

};

 This class should have an additional data fi eld, crazy , of type bool ; one
additional member function that takes no arguments and returns a value of type
bool ; and suitable constructors. The new function is named isCrazy . You do
not need to give any implementations, just the class defi nition.

 3. Is the following a legal defi nition of the member function isCrazy in the
derived class SmartBut discussed in Self-Test Exercise 2 ? Explain your answer.
(Remember, the question asks if it is legal, not if it is a sensible defi nition.)

bool SmartBut::isCrazy() const
{

if (a > b)
return crazy;

else
return true;

}

632 CHAPTER 14 Inheritance

 Display 14.7 gives a demonstration program that illustrates the use of the derived
classes HourlyEmployee and SalariedEmployee .

 Redefining an Inherited Function
A derived class inherits all the member functions (and member variables) that belong to the
base class. However, if a derived class requires a different implementation for an inherited
member function, the function may be redefined in the derived class. When a member
function is redefined, you must list its declaration in the definition of the derived class, even
though the declaration is the same as in the base class. If you do not wish to redefine a
member function that is inherited from the base class, do not list it in the definition of the
derived class.

 Redefining versus Overloading

 Do not confuse redefining a function definition in a derived class with overloading a
function name. When you redefine a function definition, the new function definition
given in the derived class has the same number and types of parameters. When you
overload a function, the function in the derived class has a different number of
parameters or a parameter of a different type from the function in the base class, and
the derived class has both functions. For example, suppose we added a function with
the following function declaration to the definition of the class HourlyEmployee :

void setName(string firstName, string lastName);

 The class HourlyEmployee would have this two-argument function setName and
would also inherit the following one-argument function setName :

void setName(string newName);

 The class HourlyEmployee would have two functions named setName . This would be
overloading the function name setName .

 On the other hand, both the class Employee and the class HourlyEmployee define a
function with the following function declaration:

void printCheck();

 In this case, the class HourlyEmployee has only one function named printCheck , but
the definition of the function printCheck for the class HourlyEmployee is different
from its definition for the class Employee . In this case, the function printCheck has
been redefined .

 If you get redefining and overloading confused, you do have one consolation: They
are both legal. So, it is more important to learn how to use them than it is to learn to
distinguish between them. Nonetheless, you should learn the difference between them.

www.itpub.net

Inheritance Basics 633

 Display 14.7 Using Derived Classes

 1 #include <iostream>
 2 #include "hourlyemployee.h"
 3 #include "salariedemployee.h"
 4 using std::cout;
 5 using std::endl;
 6 using SavitchEmployees::HourlyEmployee;
 7 using SavitchEmployees::SalariedEmployee;

 8 int main()
 9 {
 10 HourlyEmployee joe;
 11 joe.setName("Mighty Joe");
 12 joe.setSsn("123-45-6789");
 13 joe.setRate(20.50);
 14 joe.setHours(40);
 15 cout << "Check for " << joe.getName()
 16 << " for " << joe.getHours() << " hours.\n";
 17 joe.printCheck();
 18 cout << endl;

 19 SalariedEmployee boss("Mr. Big Shot", "987-65-4321", 10500.50);
 20 cout << "Check for " << boss.getName() << endl;
 21 boss.printCheck();

 22 return 0;
 23 }

 Sample Dialogue

 Check for Mighty Joe for 40 hours.
__
Pay to the order of Mighty Joe
The sum of 820 Dollars
__
Check Stub: NOT NEGOTIABLE
Employee Number: 123-45-6789
Hourly Employee.
Hours worked: 40 Rate: 20.5 Pay: 820

Check for Mr. Big Shot
__
Pay to the order of Mr. Big Shot
The sum of 10500.5 Dollars

Check Stub NOT NEGOTIABLE
Employee Number: 987-65-4321
Salaried Employee. Regular Pay: 10500.5

The functions setName, setSsn, setRate,
setHours, and getName are inherited
unchanged from the class Employee. The
function printCheck is redefined. The
function getHours was added to the derived
class HourlyEmployee.

634 CHAPTER 14 Inheritance

 Access to a Redefined Base Function

 Suppose you redefine a function so that it has a different definition in the derived
class from what it had in the base class. The definition that was given in the base class
is not completely lost to the derived class objects. However, if you want to invoke the
version of the function given in the base class with an object in the derived class, you
need some way to say “use the definition of this function as given in the base class
(even though I am an object of the derived class).” The way you say this is to use the
scope resolution operator with the name of the base class. An example should clarify
the details.

 Consider the base class Employee (Display 14.1) and the derived class
HourlyEmployee (Display 14.3). The function printCheck() is defined in both
classes. Now suppose you have an object of each class, as in the following:

Employee JaneE;
HourlyEmployee SallyH;

 Then

JaneE.printCheck();

 uses the definition of printCheck given in the class Employee , and

SallyH.printCheck();

 uses the definition of printCheck given in the class HourlyEmployee .
 But suppose you want to invoke the version of printCheck given in the definition

of the base class Employee with the derived class object SallyH as the calling object for
printCheck . Do that as follows:

SallyH.Employee::printCheck();

 Signature
A function’s signature is the function’s name with the sequence of types in the parameter
list, not including the const keyword and the ampersand, &;. When you overload a function
name, the two definitions of the function name must have different signatures using this
definition of signature. (Some authorities include the const and/or ampersand as part of the
signature, but we wanted a definition that works for explaining overloading.) A function that
has the same name in a derived class as in the base class but has a different signature is
overloaded, not redefined.

(As we noted in Chapter 4, some compilers will, in fact, allow you to overload on the basis
of const versus no const, but you should not count on this. The C++ standard says it is
not allowed.)

www.itpub.net

Inheritance Basics 635

 Of course, you are unlikely to want to use the version of printCheck given in
the particular class Employee , but with other classes and other functions, you may
occasionally want to use a function definition from a base class with a derived class
object. An example is given in Self-Test Exercise 6 .

 Functions That Are Not Inherited

 As a general rule, if Derived is a derived class with base class Base , then all “normal”
functions in the class Base are usable inherited members of the class Derived .
However, there are some special functions that are, for all practical purposes, not
inherited. We have already seen that, as a practical matter, constructors and private
member functions are not inherited. Destructors (discussed in Section 14.2) are also
effectively not inherited.

 The copy constructor is not inherited, but if you do not define a copy constructor
in a derived class (or any class, for that matter), C++ will automatically generate a copy
constructor for you. However, this default copy constructor simply copies the contents
of member variables and does not work correctly for classes with pointers or dynamic
data in their member variables. Thus, if your class member variables involve pointers,
dynamic arrays, or other dynamic data, you should define a copy constructor for the
class. This applies whether or not the class is a derived class.

 The assignment operator = is also not inherited. If the base class Base defines the
assignment operator, but the derived class Derived does not, then the class Derived
will have an assignment operator, but it will be the default assignment operator
that C++ creates (when you do not define =); it will not have anything to do with
the base class assignment operator defined in Base . Techniques for defining the
assignment operator are discussed in the subsection “Assignment Operators and Copy
Constructors in Derived Classes” in Section 14.2 .

 It is natural that constructors, destructors, and the assignment operator are not
inherited. In order to correctly perform their tasks, they need information that the base
class does not possess; namely, they need to know about the new member variables
introduced in the derived class.

 Self-Test Exercises

 4. The class SalariedEmployee inherits both of the functions getName and
printCheck (among other things) from the base class Employee , yet only the
function declaration for the function printCheck is given in the defi nition
of the class SalariedEmployee . Why isn’t the function declaration for the
function getName given in the defi nition of SalariedEmployee?

(continued)

636 CHAPTER 14 Inheritance

 14.2 Programming with Inheritance

 The devil is in the details.

 Common saying

 This section presents some of the more subtle details regarding inheritance and gives
another complete example, plus some discussion on inheritance and related programming
techniques. The material in this section uses dynamic arrays (Chapter 10) , and most of
the topics are only relevant to classes that use dynamic arrays or pointers and other
dynamic data.

 Assignment Operators and Copy Constructors
in Derived Classes

 Overloaded assignment operators and constructors are not inherited. However, they
can be used—and in almost all cases must be used—in the definitions of overloaded
assignment operators and copy constructors in derived classes.

 When overloading the assignment operator in a derived class, you normally use
the overloaded assignment operator from the base class. To help understand the

 Self-Test Exercises (continued)

5. Give a defi nition for a class TitledEmployee that is a derived class of the base
class SalariedEmployee given in Display 14.4 . The class TitledEmployee has
one additional member variable of type string called title . It also has two
additional member functions: getTitle , which takes no arguments and returns
a string , and setTitle, which is a void function that takes one argument
of type string . It also redefi nes the member function setName . You do not
need to give any implementations, just the class defi nition. However, do give all
needed #include directives and all using namespace directives. Place the class
TitledEmployee in the namespace SavitchEmployees.

 6. Give the defi nitions of the constructors for the class TitledEmployee that you
gave as the answer to Self-Test Exercise 5 . Also, give the redefi nition of the
member function setName . The function setName should insert the title into
the name. Do not bother with #include directives or namespace details.

 7. You know that an overloaded assignment operator and a copy constructor
are not inherited. Does this mean that if you do not defi ne an overloaded
assignment operator or a copy constructor for a derived class, then that derived
class will have no assignment operator and no copy constructor?

www.itpub.net

Programming with Inheritance 637

code outline we will give, remember that an overloaded assignment operator must be
defined as a member function of the class.

 If Derived is a class derived from Base , then the definition of the overloaded
assignment operator for the class Derived would typically begin with something like
the following:

Derived& Derived:: operator =(const Derived& rightSide)
{
 Base:: operator =(rightSide);

 The first line of code in the body of the definition is a call to the assignment operator
of the Base class. This takes care of the inherited member variables and their data.
The definition of the overloaded assignment operator would then go on to set the
new member variables that were introduced in the definition of the class Derived . A
complete example that includes this technique is given in the programming example
 “Partially Filled Array with Backup” later in this chapter.

 A similar situation holds for defining the copy constructor in a derived class. If
Derived is a class derived from Base , then the definition of the copy constructor for
the class Derived would typically use the copy constructor for the class Base to set
the inherited member variables and their data. The code would normally begin with
something like the following:

Derived::Derived(const Derived& Object)
 : Base(Object), <probably more initializations>
{

 The invocation of the base class copy constructor Base(Object) sets the inherited
member variables of the Derived class object being created. Note that since Object
is of type Derived , it is also of type Base ; therefore, Object is a legal argument to
the copy constructor for the class Base . A complete example that includes a copy
constructor in a base class is given in the programming example “Partially Filled Array
with Backup,” later in this chapter.

 Of course, these techniques do not work unless you have a correctly functioning
assignment operator and a correctly functioning copy constructor for the base class.
This means that the base class definition must include a copy constructor and that
either the default automatically created assignment operator works correctly for the
base class or the base class has an overloaded definition of the assignment operator.

 Destructors in Derived Classes

 If a base class has a correctly functioning destructor, it is relatively easy to define
a correctly functioning destructor in a class derived from the base class. When the
destructor for the derived class is invoked, it automatically invokes the destructor of
the base class, so there is no need for the explicit writing of a call to the base class
destructor; it always happens automatically. The derived class destructor thus need
only worry about using delete on the member variables (and any data they point to)
that are added in the derived class. It is the job of the base class destructor to invoke
delete on the inherited member variables.

638 CHAPTER 14 Inheritance

 If class B is derived from class A and class C is derived from class B, then when an
object of class C goes out of scope, first the destructor for the class C is called, then the
destructor for class B is called, and finally the destructor for class A is called. Note that
the order of destructor calls is the reverse of the order in which constructors are called.
We give an example of writing a destructor in a derived class in the programming
example “Partially Filled Array with Backup.”

 EXAMPLE: Partially Filled Array with Backup

 This example presents a derived class of the partially filled array class PFArrayD that
we presented in Chapter 10 (Display 10.10) . For reference, we repeat the header file
for the base class PFArrayD in Display 14.8 . We include as much as we will discuss
of the implementation for the base class PFArrayD in Display 14.9 . Note that we
have made one important change to the definition presented in Chapter 10 . We have
changed the member variables from private to protected. This will allow member
functions in the derived class to access the member variables by name.

 We will define a derived class called PFArrayDBak using PFArrayD as a base class.
An object of the derived class PFArrayDBak will have all the member functions of
the base class PFArrayD and can be used just like an object of the class PFArrayD ,
but an object of the class PFArrayDBak will have the following added feature: There
is a member function called backup that can make a backup copy of all the data
in the partially filled array; at any later time the programmer can use the member
function restore to restore the partially filled array to the state it was in just before
the last invocation of backup . If the meaning of these added member functions is
not clear, you should peek ahead to the sample demonstration program shown in
 Display 14.12 .

 The interface for the derived class PFArrayDBak is shown in Display 14.10 .
The class PFArrayDBak adds two member variables to hold a backed-up copy of
the partially filled array: a member variable b of type double* that will point to
a dynamic array with the backup version of the (inherited) working array, and an
int member variable named usedB to indicate how much of the backed-up array
b is filled with data. Since there is no way to change the capacity of a PFArrayD
(or a PFArrayDBak), there is no need to back up the capacity value. All the basic
functions for handling a partially filled array are inherited unchanged from the base
class PFArrayD . These inherited functions manipulate the inherited array a and the
inherited int variable used just as they did in the base class PFArrayD .

 The implementation of the new member functions for the class PFArrayDBak is
shown in Display 14.11 . The constructors of the derived class PFArrayDBak rely on
the constructors of the base class to set up the regular partially filled array (inherited
member variables a, used , and capacity). Each constructor also creates a new
dynamic array of the same size as the array a . This second array is the array b used for
backing up the data in a .

www.itpub.net

Programming with Inheritance 639

 EXAMPLE: (continued)

The member function backup copies data from the partially filled array (a and used)
to the backup locations b and usedB with the following code:

usedB = used;
for (int i = 0; i < usedB; i++)
 b[i] = a[i];

 You should note that the member variables a and used in the base class are protected
and not private. Otherwise, the preceding code would be illegal because it accesses
the inherited member variables a and used by name.

 The member function restore simply reverses things and copies from b and
usedB to a and used .

 The definition of the overloaded assignment operator for the derived class
PFArrayDBak begins with an invocation of the assignment operator for the base
class PFArrayD . This copies all the data from the member variables a, used , and
capacity from the object on the right-hand side of the assigment operator (from the
parameter rightSide) to the object on the left-hand side of the assignment operator
(the calling object). We are relying on the fact that this was done properly in the
definition of the overloaded assignment operator in the base class. That is, we rely on
the base class assignment operator to behave correctly when the same object (for the
inherited part) occurs on both sides of the assignment operator, and we assume that
the copying actions make an independent copy of the array a . The code in the body
of the overloaded assignment operator for the derived class PFArrayDBak needs to
create a similarly independent copy of the array b .

 Since the objects on the right and left sides of the assignment operators may have
different capacities, we must create a new array b (in most cases). This is done as
follows:

if (oldCapacity != rightSide.capacity)
{

delete [] b;
 b = new double[rightSide.capacity];
}

 Note that the Boolean expression in the if statement ensures that b will not be
deleted when the objects on either side of the assignment operator have the same
capacity. In particular, this ensures that when the same object appears on both sides
of the assignment operator, the array b is not deleted. After this, the copying of data
is routine.

 Note that the destructor for the class PFArrayDBak has no explicit mention of the
inherited member variable a . It simply sends the b array memory back to the freestore
for recycling with the following statement.

(continued)

640 CHAPTER 14 Inheritance

 EXAMPLE: (continued)

delete [] b;

 The memory for the inherited array a is also sent back to the freestore, even though
you do not see any mention of a in the destructor for the derived class PFArrayDBak .
When the destructor for the derived class PFArrayDBak is invoked, it ends its action
by automatically invoking the destructor for the base class PFArrayD ; that destructor
includes the following code to dispose of a :

delete [] a;

 A demonstration program for our class PFArrayDBak is given in Display 14.12 .

 Display 14.8 Interface for the Base Class PFArrayD (part 1 of 2)

 1 //This is the header file pfarrayd.h. This is the interface for the
2 //class PFArrayD. Objects of this type are partially filled arrays

//of doubles .
 3 #ifndef PFARRAYD_H
 4 #define PFARRAYD_H

 5 class PFArrayD
 6 {
 7 public:
 8 PFArrayD();
 9 //Initializes with a capacity of 50 .

 10 PFArrayD(int capacityValue);

 11 PFArrayD(const PFArrayD& pfaObject);

 12 void addElement(double element);
 13 //Precondition: The array is not full.
 14 //Postcondition: The element has been added.

 15 bool full() const;
 16 //Returns true if the array is full, false otherwise.

 17 int getCapacity() const;

 18 int getNumberUsed() const;
 19 void emptyArray();
 20 //Resets the number used to zero, effectively emptying the array.

 21 double& operator[](int index);
 22 //Read and change access to elements 0 through numberUsed - 1.

This class is the same as the one in Display
10.10, except that we have made the
member variables protected instead of
private.

It would be good to place this
class in a namespace, but we
have not done so in order to
keep the example simple.

www.itpub.net

Programming with Inheritance 641

 23 PFArrayD& operator =(const PFArrayD& rightSide);

 24 ˜PFArrayD();
 25 protected:
 26 double *a; //for an array of doubles.
 27 int capacity; //for the size of the array.
 28 int used; //for the number of array positions currently in use.
 29 };

 30 #endif //PFARRAYD_H

Display 14.8 Interface for the Base Class PFArrayD (part 2 of 2)

 Display 14.9 Implementation for the Base Class PFArrayD (part 1 of 2)

 1 #include <iostream>
 2 using std::cout;
 3 #include "pfarrayd.h"

 4 PFArrayD::PFArrayD() : capacity(50), used(0)
 5 {
 6 a = new double[capacity];
 7 }

 8 PFArrayD::PFArrayD(int size) : capacity(size), used(0)
 9 {
 10 a = new double[capacity];
 11 }

 12 PFArrayD::PFArrayD(const PFArrayD& pfaObject)
 13 :capacity(pfaObject.getCapacity()), used(pfaObject.getNumberUsed())
 14 {
 15 a = new double[capacity];
 16 for (int i =0; i < used; i++)
 17 a[i] = pfaObject.a[i];
 18 }
 19 double& PFArrayD:: operator[](int index)
 20 {
 21 if (index >= used)
 22 {
 23 cout << "Illegal index in PFArrayD.\n";
 24 exit(0);
 25 }
 26 return a[index];
 27 }
 28

(continued)

This is part of the implementation
file pfarrayd.cpp. The
complete implementation is given
in Display 10.11, but what is
shown here is all you need for this
chapter.

642 CHAPTER 14 Inheritance

 29 PFArrayD& PFArrayD:: operator =(const PFArrayD& rightSide)
 30 {
 31 if (capacity != rightSide.capacity)
 32 {
 33 delete [] a;
 34 a = new double[rightSide.capacity];
 35 }

 36 capacity = rightSide.capacity;
 37 used = rightSide.used;
 38 for (int i = 0; i < used; i++)
 39 a[i] = rightSide.a[i];
 40 return *this;
 41 }

 42 PFArrayD::<PFArrayD()
 43 {
 44 delete [] a;
 45 }

Display 14.9 Implementation for the Base Class PFArrayD (part 2 of 2)

 Display 14.10 Interface for the Derived Class PFArrayDBak (part 1 of 2)

1 //This is the header file pfarraydbak.h. This is the interface for the
2 //class PFArrayDBak. Objects of this type are partially filled arrays

//of doubles.
3 //This version allows the programmer to make a backup copy and restore
4 //to the last saved copy of the partially filled array.
 5 #ifndef PFARRAYDBAK_H
 6 #define PFARRAYDBAK_H
 7 #include "pfarrayd.h"

 8 class PFArrayDBak : public PFArrayD
 9 {
 10 public:
 11 PFArrayDBak();
 12 //Initializes with a capacity of 50.

 13 PFArrayDBak(int capacityValue);

 14 PFArrayDBak(const PFArrayDBak& Object);

 15 void backup();
 16 //Makes a backup copy of the partially filled array.

 17 void restore();
 18 //Restores the partially filled array to the last saved version.

www.itpub.net

Programming with Inheritance 643

 19 //If backup has never been invoked, this empties the partially
 20 //filled array.
 21 PFArrayDBak& operator =(const PFArrayDBak& rightSide);

 22 ~PFArrayDBak();
 23 private:
 24 double *b; //for a backup of main array.
 25 int usedB; //backup for inherited member variable used.
 26 };

 27 #endif //PFARRAYD H

Display 14.10 Interface for the Derived Class PFArrayDBak (part 2 of 2)

 Display 14.11 Implementation for the Derived Class PFArrayDBak (part 1 of 2)

 1 //This is the file pfarraydbak.cpp.
 2 //This is the implementation of the class PFArrayDBak.
 3 //The interface for the class PFArrayDBak is in the file pfarraydbak.h.
 4 #include "pfarraydbak.h"
 5 #include <iostream>
 6 using std::cout;

 7 PFArrayDBak::PFArrayDBak() : PFArrayD(), usedB(0)
 8 {
 9 b = new double[capacity];
 10 }
 11 PFArrayDBak::PFArrayDBak(int capacityValue) :
 12 PFArrayD(capacityValue), usedB(0)
 13 {
 14 b = new double[capacity];
 15 }

 16 PFArrayDBak::PFArrayDBak(const PFArrayDBak& oldObject)
 17 : PFArrayD(oldObject), usedB(0)
 18 {
 19 b = new double[capacity];
20 usedB = oldObject.usedB;
21 for (int i = 0; i < usedB; i++)
22 b[i] = oldObject.b[i];
23 }

24 void PFArrayDBak::backup()
25 {
26 usedB = used;
27 for (int i = 0; i < usedB; i++)
28 b[i] = a[i];
 29 }
 30 (continued)

Note that b is a copy of the array a.
We do not want to use b = a;.

644 CHAPTER 14 Inheritance

31 void PFArrayDBak::restore()
32 {
33 used = usedB;
34 for (int i = 0; i < used; i++)
35 a[i] = b[i];
36 }

37 PFArrayDBak& PFArrayDBak:: operator =(const PFArrayDBak& rightSide)
38 {
39 int oldCapacity = capacity;
40 PFArrayD:: operator =(rightSide);
41 if (oldCapacity != rightSide.capacity)
42 {
43 delete [] b;
44 b = new double[rightSide.capacity];
45 }

46 usedB = rightSide.usedB;
47 for (int i = 0; i < usedB; i++)
48 b[i] = rightSide.b[i];

49 return * this;
50 }

51 PFArrayDBak::~PFArrayDBak()
52 {
53 delete [] b;
 54 }

Display 14.11 Implementation for the Derived Class PFArrayDBak (part 2 of 2)

Use a call to the base class
assignment operator in order to assign
to the base class member variables.

The destructor for the base class
PFArrayD is called automatically, and
it performs delete [] a;.

 Display 14.12 Demonstration Program for the Class PFArrayDBak (part 1 of 3)

 1 //Program to demonstrate the class PFArrayDBak.
 2 #include <iostream>
 3 #include "pfarraydbak.h"
 4 using std::cin;
 5 using std::cout;
 6 using std::endl;

 7 void testPFArrayDBak();
 8 //Conducts one test of the class PFArrayDBak.

 9 int main()
 10 {
 11 cout << "This program tests the class PFArrayDBak.\n";

www.itpub.net

Programming with Inheritance 645

 12 char ans;
 13 do
 14 {
 15 testPFArrayDBak();
 16 cout << "Test again? (y/n) ";
 17 cin >> ans;
 18 } while ((ans == 'y') || (ans == 'Y'));

 19 return 0;
 20 }

 21 void testPFArrayDBak()
 22 {
 23 int cap;
 24 cout << "Enter capacity of this super array: ";
 25 cin >> cap;
 26 PFArrayDBak a(cap);

 27 cout << "Enter up to " << cap << " nonnegative numbers.\n";
 28 cout << "Place a negative number at the end.\n";

 29 double next;

 30 cin >> next;
 31 while ((next >= 0) && (!a.full()))
 32 {
 33 a.addElement(next);
 34 cin >> next;
 35 }
 36 if (next >= 0)
 37 {
 38 cout << "Could not read all numbers.\n";
 39 //Clear the unread input:
 40 while (next >= 0)
 41 cin >> next;
 42 }
 43 int count = a.getNumberUsed();
 44 cout << "The following " << count
 45 << " numbers read and stored:\n";
 46 int index;
 47 for (index = 0; index < count; index++)
 48 cout << a[index] << " ";
 49 cout << endl;

 50 cout << "Backing up array.\n";
 51 a.backup();

Display 14.12 Demonstration Program for the Class PFArrayDBak (part 2 of 3)

(continued)

646 CHAPTER 14 Inheritance

 52 cout << "Emptying array.\n";
 53 a.emptyArray();
 54 cout << a.getNumberUsed()
 55 << " numbers are now stored in the array.\n";

 56 cout << "Restoring array.\n";
 57 a.restore();
 58 count = a.getNumberUsed();
 59 cout << "The following " << count
 60 << " numbers are now stored:\n";
 61 for (index = 0; index < count; index++)
 62 cout << a[index] << " ";
 63 cout << endl;
 64 }

 Sample Dialogue

This program tests the class PFArrayDBak.
Enter capacity of this super array: 10
Enter up to 10 nonnegative numbers.
Place a negative number at the end.
1 2 3 4 5 -1
The following 5 numbers read and stored:
1 2 3 4 5
Backing up array.
Emptying array.
0 numbers are now stored in the array.
Restoring array.
The following 5 numbers are now stored:
1 2 3 4 5
Test again? (y/n) y
Enter capacity of this super array: 5
Enter up to 5 nonnegative numbers.
Place a negative number at the end.
1 2 3 4 5 6 7 -1
Could not read all numbers.
The following 5 numbers read and stored:
1 2 3 4 5
Backing up array.
Emptying array.
0 numbers are now stored in the array.
Restoring array.
The following 5 numbers are now stored:
1 2 3 4 5
Test again? (y/n) n

Display 14.12 Demonstration Program for the Class PFArrayDBak (part 3 of 3)

www.itpub.net

Programming with Inheritance 647

 PITFALL: Same Object on Both Sides of the Assignment Operator

 Whenever you overload an assignment operator, always make sure your definition
works when the same object occurs on both sides of the assignment operator.
In most cases, you will need to make this a special case with some code of its own. An
example of this was given earlier in the programming example “Partially Filled Array
with Backup.” ■

 Self-Test Exercises

 8. Suppose Child is a class derived from the class Parent and that the class
Grandchild is a class derived from the class Child . This question is concerned
with the constructors and destructors for the three classes Parent, Child , and
Grandchild . When a constructor for the class Grandchild is invoked, what
constructors are invoked and in what order? When the destructor for the class
Grandchild is invoked, what destructors are invoked and in what order?

 9. Is the following alternative defi nition of the default constructor for the class
PFArrayDBak (Displays 14.10 and 14.11) legal? (The invocation of the
constructor from the base class has been omitted.) Explain your answer.

PFArrayDBak::PFArrayDBak() : usedB(0)
{

b = new double[capacity];
}

 EXAMPLE: Alternate Implementation of PFArrayDBak

 At first glance it may seem that we needed to make the member variables of the base
class PFArrayD protected in order to give the definitions of the member functions for
the derived class PFArrayDBak . After all, many of the member functions manipulate
the inherited member variables a, used , and capacity . The implementation we
gave in Display 14.11 does indeed refer to a, used , and capacity by name, and so
those particular definitions do depend on these member variables being protected
in the base class (as opposed to private). However, we have enough accessor and
mutator functions in the base class that with just a bit more thinking, we can rewrite
the implementation of the derived class PFArrayDBak so that it works even if all the
member variables in the base class PFArrayD are private (rather than protected).

 Display 14.13 shows an alternate implementation for the class PFArrayDBak that
works fine even if all the member variables in the base class are private instead of
protected. The parts that differ from our previous implementation are shaded. Most
changes are obvious, but there are a few points that merit notice.

(continued)

648 CHAPTER 14 Inheritance

 Display 14.13 Alternate Implementation of PFArrayDBak (part 1 of 2)

 1 //This is the file pfarraydbak.cpp.
 2 //This is the implementation of the class PFArrayDBak.
 3 //The interface for the class PFArrayDBak is in the file pfarraydbak.h.
 4 #include "pfarraydbak.h"
 5 #include <iostream>
 6 using std::cout;

 7 PFArrayDBak::PFArrayDBak() : PFArrayD(), usedB(0)
 8 {
 9 b = new double[getCapacity()];
 10 }
 11 PFArrayDBak::PFArrayDBak(int capacityValue) : PFArrayD(capacityValue),
 usedB(0)
 12 {
 13 b = new double[getCapacity()];
 14 }

 EXAMPLE: (continued)

 Consider the member function backup . In our previous implementation
(Display 14.11), we copied the array entries from a to b . Since a is now private, we
cannot access it by name, but we have overloaded the array square brackets operator
(operator[]) so that it applies to objects of type PFArrayD , and this operator is
inherited in PFArrayDBak . We simply use operator[] with the calling object. The
net effect is to copy from the array a to the array b , but we never mention the private
array a by name. The code is as follows:

usedB = getNumberUsed();
for (int i = 0; i < usedB; i++)

b[i] = operator[](i);

 Be sure to note the syntax for calling an operator of the class being defined.
If superArray is an object of the class PFArrayDBak , then in the invocation
superArray.backup() , the notation operator[] (i) means superArray[i] .

 We could have used the notation operator[](i) in our definition of the
member function restore , but it is just as easy to empty the array a with the
inherited member function emptyArray and then add the backed-up elements using
addElement . This way, we also set the private member variable used in the process.

 With this alternate implementation, the class PFArrayDBak is used just as it was
with the previous implementation. In particular, the demonstration program in
 Display 14.12 works exactly the same for either implementation.

www.itpub.net

Programming with Inheritance 649

 Display 14.13 Alternate Implementation of PFArrayDBak (part 2 of 2)

 15 PFArrayDBak::PFArrayDBak(const PFArrayDBak& oldObject)
 16 : PFArrayD(oldObject), usedB(0)
 17 {
 18 b = new double[getCapacity()];
 19 usedB = oldObject.usedB;
 20 for (int i = 0; i < usedB; i++)
 21 b[i] = oldObject.b[i];
 22 }
 23 void PFArrayDBak::backup()
 24 {
 25 usedB = getNumberUsed();
 26 for (int i = 0; i < usedB; i++)
 27 b[i] = operator[](i);
 28 }
 29
 30 void PFArrayDBak::restore()
 31 {
 32 emptyArray();

 33 for (int i = 0; i < usedB; i++)
 34 addElement(b[i]);
 35 }

 36 PFArrayDBak& PFArrayDBak:: operator =(const PFArrayDBak& rightSide)
 37 {
 38 int oldCapacity = getCapacity();
 39 PFArrayD:: operator =(rightSide);
 40 if (oldCapacity != rightSide.getCapacity())
 41 {
 42 delete [] b;
 43 b = new double[rightSide.getCapacity()];
 44 }

 45 usedB = rightSide.usedB;
 46 for (int i = 0; i < usedB; i++)
 47 b[i] = rightSide.b[i];

 48 return * this;
 49 }

 50 PFArrayDBak::~PFArrayDBak()
 51 {
 52 delete [] b;
 53 }

 This implementation works even if all the
member variables in the base class are
private (rather than protected).

 Invocation of the square brackets
operator with the calling object.

650 CHAPTER 14 Inheritance

 TIP: A Class Has Access to Private Members of All Objects of
the Class

 Consider the following lines from the implementation of the overloaded assignment
operator given in Display 14.13 :

usedB = rightSide.usedB;
for (int i = 0; i < usedB; i++)

b[i] = rightSide.b[i];

 You might object that rightSide.usedB and rightSide.b[i] are illegal since
usedB and b are private member variables of some object other than the calling
object. Normally that objection would be correct. However, the object rightSide is
of the same type as the class being defined, so this is legal.

 In the defi nition of a class, you can access private members of any object of the
class, not just private members of the calling object. ■

 TIP: “Is a” versus “Has a”

 Early in this chapter we defined a derived class called HourlyEmployee using the
class Employee as the base class. In such a case an object of the derived class
HourlyEmployee is also of type Employee . Stated more simply, an HourlyEmployee
is an Employee . This is an example of the “is a” relationship between classes. It is
one way to make a more complex class from a simpler class.

 Another way to make a more complex class from a simpler class is known as the
“has a” relationship. For example, if you have a class Date that records a date, then you
might add a date of employment to the Employee class by adding a member variable
of type Date to the Employee class. In this case, we say an Employee “has a” Date . As
another example, if we have an appropriately named class to simulate a jet engine
and we are defi ning a class to simulate a passenger airplane, then we can give the
PassengerAirPlane class one or more member variables of type JetEngine . In this
case, we say that a PassengerAirPlane “has a” JetEngine .

 In most situations, you can make your code work with either an “is a” relationship
or a “has a” relationship. It seems silly (and it is silly) to make the PassengerAirPlane
class a derived class of the JetEngine class, but it can be done and can be made
to work (perhaps with diffi culty). Fortunately, the best programming technique is
to simply follow what sounds most natural in English. It makes more sense to say
“A passenger airplane has a jet engine” than it does to say “A passenger airplane
is a jet engine.” So, it makes better programming sense to have JetEngine as a
member variable of a PassengerAirPlane class. It makes little sense to make the
PassengerAirPlane class a derived class of the JetEngine class. ■

“is a”
relationship

“has a”
relationship

www.itpub.net

Programming with Inheritance 651

 Protected and Private Inheritance

 So far, all our definitions of derived classes included the keyword public in the class
heading, as in the following:

class SalariedEmployee : public Employee
{

 This may lead you to suspect that the word public can be replaced with either
protected or private to obtain a different kind of inheritance. In this case, your
suspicion would be correct. However, protected and private inheritance are seldom
used. We include a brief description of them for the sake of completeness.

 The syntax for protected and private inheritance is illustrated by the following:

class SalariedEmployee : protected Employee
{

 If you use the keyword protected for inheritance, then members that are public
in the base class are protected in the derived class when they are inherited. If you
use the keyword private for inheritance, then all members of the base class (public,
protected, and private) are inaccessible in the derived class; in other words, all members
are inherited as if they were marked private in the base class.

 Moreover, with protected and private inheritance, an object of the derived class
cannot be used as an argument that has the type of the base class. If Derived is derived
from Base using protected or private (instead of public), then an object of type
Derived is not an object of type Base ; the “is a” relationship does not hold with
protected and private inheritance. The idea is that with protected and private inheritance
the base class is simply a tool to use in defining the derived class. Although protected
and private inheritance can be made to work for some purposes, they are, as you might
suspect, seldom used, and any use they do have can be achieved in other ways. The details
about protected and private inheritance are summarized in Display 14.14 .

 Self-Test Exercises

 10. Suppose you defi ne a function with a parameter of type PFArrayD . Can you
plug in an object of the class PFArrayDBak as an argument for this function?

 11. Would the following be legal for the defi nition of a member function to add
to the class Employee (Display 14.1)? (Remember, the question is whether it is
legal, not whether it is sensible.)

void Employee::doStuff()
{

Employee object("Joe", "123-45-6789");
cout << "Hello " << object.name << endl;

}

652 CHAPTER 14 Inheritance

 Display 14.14 Public, Protected, and Private Inheritance

 ACCESS SPECIFIER
IN BASE CLASS

 TYPE OF INHERITANCE (SPECIFIER AFTER CLASS
NAME IN DERIVED CLASS DEFINITION)

public protected private

public Public Protected Private
(Can only be used by name
in definitions of member
functions and friends)

protected Protected Protected Private
(Can only be used by name
in definitions of member
functions and friends)

private Cannot be
accessed by
name in the
derived class

Cannot be
accessed by
name in the
derived class

Cannot be accessed by
name in the derived class

Entries show how inherited members are treated in the derived class.

 Note that protected and private inheritance are not inheritance in the sense we
described for public inheritance. With protected or private inheritance, the base class is
only a tool to be used in the derived class.

 Multiple Inheritance

 It is possible for a derived class to have more than one base class. The syntax is very
simple: All the base classes are listed, separated by commas. However, the possibilities
for ambiguity are numerous. What if two base classes have a function with the same
name and parameter types? Which is inherited? What if two base classes have a member
variable with the same name? All these questions can be answered, but these and
other problems make multiple inheritance a very dangerous business. Some authorities
consider multiple inheritance so risky that it should not be used at all. That may or
may not be too extreme a position, but it is true that you should not seriously attempt
multiple inheritance until you are a very experienced C++ programmer. At that point,
you will realize that you can almost always avoid multiple inheritance by using some
less dangerous technique. We will not discuss multiple inheritance in this book , but
leave it for more advanced references.

www.itpub.net

 Chapter Summary

• Inheritance provides a tool for code reuse by deriving one class from another, adding
features to the derived class.

• Derived class objects inherit the members of the base class, and may add members.

• If a member variable is private in a base class , then it cannot be accessed by name in
a derived class.

• Private member functions are not inherited.

• A member function may be redefined in a derived class so that it performs differently
from how it performs in the base class. The declaration for a redefined member func-
tion must be given in the class definition of the derived class, even though it is the
same as in the base class.

• A protected member in the base class can be accessed by name in the definition of a
member function of a publicly derived class.

• An overloaded assignment operator is not inherited. However, the assignment opera-
tor of a base class can be used in the definition of an overloaded assignment operator
of a derived class.

• Constructors are not inherited. However, a constructor of a base class can be used in
the definition of a constructor for a derived class.

 Answers to Self-Test Exercises

 1. Yes. You can plug in an object of a derived class for a parameter of the base class
type. An HourlyEmployee is an Employee . A SalariedEmployee is an Employee .

 2. class SmartBut : public Smart

 {
 public :
 SmartBut();

 SmartBut(int newA, int newB, bool newCrazy);

 bool isCrazy() const;

 private:

 bool crazy;

 };

 3. It is legal because a and b are marked protected in the base class Smart , so they
can be accessed by name in a derived class. If a and b had instead been marked
private , then this would be illegal.

 4. The declaration for the function getName is not given in the definition of
SalariedEmployee because it is not redefined in the class SalariedEmployee . It
is inherited unchanged from the base class Employee.

Answers to Self-Test Exercises 653

654 CHAPTER 14 Inheritance

 5. #include <iostream>
 #include "salariedemployee.h"

 using namespace std;

 namespace SavitchEmployees

 {

 class TitledEmployee : public SalariedEmployee

 {

 public:

 TitledEmployee();

 TitledEmployee(string theName, string theTitle,

 string theSsn, double theSalary);

 string getTitle() const;

 void setTitle(string theTitle);

 void setName(string theName);

 private:

 string title;

 };

 }//SavitchEmployees

 6. namespace SavitchEmployees
 {

 TitledEmployee::TitledEmployee()

 : SalariedEmployee(), title("No title yet")

 {

 //deliberately empty

 }

 TitledEmployee::TitledEmployee(string theName,

 string theTitle,

 string theSsn, double theSalary)

 : SalariedEmployee(theName, theSsn, theSalary),

 title(theTitle)

 {

 //deliberately empty

 }

 void TitledEmployee::setName(string theName)

 {

 Employee::setName(title + theName);

 }

 }//SavitchEmployees

 7. No. If you do not define an overloaded assignment operator or a copy constructor
for a derived class, then a default assignment operator and a default copy constructor
will be defined for the derived class. However, if the class involves pointers, dynamic
arrays, or other dynamic data, then it is almost certain that neither the default assign-
ment operator nor the default copy constructor will behave as you want them to.

www.itpub.net

Programming Projects 655

 8. The constructors are called in the following order: first Parent , then Child , and
finally Grandchild . The destructors are called in the reverse order: first Grand-
child , then Child , and finally Parent .

 9. Yes, it is legal and has the same meaning as the definition given in Display 14.11 . If
no base class constructor is called, then the default constructor for the base class is
called automatically.

 10. Yes. An object of a derived class is also an object of its base class. A PFArrayDBak
is a PFArrayD .

 11. Yes, it is legal. One reason you might think it illegal is that name is a private
member variable. However, object is in the class Employee , which is the class
that is being defined, so we have access to all member variables of all objects of the
class Employee .

 Programming Projects
Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a program that uses the class SalariedEmployee given in Display 14.4 .
Your program is to define a derived class called Administrator , which is to be
derived from the class SalariedEmployee . You are allowed to change private in
the base class to protected . You are to supply the following additional data and
function members:

 ■ A member variable of type string that contains the administrator’s title, (such
as Director or Vice President).

 ■ A member variable of type string that contains the company area of respon-
sibility (such as Production, Accounting, or Personnel).

 ■ A member variable of type string that contains the name of this administra-
tor’s immediate supervisor.

 ■ A protected member variable of type double that holds the administrator’s
annual salary. It is possible for you to use the existing salary member if you
changed private in the base class to protected .

 ■ A member function called setSupervisor , which changes the supervisor name.

 ■ A member function for reading in an administrator’s data from the keyboard.

 ■ A member function called print , which outputs the object’s data to the screen.

 ■ Finally, an overloading of the member function printCheck() with appropri-
ate notations on the check.

 2. Add temporary, administrative, permanent, and other classifications of employees
to the hierarchy from Displays 14.1 , 14.3 , and 14.4 . Implement and test this
 hierarchy. Test all member functions. A user interface with a menu would be a nice
touch for your test program.

 3. Give the definition of a class named Doctor whose objects are records for a clinic’s
doctors. This class will be a derived class of the class SalariedEmployee given

www.myprogramminglab.com

656 CHAPTER 14 Inheritance

in Display 14.4 . A Doctor record has the doctor’s specialty (such as Pediatrician,
Obstetrician, General Practitioner, etc., so use type string), and office visit fee
(use type double). Be sure your class has a reasonable complement of constructors
and accessor methods, an overloaded assignment operator, and a copy constructor.
Write a driver program to test all your methods.

 4. Create a base class called Vehicle that has the manufacturer’s name (type string),
number of cylinders in the engine (type int), and owner (type Person given in the
code that follows). Then create a class called Truck that is derived from Vehicle
and has additional properties, the load capacity in tons (type double since it may
contain a fractional part) and towing capacity in pounds (type int). Be sure your
classes have a reasonable complement of constructors and accessor methods, an
overloaded assignment operator, and a copy constructor. Write a driver program
that tests all your methods.

 The definition of the class Person follows. The implementation of the class is part
of this programming project.

class Person

 {

 public:

 Person();

 Person(string theName);

 Person(const Person& theObject);

 string getName() const;

 Person& operator=(const Person& rtSide);

 friend istream& operator >>(istream& inStream,

 Person& personObject);

 friend ostream& operator <<(ostream& outStream,

 const Person& personObject);

 private:

 string name;

 };

 5. Give the definition of two classes, Patient and Billing , whose objects are records
for a clinic. Patient will be derived from the class Person given in Programming
Project 14.4 . A Patient record has the patient’s name (inherited from the
class Person) and primary physician, of type Doctor defined in Programming
Project 14.3 . A Billing object will contain a Patient object and a Doctor object,
and an amount due of type double . Be sure your classes have a reasonable comple-
ment of constructors and accessor methods, an overloaded assignment operator,
and a copy constructor. First write a driver program to test all your methods, then
write a test program that creates at least two patients, at least two doctors, at least
two Billing records, then prints out the total income from the Billing records.

 6. Define a class named Payment that contains a member variable of type float that
stores the amount of the payment and appropriate accessor and mutator functions.
Also create a member function named paymentDetails that outputs an English
sentence describing the amount of the payment.

www.itpub.net

Programming Projects 657

 Next, define a class named CashPayment that is derived from Payment . This class
should redefine the paymentDetails function to indicate that the payment is in
cash. Include appropriate constructor(s).

 Define a class named CreditCardPayment that is derived from Payment . This
class should contain member variables for the name on the card, expiration date,
and credit card number. Include appropriate constructor(s). Finally, redefine the
paymentDetails function to include all credit card information in the printout.

 Create a main function that creates at least two CashPayment and two
CreditCardPayment objects with different values and calls to paymentDetails
for each.

 7. Define a class named Document that contains a member variable of type string
named text that stores any textual content for the document. Create a function
named getText that returns the text field, a way to set this value, and an over-
loaded assignment operator.

 Next, define a class for Email that is derived from Document and that includes
member variables for the sender , recipient , and title of an e-mail message.
Implement appropriate accessor and mutator functions. The body of the e-mail
message should be stored in the inherited variable text . Also overload the assign-
ment operator for this class.

 Similarly, define a class for File that is derived from Document and that includes
a member variable for the pathname. Implement appropriate accessor and mutator
functions for the pathname and overload the assignment operator.

 Finally, create several sample objects of type Email and File in your main func-
tion. Test your objects by passing them to the following subroutine, which will
return true if the object contains the specified keyword in the text property.

bool ContainsKeyword(const Document& docObject, string keyword)

 {

 if (docObject.getText().find(keyword) != string::npos)

 return true;

 return false;

 }

 For example, you might test to see whether an e-mail message contains the text
"c++" with the call ContainsKeyword(emailObj, "c++"); .

 8. Create a class for a simple blog. The owner of the blog should be able to (a) post a
new message, (b) numerically list and display all messages, and (c) select a specific
message and delete it.

 Viewers of the blog should only be able to numerically list and display all posted
messages.

 Create a class Viewer and a class Owner that uses inheritance to help implement
the blog functionality. Store the data messages using any format you like (a vector
of type string may be easiest). A menu function should be implemented for each
class that outputs the legal choices for the type of user. To test your classes, the
main function of the program should allow the user to invoke the menus from the
Viewer and Owner objects.

Solution to
Programming
Project 14.7

VideoNote

658 CHAPTER 14 Inheritance

 9. Suppose that you are creating a fantasy role-playing game. In this game, we have
four different types of creatures: humans, cyberdemons, balrogs, and elves. To
represent one of these creatures, we might define a Creature class as follows:

class Creature

 {

 private:

 int type; // 0 human, 1 cyberdemon, 2 balrog, 3 elf

 int strength; // How much damage we can inflict

 int hitpoints; // How much damage we can sustain

 string getSpecies(); // Returns type of species

 public:

 Creature();

 // Initialize to human, 10 strength, 10 hit points

 Creature(int newType, int newStrength, int newHit);

 // Initialize creature to new type, strength, hit points

 // Also add appropriate accessor and mutator functions

 // for type, strength, and hit points

 int getDamage();

 // Returns amount of damage this creature

 // inflicts in one round of combat

 };

 Here is an implementation of the getSpecies() function:

 string Creature::getSpecies()

 {

 switch (type)

 {

 case 0: return "Human";

 case 1: return "Cyberdemon";

 case 2: return "Balrog";

 case 3: return "Elf";

 }

 return "Unknown";

 }

 The getDamage() function outputs and returns the damage this creature can
inflict in one round of combat. The rules for calculating the damage are as follows:

 ■ Every creature inflicts damage that is a random number r, where 0 < r <=
strength .

 ■ Demons have a 5% chance of inflicting a demonic attack, which is an addi-
tional 50 damage points. Balrogs and Cyberdemons are demons.

www.itpub.net

Programming Projects 659

 ■ Elves have a 10% chance to inflict a magical attack that doubles the normal
amount of damage.

 ■ Balrogs are very fast, so they get to attack twice.

 An implementation of getDamage() is given here:

int Creature::getDamage()

 {

 int damage;

 // All creatures inflict damage, which is a

 // random number up to their strength

 damage = (rand() % strength) + 1;

 cout << getSpecies() << " attacks for " <<

 damage << " points!" << endl;

 // Demons can inflict damage of 50 with a 5% chance

 if ((type = 2) || (type == 1))

 if ((rand() % 100) < 5)

 {

 damage = damage + 50;

 cout << "Demonic attack inflicts 50 "

 << " additional damage points!" << endl;

 }

 // Elves inflict double magical damage with a 10% chance

 if (type == 3)

 {

 if ((rand() % 10)==0)

 {

 cout << "Magical attack inflicts " << damage <<

 " additional damage points!" << endl;

 damage = damage * 2;

 }

 }

 // Balrogs are so fast they get to attack twice

 if (type == 2)

 {

 int damage2 = (rand() % strength) + 1;

 cout << "Balrog speed attack inflicts " << damage2 <<

 " additional damage points!" << endl;

 damage = damage + damage2;

 }

 return damage;

 }

660 CHAPTER 14 Inheritance

 One problem with this implementation is that it is unwieldy to add new creatures.
Rewrite the class to use inheritance, which will eliminate the need for the variable
type . The Creature class should be the base class. The classes Demon , Elf , and
Human should be derived from Creature . The classes Cyberdemon and Balrog
should be derived from Demon . You will need to rewrite the getSpecies() and
getDamage() functions so they are appropriate for each class.

 For example, the getDamage() function in each class should only compute the
damage appropriate for that object. The total damage is then calculated by com-
bining the results of getDamage() at each level of the inheritance hierarchy.
As an example, invoking getDamage() for a Balrog object should invoke
getDamage() for the Demon object, which should invoke getDamage() for the
Creature object. This will compute the basic damage that all creatures inflict,
followed by the random 5% damage that demons inflict, followed by the double
damage that balrogs inflict.

 Also include mutator and accessor functions for the private variables. Write a main
function that contains a driver to test your classes. It should create an object for
each type of creature and repeatedly outputs the results of getDamage() .

 10. Define a Pet class that stores the pet’s name, age, and weight. Add appropriate
constructors, accessor functions, and mutator functions. Also define a function
named getLifespan that returns a string with the value “unknown lifespan.”

 Next, define a Dog class that is derived from Pet . The Dog class should have a
private member variable named breed that stores the breed of the dog. Add
 mutator and accessor functions for the breed variable and appropriate construc-
tors. Redefine the getLifespan function to return “Approximately 7 years” if the
dog’s weight is over 100 pounds and “Approximately 13 years” if the dog's weight
is under 100 pounds.

 Next, define a Rock class that is derived from Pet . Redefine the getLifespan
function to return “Thousands of years”.

 Finally, write a test program that creates instances of pet rocks and pet dogs that
exercise the inherited and redefined functions.

www.itpub.net

 15.2 POINTERS AND VIRTUAL
FUNCTIONS 674

 Virtual Functions and Extended Type
Compatibility 674

 Pitfall: The Slicing Problem 678
 Tip: Make Destructors Virtual 679
 Downcasting and Upcasting 680
 How C ++ Implements Virtual Functions 681

 15.1 VIRTUAL FUNCTION BASICS 662
 Late Binding 662
 Virtual Functions in C ++ 663
 Tip: The Virtual Property Is Inherited 669
 Tip: When to Use a Virtual Function 670
 Pitfall: Omitting the Definition of a Virtual

Member Function 670
 Abstract Classes and Pure Virtual Functions 671
 Example: An Abstract Class 672

 15 Polymorphism and
Virtual Functions

 Chapter Summary 683 Answers to Self-Test Exercises 684 Programming Projects 684

 I did it my way.

 FRANK SINATRA

 Introduction
Polymorphism refers to the ability to associate many meanings to one function name by
means of a special mechanism known as virtual functions or late binding . Polymorphism
is one of the fundamental mechanisms of a popular and powerful programming
philosophy known as object-oriented programming . Wow, lots of fancy words! This
chapter will explain them.

 Section 15.1 does not require the material from Chapters 10 (pointers and
dynamic arrays), 12 (file I/O), or 13 (recursion), but does require an understanding
of Chapter 14 (inheritance). Section 15.2 does not require the material from
 Chapters 12 (file I/O) or 13 (recursion), but does require the material from Chapter 10
(pointers and dynamic arrays).

 15.1 Virtual Function Basics

 virtual adj. 1. Existing or resulting in essence or effect though not in
actual fact, form, or name.

 The American Heritage Dictionary of the English Language, Third Edition

 A virtual function is so named because it may, in a sense to be made clear in this
chapter, be used before it is defined. Virtual functions will prove to be another tool for
software reuse.

 Late Binding

 Virtual functions are best explained by an example. Suppose you are designing software
for a graphics package that has classes for several kinds of figures, such as rectangles,
circles, ovals, and so forth. Each figure might be an object of a different class. For
example, the Rectangle class might have member variables for a height, width, and
center point, while the Circle class might have member variables for a center point
and a radius. In a well-designed programming project, all of these classes would
probably be descendants of a single parent class called, for example, Figure . Now,
suppose you want a function to draw a figure on the screen. To draw a circle, you need
different instructions from those you need to draw a rectangle. So, each class needs to
have a different function to draw its kind of figure. However, because the functions
belong to the classes, they can all be called draw . If r is a Rectangle object and c is

15 Polymorphism and Virtual Functions

www.itpub.net

Virtual Function Basics 663

a Circle object, then r.draw() and c.draw() can be functions implemented with
different code. All this is not news, but now we move on to something new: virtual
functions defined in the parent class Figure .

 The parent class Figure may have functions that apply to all figures. For example,
it might have a function called center that moves a figure to the center of the
screen by erasing it and then redrawing it in the center of the screen. The function
Figure::center might use the function draw to redraw the figure in the center of
the screen. When you think of using the inherited function center with figures of the
classes Rectangle and Circle , you begin to see that there are complications here.

 To make the point clear and more dramatic, let’s suppose that the class Figure
is already written and in use and that at some later time you add a class for a brand
new kind of figure—say, the class Triangle . Now, Triangle can be a derived class
of the class Figure , and so the function center will be inherited from the class
Figure . The function center should therefore apply to (and perform correctly for)
all Triangle s. But there is a complication. The function center uses draw , and the
function draw is different for each type of figure. The inherited function center (if
nothing special is done) will use the definition of the function draw given in the class
Figure , and that function draw does not work correctly for Triangle s. We want the
inherited member function center to use the function Triangle::draw rather than
the function Figure::draw . But the class Triangle —and therefore the function
Triangle::draw —was not even written when the function center (defined in the
class Figure) was written and compiled! How can the function center possibly work
correctly for Triangle s? The compiler did not know anything about Triangle::draw
at the time that center was compiled! The answer is that it can apply provided draw is
a virtual function .

 When you make a function virtual , you are telling the compiler “I do not know
how this function is implemented. Wait until it is used in a program, and then get
the implementation from the object instance.” The technique of waiting until run
time to determine the implementation of a procedure is often called late binding or
dynamic binding . Virtual functions are the way C ++ provides late binding. But, this
is enough introduction. We need an example to make this come alive (and to teach
you how to use virtual functions in your programs). To explain the details of virtual
functions in C ++ , we will use a simplified example from an application area other
than drawing figures.

 Virtual Functions in C ++

 Suppose you are designing a record-keeping program for an automobile parts store.
You want to make the program versatile, but you are not sure you can account for
all possible situations. For example, you want to keep track of sales, but you cannot
anticipate all types of sales. At first, there will only be regular sales to retail customers
who go to the store to buy one particular part. However, later you may want to add
sales with discounts or mail order sales with a shipping charge. All these sales will be for
an item with a basic price and ultimately will produce some bill. For a simple sale, the
bill is just the basic price, but if you later add discounts, then some kinds of bills will
also depend on the size of the discount. Your program will need to compute daily gross

virtual
function

late binding
or dynamic

binding

664 CHAPTER 15 Polymorphism and Virtual Functions

sales, which intuitively should just be the sum of all the individual sales bills. You
may also want to calculate the largest and smallest sales of the day or the average sale
for the day. All of these can be calculated from the individual bills, but many of the
functions for computing the bills will not be added until later, when you decide what
types of sales you will be dealing with. To accommodate this, we make the function for
computing the bill a virtual function. (For simplicity in this first example, we assume
that each sale is for just one item. Although, with derived classes and virtual functions
we could account for sales of multiple items, but will not do that here.)

 Displays 15.1 and 15.2 contain the interface and implementation for the class Sale .
All types of sales will be derived classes of the class Sale . The class Sale corresponds
to simple sales of a single item with no added discounts or charges. Notice the reserved
word virtual in the declaration for the member function bill (Display 15.1). Notice
(Display 15.2) that the member function savings and the overloaded operator, 6 ,
each use the function bill . Since bill is declared to be a virtual function, we can

 Display 15.1 Interface for the Base Class Sale

1
2 //This is the header file sale.h.
3 //This is the interface for the class Sale.
4 //Sale is a class for simple sales.

5 #ifndef SALE_H
6 #define SALE_H

7 namespace SavitchSale
8 {

9 class Sale
10 {
11 public:
12 Sale();
13 Sale(double thePrice);
14 double getPrice() const;
15 void setPrice(double newPrice);
16 virtual double bill() const;
17 double savings(const Sale& other) const;
18 //Returns the savings if you buy other instead of the calling object.
19 private:
20 double price;
21 };

22 bool operator < (const Sale& first, const Sale& second);
23 //Compares two sales to see which is larger.
24 } //SavitchSale

25 #endif // SALE_H

www.itpub.net

Virtual Function Basics 665

 Display 15.2 Implementation of the Base Class Sale (part 1 of 2)

1
2 //This is the file sale.cpp.
3 //This is the implementation for the class Sale.
4 //The interface for the class Sale is in the file sale.h.

5 #include <iostream>
6 #include "sale.h"
7 using std::cout;

8 namespace SavitchSale
9 {

10 Sale::Sale() : price(0)
11 {
12 //Intentionally empty
13 }

14 Sale::Sale(double thePrice)
15 {
16 if (thePrice >= 0)
17 price = thePrice;
18 else
19 {
20 cout << "Error: Cannot have a negative price!\n";
21 exit(1);
22 }
23 }

24 double Sale::bill() const
25 {
26 return price;
27 }

28 double Sale::getPrice() const
29 {
30 return price;
31 }
32
33 void Sale::setPrice(double newPrice)
34 {
35 if (newPrice >= 0)
36 price = newPrice;
37 else
38 {
39 cout << "Error: Cannot have a negative price!\n";
40 exit(1);
41 }
42 }

43 double Sale::savings(const Sale&other) const
44 {
45 return (bill() - other.bill());
46 } (continued)

666 CHAPTER 15 Polymorphism and Virtual Functions

later define derived classes of the class Sale and define their versions of the member
function bill ; the definitions of the member function savings and the overloaded
operator, 6 , which we gave with the class Sale , will use the version of the member
function bill that corresponds to the object of the derived class. For example, Displays 15.3 and 15.4 show the derived class DiscountSale . Notice
that the class DiscountSale requires a different definition for its version of the
member function bill . Nonetheless, when the member function savings and the
overloaded operator, 6 , are used with an object of the class DiscountSale , they
will use the version of the function definition for bill that was given with the class
DiscountSale . This is indeed a pretty fancy trick for C ++ to pull off. Consider the
function call d1.savings(d2) for objects d1 and d2 of the class DiscountSale . The
definition of the function savings (even for an object of the class DiscountSale) is
given in the implementation file for the base class Sale , which was compiled before we
even thought of the class DiscountSale . Yet, in the function call d1.savings(d2) ,
the line that calls the function bill knows enough to use the definition of the function
bill given for the class DiscountSale .

 How does this work? In order to write C ++ programs you can just assume it happens
by magic, but the real explanation was given in the introduction to this section. When
you label a function virtual , you are telling the C ++ environment “Wait until this
function is used in a program, and then get the implementation corresponding to the
calling object.”

 Display 15.5 gives a sample program that illustrates how the virtual function bill
and the functions that use bill work in a complete program.

 Display 15.2 Implementation of the Base Class Sale (part 2 of 2)

47 bool operator < (const Sale& first, const Sale& second)
48 {
49 return (first.bill() < second.bill());
50 }
51 } //SavitchSale

 Display 15.3 Interface for the Derived Class DiscountSale (part 1 of 2)

1
2 //This is the file discountsale.h.
3 //This is the interface for the class DiscountSale.

4 #ifndef DISCOUNTSALE_H
5 #define DISCOUNTSALE_H
6 #include "sale.h"

7 namespace SavitchSale

www.itpub.net

Virtual Function Basics 667

 Display 15.4 Implementation for the Derived Class DiscountSale (part 1 of 2)

1
2 //This is the implementation for the class DiscountSale.
3 //This is the file discountsale.cpp.
4 //The interface for the class DiscountSale is in the header file
5 //discountsale.h.
6 #include "discountsale.h"

7 namespace SavitchSale
8 {
9 DiscountSale::DiscountSale() : Sale(), discount(0)
10 {
11 //Intentionally empty
12 }

13 DiscountSale::DiscountSale(double thePrice, double theDiscount)
14 : Sale(thePrice), discount(theDiscount)
15 {
16 //Intentionally empty
17 }

18 double DiscountSale::getDiscount() const
19 {
20 return discount;
21 }

 Since bill was declared virtual in the base class,
it is automatically virtual in the derived class
 DiscountSale . You can add the modifier virtual
to the declaration of bill or omit it as here; in either
case bill is virtual in the class DiscountSale .
(We prefer to include the word virtual in all virtual
function declarations, even if it is not required. We
omitted it here to illustrate that it is not required.)

 Display 15.3 Interface for the Derived Class DiscountSale (part 2 of 2)

8 {

9 class DiscountSale : public Sale
10 {

11 public:
12 DiscountSale();
13 DiscountSale(double thePrice, double theDiscount);
14 //Discount is expressed as a percentage of the price.
15 //A negative discount is a price increase.
16 double getDiscount() const;
17 void setDiscount(double newDiscount);
18 double bill() const;
19 private:
20 double discount;

21 };

22 }//SavitchSale

23 #endif //DISCOUNTSALE_H

(continued)

668 CHAPTER 15 Polymorphism and Virtual Functions

22 void DiscountSale::setDiscount(double newDiscount)
23 {
24 discount = newDiscount;
25 }

26 double DiscountSale::bill() const
27 {
28 double fraction = discount / 100;
29 return (1 - fraction) * getPrice();
30 }

31 } //SavitchSale

 You do not repeat the
qualifier virtual in
the function definition.

 Display 15.5 Use of a Virtual Function

1
2 //Demonstrates the performance of the virtual function bill.
3 #include <iostream>
4 #include "sale.h" //Not really needed, but safe due to ifndef.
5 #include "discountsale.h"
6 using std::cout;
7 using std::endl;
8 using std::ios;
9 using namespace SavitchSale;

10 int main()
11 {
12 Sale simple(10.00); //One item at $10.00.
13 DiscountSale discount(11.00, 10);

//One item at $11.00 with a 10% discount

14 cout.setf(ios::fixed);
15 cout.setf(ios::showpoint);
16 cout.precision(2);

17 if (discount < simple)
18 {
19 cout << "Discounted item is cheaper.\n";
20 cout << "Savings is $" << simple.savings(discount) << endl;
21 }
22 else
23 cout << "Discounted item is not cheaper.\n";

24 return 0;
25 }

 Sample Dialogue

Discounted item is cheaper.
Savings is $0.10

The objects discount and simple
use different code for the member
function bill when the less-than
comparison is made. Similar remarks
apply to savings .

Display 15.4 Implementation for the Derived Class DiscountSale (part 2 of 2)

www.itpub.net

Virtual Function Basics 669

 Virtual Function
A virtual function is indicated by including the modifier virtual in the member function
declaration (which is given in the definition of the class).

If a function is virtual and a new definition of the function is given in a derived class, then
for any object of the derived class, that object will always use the definition of the virtual
function that was given in the derived class, even if the virtual function is used indirectly
by being invoked in the definition of an inherited function. This method of deciding which
definition of a virtual function to use is known as late binding.

 Polymorphism
Polymorphism refers to the ability to associate many meanings to one function name
by means of the late-binding mechanism. Thus, polymorphism, late binding, and virtual
functions are really all the same topic.

 Overriding
When a virtual function definition is changed in a derived class, programmers often say the
function definition is overridden. In the C ++ literature, a distinction is usually made between
the terms redefined and overridden. Both terms refer to changing the definition of the
function in a derived class. If the function is a virtual function, this act is called overriding.
If the function is not a virtual function, it is called redefining. This may seem like a silly
distinction to you the programmer, since you do the same thing in both cases, but the two
cases are treated differently by the compiler.

 TIP: The Virtual Property Is Inherited

 The property of being a virtual function is inherited. For example, since bill was
declared to be virtual in the base class Sale (Display 15.1), the function bill is auto-
matically virtual in the derived class DiscountSale (Display 15.3). So, the following
two declarations of the member function bill would be equivalent in the defi nition
of the derived class DiscountSale :

double bill() const;
virtual double bill() const;

 Thus, if SuperDiscountSale is a derived class of the class DiscountSale that inherits
the function savings , and if the function bill is given a new defi nition for the class
SuperDiscountSale , then all objects of the class SuperDiscountSale will use the def-
inition of the function bill given in the defi nition of the class SuperDiscountSale .
Even the inherited function savings (which includes a call to the function bill) will
use the defi nition of bill given in SuperDiscountSale whenever the calling object is
in the class SuperDiscountSale . ■

670 CHAPTER 15 Polymorphism and Virtual Functions

 TIP: When to Use a Virtual Function

 There are clear advantages to using virtual functions and so far we have not seen any
clear disadvantages. So, why not make all member functions virtual? In fact, why not
defi ne the C ++ compiler so that (like some other languages, such as Java) all member
functions are automatically virtual? The answer is that there is overhead to making a
function virtual. Doing so uses more storage and makes your program run slower than
if the function were not virtual. That is why the designers of C ++ gave the programmer
control over which member functions are virtual and which are not. If you expect to need
the advantages of a virtual member function, then make that member function virtual.
If you do not expect to need the advantages of a virtual function, then your program will
run more effi ciently if you do not make the member function virtual. ■

 Self-Test Exercises

 1. Explain the difference among the terms virtual function, late binding, and
polymorphism.

 2. Suppose you modify the definitions of the class Sale (Display 15.1) by deleting
the reserved word virtual . How would that change the output of the program
in Display 15.5 ?

 PITFALL: Omitting the Definition of a Virtual Member Function

 It is wise to develop incrementally. This means code a little, then test a little, then code
a little more and test a little more, and so forth. However, if you try to compile classes
with virtual member functions but do not implement each member, you may run
into some very-hard-to-understand error messages, even if you do not call the unde-
fi ned member functions!

 If any virtual member functions are not implemented before compiling, the compi-
lation fails with error messages similar to this:

Undefined reference to Class_Name virtual table.

 Even if there is no derived class and there is only one virtual member function, but that
function does not have a defi nition, this kind of message still occurs.

 What makes the error messages very hard to decipher is that without defi nitions
for the functions declared virtual , there will be further error messages complaining
about an undefi ned reference to default constructors, even if these constructors really
are already defi ned.

 Of course, you may use some trivial defi nition for a virtual function until you are
ready to defi ne the “real” version of the function.

 This caution does not apply to pure virtual functions, which we discuss in the next
 section. As you will see, pure virtual functions are not supposed to have a defi nition. ■

www.itpub.net

Virtual Function Basics 671

 Abstract Classes and Pure Virtual Functions

 You can encounter situations in which you want to have a class to use as a base class
for a number of other classes, but you do not have any meaningful definition to give
to one or more of its member functions. When we introduced virtual functions we
discussed one such scenario. Let’s review it now.

 Suppose you are designing software for a graphics package that has classes for several
kinds of figures, such as rectangles, circles, ovals, and so forth. Each figure might be
an object of a different class, such as the Rectangle class or the Circle class. In a
well-designed programming project, all of these classes would probably be descendants
of a single parent class called, for example, Figure . Now, suppose you want a function
to draw a figure on the screen. To draw a circle, you need different instructions from
those you need to draw a rectangle. So, each class needs to have a different function
to draw its kind of figure. If r is a Rectangle object and c is a Circle object, then
r.draw() and c.draw() can be functions implemented with different code.

 The parent class Figure may have a function called center that moves a figure to
the center of the screen by erasing it and then redrawing it in the center of the screen.
The function Figure::center might use the function draw to redraw the figure in
the center of the screen. By making the member function draw a virtual function, you
can write the code for the member function Figure::center in the class Figure and
know that when it is used for a derived class—say, Circle —the definition of draw
in the class Circle will be the definition used. You never plan to create an object of
type Figure . You intend only to create objects of the derived classes, such as Circle
and Rectangle . So, the definition that you give to Figure::draw will never be
used. However, based only on what we covered so far, you would still need to give a
definition for Figure::draw , even though it could be trivial.

 If you make the member function Figure::draw a pure virtual function , then
you do not need to give any definition to that member function. The way to make a
member function into a pure virtual function is to mark it as virtual and to add the
annotation = 0 to the member function declaration, as in the following example: virtual void draw() = 0;

 Any kind of member can be made a pure virtual function. It need not be a void
function with no parameters as in our example.

 A class with one or more pure virtual functions is called an abstract class . An
abstract class can only be used as a base class to derive other classes. You cannot create
objects of an abstract class, since it is not a complete class definition. An abstract class
is a partial class definition because it can contain other member functions that are
not pure virtual functions. An abstract class is also a type, so you can write code with
parameters of the abstract class type and it will apply to all objects of classes that are
descendants of the abstract class.

 If you derive a class from an abstract class, the derived class will itself be an abstract
class unless you provide definitions for all the inherited pure virtual functions (and also
do not introduce any new pure virtual functions). If you do provide definitions for all
the inherited pure virtual functions (and also do not introduce any new pure virtual
functions), the resulting class is not an abstract class, which means you can create
objects of the class.

pure virtual
function

abstract class

672 CHAPTER 15 Polymorphism and Virtual Functions

 Display 15.6 Interface for the Abstract Class Employee (part 1 of 2)

1
2 //This is the header file employee.h.
3 //This is the interface for the abstract class Employee.

4 #ifndef EMPLOYEE_H
5 #define EMPLOYEE_H

6 #include <string>
7 using std::string;

8 namespace SavitchEmployees
9 {

10 class Employee
11 {
12 public:
13 Employee();
14 Employee(const string& theName, const string& theSsn);
15 string getName() const;
16 string getSsn() const;
17 double getNetPay() const;
18 void setName(const string& newName);

 EXAMPLE: An Abstract Class

 In Display 15.6 , we have slightly rewritten the class Employee from Display 14.1 .
This time we have made Employee an abstract class . The following line (highlighted
in Display 15.6) is the only thing that is different from our previous definition of
Employee (Display 14.1):

virtual void printCheck() const = 0;

 The word virtual and the = 0 in the member function heading tell the compiler
that this is a pure virtual function and that therefore the class Employee is now an
abstract class. The implementation for the class Employee includes no definition for
the class Employee::printCheck , but otherwise the implementation of the class
Employee is the same as before (that is, the same as in Display 14.2) .

 It makes sense that there is no definition for the member function Employee::
printCheck , since you do not know what kind of check to write until you
know with what kind of employee you are dealing. In our first definition of the
class Employee (Displays 14.1 and 14.2), we were forced to give a definition to
Employee::printCheck and so gave one that output an error message saying that
the function should not be invoked. We now have a more elegant solution. By
making Employee::printCheck a pure virtual function, we have set things up so
that the compiler will enforce the ban against invoking Employee::printCheck .

The implementation for this class is the same as in
Display 14.2, except that no definition is given for
the member function printCheck().

This is an improved version of the class
Employee given in Display 14.1.

www.itpub.net

Virtual Function Basics 673

19 void setSsn(const string& newSsn);
20 void setNetPay(double newNetPay);
21 virtual void printCheck() const = 0;
22 private:
23 string name;
24 string ssn;
25 double netPay;

26 };

27 } //SavitchEmployees

28 #endif //EMPLOYEE_H

 A pure virtual function.

 Self-Test Exercises

 3. Is it legal to have an abstract class in which all member functions are pure virtual
functions?

 4. Given the definition of the class Employee in Display 15.6 , which of the
following are legal?

 a. Employee joe;
joe = Employee();

 b. class HourlyEmployee : public Employee
{

public :
HourlyEmployee();

 <Some more legal member function definitions, none of which are
pure virtual functions.>
private :

double wageRate;

double hours;

};

int main()

{

Employee joe;

joe = HourlyEmployee();

 c. bool isBossOf(const Employee& e1, const Employee& e2);

Display 15.6 Interface for the Abstract Class Employee (part 2 of 2)

674 CHAPTER 15 Polymorphism and Virtual Functions

 15.2 Pointers and Virtual Functions

 Beware lest you lose the substance by grasping at the shadow.

 AESOP, The Dog and the Shadow

 This section explores some of the more subtle points about virtual functions. To
understand this material, you need to have covered the material on pointers given
in Chapter 10 .

 Virtual Functions and Extended Type Compatibility

 If Derived is a derived class of the base class Base , then you can assign an object of
type Derived to a variable (or parameter) of type Base , but not the other way around.
If you consider a concrete example, this becomes sensible. For example, DiscountSale
is a derived class of Sale (Displays 15.1 and 15.3). You can assign an object of the class
DiscountSale to a variable of type Sale , since a DiscountSale is a Sale . However,
you cannot do the reverse assignment, since a Sale is not necessarily a DiscountSale .
The fact that you can assign an object of a derived class to a variable (or parameter) of
its base class is critically important for reuse of code via inheritance. However, it does
have its problems.

 For example, suppose a program or unit contains the following class definitions:

class Pet

{

public:
 string name;

virtual void print() const;

};

class Dog : public Pet

{

public:
 string breed;

virtual void print() const; //keyword virtual not needed,
//but put here for clarity.

};

Dog vdog;
Pet vpet;

 Now concentrate on the data members, name and breed . (To keep this example
simple, we have made the member variables public. In a real application, they should
be private and have functions to manipulate them.)

www.itpub.net

Pointers and Virtual Functions 675

 Anything that is a Dog is also a Pet . It would seem to make sense to allow programs
to consider values of type Dog to also be values of type Pet , and hence the following
should be allowed:

vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

 C ++ does allow this sort of assignment. You may assign a value, such as the value of
vdog , to a variable of a parent type, such as vpet , but you are not allowed to perform
the reverse assignment. Although the preceding assignment is allowed, the value that is
assigned to the variable vpet loses its breed field. This is called the slicing problem .
The following attempted access will produce an error message:

cout << vpet.breed;
// Illegal: class Pet has no member named breed

 You can argue that this makes sense, since once a Dog is moved to a variable of type
Pet it should be treated like any other Pet and not have properties peculiar to Dog s.
This makes for a lively philosophical debate, but it is usually just a nuisance when
programming. The dog named Tiny is still a Great Dane, and we would like to refer to
its breed, even if we treated it as a Pet someplace along the way.

 Fortunately, C ++ does offer us a way to treat a Dog as a Pet without throwing away
the name of the breed. To do this, we use pointers to dynamic variables.

 Suppose we add the following declarations:

Pet *ppet;
Dog *pdog;

 If we use pointers and dynamic variables, we can treat Tiny as a Pet without losing his
breed. The following is allowed. 1

pdog = new Dog;
pdog->name = "Tiny";
pdog->breed = "Great Dane";
ppet = pdog;

 Moreover, we can still access the breed field of the node pointed to by ppet .
Suppose that

Dog::print() const;

 has been defined as follows:

void Dog::print() const
{
 cout << "name:" << name << endl;
 cout << "breed:" << breed << endl;
}

slicing
problem

1 If you are not familiar with the -> operator, see the subsection of Chapter 10 entitled “The ->
Operator.”

676 CHAPTER 15 Polymorphism and Virtual Functions

 The statement

ppet->print();

 will cause the following to be printed on the screen:

name: Tiny
breed: Great Dane

 This nice output happens by virtue of the fact that print() is a virtual member
function. (No pun intended.) We have included test code in Display 15.7 .

 Display 15.7 Defeating the Slicing Problem (part 1 of 2)

1 //Program to illustrate use of a virtual function to defeat the slicing
2 //problem.
3 #include <string>
4 #include <iostream>
5 using std::string;
6 using std::cout;
7 using std::endl;

8 class Pet
9 {
10 public:
11 string name;
12 virtual void print() const;
13 };

14 class Dog : public Pet
15 {
16 public:
17 string breed;
18 virtual void print() const;
19 };

20 int main()
21 {
22 Dog vdog;
23 Pet vpet;
24 vdog.name = "Tiny";
25 vdog.breed = "Great Dane";
26 vpet = vdog;
27 cout << "The slicing problem:\n";
28 //vpet.breed; is illegal since class Pet has no member named breed.
29 vpet.print();
30 cout << "Note that it was print from Pet that was invoked.\n";

We have made the member variables
public to keep the example simple. In a
real application, they should be private
and accessed via member functions.

Keyword virtual is not needed
here, but we inserted it for clarity.

www.itpub.net

Pointers and Virtual Functions 677

Display 15.7 Defeating the Slicing Problem (part 2 of 2)

Note that no breed is mentioned.

31 cout << "The slicing problem defeated:\n";
32 Pet *ppet;
33 Dog *pdog;
34 pdog = new Dog;
35 pdog->name = "Tiny";
36 pdog->breed = "Great Dane";
37 ppet = pdog;
38 ppet->print();
39 pdog->print();

40 //The following, which accesses member variables directly
41 //rather than via virtual functions, would produce an error:
42 //cout << "name: " << ppet->name << " breed: "
43 // << ppet->breed << endl;
44 //It generates an error message saying
45 //class Pet has no member named breed.

46 return 0;
47 }

48 void Dog::print() const
49 {
50 cout << "name: " << name << endl;
51 cout << "breed: " << breed << endl;
52 }

53 void Pet::print() const
54 {
55 cout << "name: " << name << endl;
56 }

 Sample Dialogue

The slicing problem:
name: Tiny

Note that it was print from Pet that was invoked.

The slicing problem defeated:

name: Tiny

breed: Great Dane

name: Tiny

breed: Great Dane

These two print the same output:
name: Tiny
breed: Great Dane

678 CHAPTER 15 Polymorphism and Virtual Functions

 Object-oriented programming with dynamic variables is a very different way of
viewing programming. This can all be bewildering at first. It will help if you keep two
simple rules in mind:

 1. If the domain type of the pointer pAncestor is an ancestor class for the domain
type of the pointer pDescendant , then the following assignment of pointers
is allowed:

pAncestor = pDescendant;

 Moreover, none of the data members or member functions of the dynamic variable
being pointed to by pDescendant will be lost.

 2. Although all the extra fi elds of the dynamic variable are there, you will need virtual
member functions to access them.

 PITFALL: The Slicing Problem

 Although it is legal to assign a derived class object to a base class variable, assigning
a derived class object to a base class object slices off data. Any data members in the
derived class object that are not also in the base class will be lost in the assignment, and
any member functions that are not defined in the base class are similarly unavailable
to the resulting base class object.

 For example, if Dog is a derived class of Pet , then the following is legal:

Dog vdog;
Pet vpet;
vpet = vdog;

 However, vpet cannot be a calling object for a member function from Dog unless the
function is also a member function of Pet , and all the member variables of vdog that
are not inherited from the class Pet are lost. This is the slicing problem.

 Note that simply making a member function virtual does not defeat the slicing
problem. Note the following code from Display 15.7 :

Dog vdog;
Pet vpet;

vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;
. . .
vpet.print();

 Although the object in vdog is of type Dog , when vdog is assigned to the variable
vpet (of type Pet) it becomes an object of type Pet . So, vpet.print() invokes the
version of print() defined in Pet , not the version defined in Dog . This happens
despite the fact that print() is virtual. In order to defeat the slicing problem, the
function must be virtual and you must use pointers and dynamic variables. ■

www.itpub.net

Pointers and Virtual Functions 679

 Self-Test Exercises

 5. Why can’t you assign a base class object to a derived class variable?

 6. What is the problem with the (legal) assignment of a derived class object to a base
class variable?

 7. Suppose the base class and the derived class each has a member function with
the same signature. When you have a base class pointer to a derived class object
and call a function member through the pointer, discuss what determines which
function is actually called, the base class member function or the derived class
member function.

 TIP: Make Destructors Virtual

 It is a good policy to always make destructors virtual, but before we explain why this
is a good policy we need to say a word or two about how destructors and pointers
interact and about what it means for a destructor to be virtual.

 Consider the following code, where SomeClass is a class with a destructor that is
not virtual:

SomeClass *p = new SomeClass;
 . . .
delete p;

 When delete is invoked with p , the destructor of the class SomeClass is automatically
invoked. Now, let’s see what happens when a destructor is marked virtual .

 The easiest way to describe how destructors interact with the virtual function mech-
anism is that destructors are treated as if all destructors had the same name (even
though they do not really have the same name). For example, suppose Derived is
a derived class of the class Base and that the destructor in the class Base is marked
virtual . Now consider the following code:

Base *pBase = new Derived;
 . . .
delete pBase;

 When delete is invoked with pBase , a destructor is called. Since the destructor in
the class Base was marked virtual and the object pointed to is of type Derived , the
destructor for the class Derived is called (and it in turn calls the destructor for the
class Base). If the destructor in the class Base had not been declared as virtual, then
only the destructor in the class Base would be called.

 Another point to keep in mind is that when a destructor is marked virtual , then
all destructors of derived classes are automatically virtual (whether or not they are
marked virtual). Again, this behavior is as if all destructors had the same name (even
though they do not).

(continued)

680 CHAPTER 15 Polymorphism and Virtual Functions

 Now we are ready to explain why all destructors should be virtual. Consider what hap-
pens when destructors are not declared as virtual in a base class. In particular, consider
the base class PFArrayD (partially fi lled array of double s) and its derived class PFAr-
rayDBak (partially fi lled array of double s with backup). We discussed these classes in
 Chapter 14 , before we knew about virtual functions, and so the destructor in the base
class PFArrayD was not marked virtual . In Display 15.8 , we have summarized all the
facts we need about the classes PFArrayD and PFArrayDBak so that you need not look
back to Chapter 14 .

 Consider the following code:

PFArrayD *p = new PFArrayDBak;
 . . .
delete p;

 Since the destructor in the base class is not marked virtual , only the destructor
for the base class (PFArrayD) will be invoked. This will return the memory for the
member array a (declared in PFArrayD) to the freestore, but the memory for the
member array b (declared in PFArrayDBak) will never be returned to the freestore
(until the program ends).

 On the other hand, if (unlike Display 15.8) the destructor for the base class
PFArrayD were marked virtual , then when delete is applied to p , the constructor
for the class PFArrayDBak would be invoked (since the object pointed to is of type
PFArrayDBak). The destructor for the class PFArrayDBak would delete the array b and
then automatically invoke the constructor for the base class PFArrayD , which would
delete the member array a . So, with the base class destructor marked as virtual, all the
memory is returned to the freestore. To prepare for eventualities such as these, it is best
to always mark destructors as virtual. ■

TIP: (continued)

 Downcasting and Upcasting

 You might think some sort of type casting would allow you to easily get around the
slicing problem. However, things are not that simple. The following is illegal:

Pet vpet;
Dog vdog; //Dog is a derived class with base class Pet.
...
vdog = static_cast<Dog>(vpet); //ILLEGAL!

 However, casting in the other direction is perfectly legal and does not even need
a casting operator:

vpet = vdog; //Legal (but does produce the slicing problem.)

www.itpub.net

Pointers and Virtual Functions 681

 Casting from a descendant type to an ancestor type is known as upcasting , since you
are moving up the class hierarchy. Upcasting is safe because you are simply disregarding
some information (disregarding member variables and functions). So, the following is
perfectly safe:

vpet = vdog;

 Casting from an ancestor type to a descended type is called downcasting and is very
dangerous, since you are assuming that information is being added (added member
variables and functions). The dynamic_cast that we discussed briefly in Chapter 1 is
used for downcasting. It is of some possible use in defeating the slicing problem but is
dangerously unreliable and fraught with pitfalls. A dynamic_cast may allow you to
downcast, but it works only for pointer types, as in the following:

Pet *ppet;
ppet = new Dog;
Dog *pdog = dynamic_cast<Dog*>(ppet); //Dangerous!

 We have had downcasting fail even in situations as simple as this, and so we do not
recommend it.

 The dynamic_cast is supposed to inform you if it fails. If the cast fails, the
dynamic_cast should return NULL (which is really the integer 0) .2

 If you want to try downcasting, keep the following points in mind:

 1. You need to keep track of things so that you know the information to be added is
indeed present.

 2. Your member functions must be virtual, since dynamic_cast uses the virtual
function information to perform the cast.

 How C ++ Implements Virtual Functions

 You need not know how a compiler works in order to use it. That is the principle
of information hiding, which is basic to all good program design philosophies. In
particular, you need not know how virtual functions are implemented in order
to use virtual functions. However, many people find that a concrete model of the
implementation helps their understanding; when reading about virtual functions in
other books you are likely to encounter references to the implementation of virtual
functions. So, we will give a brief outline of how they are implemented. All compilers
for all languages (including C ++) that have virtual functions typically implement them
in basically the same way.

upcasting

downcasting

2 The standard says “The value of a failed cast to pointer type is the null pointer of the required result type.
A failed cast to a reference type throws a bad_cast.”

682 CHAPTER 15 Polymorphism and Virtual Functions

 Display 15.8 Review of the Classes PFArrayD and PFArrayDBak

class PFArrayD
 {

public:
PFArrayD();
...

~PFArrayD();
protected:

double *a; //for an array of doubles .
int capacity; //for the size of the array .
int used; //for the number of array positions currently in use .

};

PFArrayD::PFArrayD() : capacity(50), used(0)
{

a = new double[capacity];
}

PFArrayD::~PFArrayD()
{

delete [] a;
}

class PFArrayDBak : public PFArrayD
{
public:

PFArrayDBak();
...

~PFArrayDBak();
private:

double *b; //for a backup of main array .
int usedB; //backup for inherited member variable used .

};

PFArrayDBak::PFArrayDBak() : PFArrayD(), usedB(0)
{

b = new double[capacity];
}
PFArrayDBak::~PFArrayDBak()
{

delete [] b;
}

Some details about the base class PFArrayD.
A more complete definition of PFArrayD
is given in Displays 14.8 and 14.9, but this
display has all the details you need for this.

The destructors should be virtual,
but we had not yet covered virtual
functions when we wrote these
classes.

Some details about the derived class PFArrayDBak.
A complete definition of PFArrayDBak is given in
Displays 14.10 and 14.11, but this display has all
the details you need for this chapter.

 If a class has one or more member functions that are virtual, the compiler creates
what is called a virtual function table for that class. This table has a pointer (memory
address) for each virtual member function. The pointer points to the location of the
correct code for that member function. If one virtual function was inherited and not

virtual
function table

www.itpub.net

Chapter Summary 683

changed, then its table entry points to the definition for that function that was given
in the parent class (or other ancestor class if need be). If another virtual function had
a new definition in the class, then the pointer in the table for that member function
points to that definition. (Remember that the property of being a virtual function is
inherited, so once a class has a virtual function table, then all its descendant classes have
a virtual function table.)

 Whenever an object of a class with one or more virtual functions is created, another
pointer is added to the description of the object that is stored in memory. This pointer
points to the class’s virtual function table. When you make a call to a member function
using a pointer (yep, another one) to the object, the run-time system uses the virtual
function table to decide which definition of a member function to use; it does not use
the type of the pointer.

 Of course, this all happens automatically, so you need not worry about it. A
compiler writer is even free to implement virtual functions in some other way as long as
it works correctly (although it never actually is implemented in a different way).

 Self-Test Exercise

 8. Why is the following illegal?

Pet vpet;
Dog vdog; //Dog is a derived class with base class Pet .
...
vdog = static_cast(vpet); //ILLEGAL!

 Chapter Summary

• Late binding means that the decision of which version of a member function is
 appropriate is decided at run time. In C ++ , member functions that use late binding
are called virtual functions. Polymorphism is another word for late binding.

• A pure virtual function is a member function that has no definition. It is indicated by
the word virtual and the notation = 0 in the member function declaration. A class
with one or more pure virtual functions is called an abstract class .

• An abstract class is a type and can be used as a base class to derive other classes.
However, you cannot create an object of an abstract class type (unless it is an object
of some derived class).

• You can assign an object of a derived class to a variable of its base class (or any
 ancestor class), but the member variables that are not in the base class are lost. This
is known as the slicing problem .

684 CHAPTER 15 Polymorphism and Virtual Functions

• If the domain type of the pointer pAncestor is a base class for the domain type of
the pointer pDescendant , then the following assignment of pointers is allowed:

pAncestor = pDescendant;

 Moreover, none of the data members or member functions of the dynamic variable
being pointed to by pDescendant will be lost. Although all the extra fields of the
dynamic variable are there, you will need virtual member functions to access them.

• It is a good programming practice to make destructors virtual.

 Answers to Self-Test Exercises

 1. In essence there is no difference among the three terms. They all refer to the same topic.
There is only a slight difference in their usage. (Virtual function is a kind of member
function; late binding refers to the mechanism used to decide which function definition
to use when a function is virtual; and polymorphism is another name for late binding.)

 2. The output would change to the following:

 Discounted item is not cheaper.

 3. Yes, it is legal to have an abstract class in which all member functions are pure
virtual functions.

 4. a. Illegal, because Employee is an abstract class.

 b. Legal.

 c. Legal, because an abstract class is a type.

 5. There would be no members to assign to the derived class’s added members.

 6. Although it is legal to assign a derived class object to a base class variable, this
 discards the parts of the derived class object that are not members of the base class.
This situation is known as the slicing problem .

 7. If the base class function carries the virtual modifier, then the derived class
 member function is called. If the base class member function does not have the
virtual modifier, then the base class member function is called.

 8. Since Dog can have more member variables than Pet , the object vpet may not
have enough data for all the member variables of type Dog .

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant feedback.

 1. Consider a graphics system that has classes for various figures—say, rect-
angles, squares, triangles, circles, and so on. For example, a rectangle might
have data members height, width, and center point, while a square and circle
might have only a center point and an edge length or radius, respectively. In a
 well-designed system, these would be derived from a common class, Figure .
You are to implement such a system.

www.itpub.net

www.myprogramminglab.com

Programming Projects 685

 The class Figure is the base class. You should add only Rectangle and Triangle
classes derived from Figure . Each class has stubs for member functions erase
and draw . Each of these member functions outputs a message telling what func-
tion has been called and what the class of the calling object is. Since these are
just stubs, they do nothing more than output this message. The member func-
tion center calls erase and draw to erase and redraw the figure at the center.
Because you have only stubs for erase and draw , center will not do any “cen-
tering” but will call the member functions erase and draw . Also, add an output
message in the member function center that announces that center is being
called. The member functions should take no arguments. There are three parts
to this project:

 a. Do the class definitions using no virtual functions. Compile and test.

 b. Make the base class member functions virtual. Compile and test.

 c. Explain the difference in results.

 For a real example, you would have to replace the definition of each of these
 member functions with code to do the actual drawing. You will be asked to do this
in Programming Project 15.2 .

 Use the following main function for all testing:

//This program tests Programming Problem 15.1.

 #include <iostream>

 #include "figure.h"

 #include "rectangle.h"

 #include "triangle.h"

using std::cout;

int main()

{

 Triangle tri;

 tri.draw();

 cout <<

 "\nDerived class Triangle object calling center().\n";

tri.center(); //Calls draw and center

Rectangle rect;

rect.draw();

cout <<

"\nDerived class Rectangle object calling center().\n";

rect.center(); //Calls draw and center

return 0;

 }

 2. Flesh out Programming Problem 15.1. Give new definitions for the various
constructors and member functions Figure::center , Figure::draw ,
Figure::erase , Triangle::draw , Triangle::erase , Rectangle::draw, and

686 CHAPTER 15 Polymorphism and Virtual Functions

Rectangle::erase so that the draw functions actually draw figures on the screen
by placing the character '*' at suitable locations on the screen. For the erase
functions, you can simply clear the screen (by outputting blank lines or by doing
something more sophisticated). There are a lot of details in this and you will have
to decide on some of them on your own.

 3. The goal for this programming project is to create a simple 2D predator–prey
simulation. In this simulation, the prey are ants and the predators are doodlebugs.
These critters live in a 20 * 20 grid of cells. Only one critter may occupy a cell
at a time. The grid is enclosed, so a critter is not allowed to move off the edges
of the world. Time is simulated in steps. Each critter performs some action every
time step.

 The ants behave according to the following model:

■ Move . For every time step, the ants randomly try to move up, down, left, or
right. If the neighboring cell in the selected direction is occupied or would move
the ant off the grid, then the ant stays in the current cell.

■ Breed . If an ant survives for three time steps, at the end of the time step (i.e., after
moving) the ant will breed. This is simulated by creating a new ant in an adjacent
(up, down, left, or right) cell that is empty. If there is no empty cell available,
no breeding occurs. Once an offspring is produced, an ant cannot produce an
offspring again until it has survived three more time steps.

 The doodlebugs behave according to the following model:

■ Move . For every time step, the doodlebug will move to an adjacent cell containing
an ant and eat the ant. If there are no ants in adjoining cells, the doodlebug
moves according to the same rules as the ant. Note that a doodlebug cannot eat
other doodlebugs.

■ Breed . If a doodlebug survives for eight time steps, at the end of the time step it
will spawn off a new doodlebug in the same manner as the ant.

■ Starve . If a doodlebug has not eaten an ant within three time steps, at the end of
the third time step it will starve and die. The doodlebug should then be removed
from the grid of cells.

 During one turn, all the doodlebugs should move before the ants.

 Write a program to implement this simulation and draw the world using ASCII
characters of “O” for an ant and “X” for a doodlebug. Create a class named
Organism that encapsulates basic data common to ants and doodlebugs. This
class should have a virtual function named move that is defined in the derived
classes of Ant and Doodlebug . You may need additional data structures to keep
track of which critters have moved.

 Initialize the world with 5 doodlebugs and 100 ants. After each time step, prompt
the user to press Enter to move to the next time step. You should see a cyclical
 pattern between the population of predators and prey, although random perturba-
tions may lead to the elimination of one or both species.

www.itpub.net

 4. This Programming Project requires that you first complete Programming
Project 14.9 from Chapter 14 .

class Creature

{

private:

int type; // 0 human, 1 cyberdemon, 2 balrog, 3 elf

int strength; // How much damage we can inflict

int hitpoints; // How much damage we can sustain

 string getSpecies(); // Returns type of species

 public :

 Creature();

// Initialize to human, 10 strength, 10 hit points

 Creature(int newType, int newStrength, int newHit);

// Initialize creature to new type, strength, hit points

 // Also add appropriate accessor and mutator functions

 // for type, strength, and hit points

int getDamage();

 // Returns amount of damage this creature

 // inflicts in one round of combat

};

 Here is an implementation of the getSpecies() function:

string Creature::getSpecies()

{

switch (type)

 {

case 0: return "Human";

case 1: return "Cyberdemon";

case 2: return "Balrog";

case 3: return "Elf";

 }

return "Unknown";

}

 The getDamage() function outputs and returns the damage this creature can
inflict in one round of combat. The rules for calculating the damage are as follows:

■ Every creature inflicts damage that is a random number r, where 0 6 r 6= strength .

■ Demons have a 5% chance of inflicting a demonic attack, which is an additional
50 damage points. Balrogs and Cyberdemons are demons.

■ Elves have a 10% chance to inflict a magical attack that doubles the normal
amount of damage.

■ Balrogs are very fast, so they get to attack twice.

Programming Projects 687

688 CHAPTER 15 Polymorphism and Virtual Functions

 An implementation of getDamage() is given here:

int Creature::getDamage()

{

 int damage;

 // All creatures inflict damage, which is a

 // random number up to their strength

 damage = (rand() % strength) + 1;

 cout << getSpecies() << " attacks for " <<

 damage << "points!" << endl;

 // Demons can inflict damage of 50 with a 5% chance

 if ((type = 2) || (type == 1))

if ((rand() % 100) < 5)

 {

 damage = damage + 50;

 cout << "Demonic attack inflicts 50 "

 << "additional damage points!" << endl;

 }

 // Elves inflict double magical damage with a 10% chance

if (type == 3)

 {

if ((rand() % 10)==0)

 {

 cout << "Magical attack inflicts " << damage<<

 "additional damage points!" << endl;

 damage = damage * 2;

 }

 }

 // Balrogs are so fast they get to attack twice

if (type == 2)

 {

int damage2 = (rand() % strength) + 1;

 cout << "Balrog speed attack inflicts " << damage2 <<

 "additional damage points!" << endl;

 damage = damage + damage2;

 }

return damage;

}

 One problem with this implementation is that it is unwieldy to add new creatures.
Rewrite the class to use inheritance, which will eliminate the need for the variable
type . The Creature class should be the base class. The classes Demon, Elf , and
Human should be derived from Creature . The classes Cyberdemon and Balrog

www.itpub.net

should be derived from Demon . You will need to rewrite the getSpecies() and
getDamage() functions so they are appropriate for each class.

 For example, the getDamage() function in each class should only compute the
damage appropriate for that object. The total damage is then calculated by com-
bining the results of getDamage() at each level of the inheritance hierarchy.
As an example, invoking getDamage() for a Balrog object should invoke
getDamage() for the Demon object, which should invoke getDamage() for the
Creature object. This will compute the basic damage that all creatures inflict,
followed by the random 5% damage that demons inflict, followed by the double
damage that balrogs inflict.

 Also include mutator and accessor functions for the private variables. Write a main
function that contains a driver to test your classes. It should create an object for
each type of creature and repeatedly outputs the results of getDamage(). First ,
make the getDamage() function virtual . Then, make a function in your main
program, battleArena(Creature &creature1, Creature &creature2), that
takes two Creature objects as input. The function should calculate the damage
done by creature1, subtract that amount from creature2’s hit points, and vice
versa. If both creatures end up with zero or less hit points, then the battle is a tie.
Otherwise, at the end of a round, if one creature has positive hit points but the
other does not, then the battle is over. The function should loop until the battle is
either a tie or over. Since the getDamage() function is virtual, it should invoke
the getDamage() function defined for the specific creature. Test your program
with several battles involving different creatures.

 5. The following shows code to play a guessing game in which two players attempt
to guess a number. Your task is to extend the program with objects that represent
either a human player or a computer player.

bool checkForWin(int guess, int answer)

{

if (answer == guess)

 {

 cout << "You're right! You win!" << endl;

return true;

 }

else if (answer < guess)

 cout << "Your guess is too high." << endl;

else

 cout << "Your guess is too low." << endl;

return false;

}

void play(Player &player1, Player &player2)

{

int answer = 0, guess = 0;

 answer = rand() % 100;

bool win = false;

Programming Projects 689

Solution to
Programming
Project 15.5

VideoNote

690 CHAPTER 15 Polymorphism and Virtual Functions

while (!win)

 {

 cout << "Player 1's turn to guess." << endl;

 guess = player1.getGuess();

 win = checkForWin(guess, answer);

if (win) return;

 cout << "Player 2's turn to guess." << endl;

 guess = player2.getGuess();

 win = checkForWin(guess, answer);

 }

}

 The play function takes as input two Player objects. Define the Player
class with a virtual function named getGuess() . The implementation of
Player :: getGuess() can simply return 0. Next, define a class named HumanPlayer
derived from Player . The implementation of HumanPlayer :: getGuess() should
prompt the user to enter a number and return the value entered from the keyboard.
Next, define a class named ComputerPlayer derived from Player . The imple-
mentation of ComputerPlayer :: getGuess() should randomly select a num-
ber from 0 to 100. Finally, construct a main function that invokes play(Player
&player1, Player &player2) with two instances of a HumanPlayer (human
versus human), an instance of a HumanPlayer and ComputerPlayer (human versus
computer), and two instances of ComputerPlayer (computer versus computer).

 6. The computer player in Programming Project 15.5 does not play the number guessing
game very well, since it makes only random guesses. Modify the program so that the
computer plays a more informed game. The specific strategy is up to you, but you must
add function(s) to the Player and ComputerPlayer classes so that the play(Player
&player1, Player &player2) function can send the results of a guess back to the
computer player. In other words, the computer must be told if its last guess was too high
or too low, and it also must be told if its opponent's last guess was too high or too low.
The computer can then use this information to revise its next guess.

 7. The following lists a Dice class that simulates rolling a die with a different number
of sides. The default is a standard die with six sides. The rollTwoDice function
simulates rolling two dice objects and returns the sum of their values. The srand
function requires including cstdlib .

class Dice

{

public:

 Dice();

 Dice(int numSides);

 virtual int rollDice() const;

protected:

int numSides;

};

Solution to
Programming
Project 15.7

VideoNote

www.itpub.net

Dice::Dice()

{

 numSides = 6;

 srand(time(NULL)); // Seeds random number generator

}

Dice::Dice(int numSides)

{

 this->numSides = numSides;

 srand(time(NULL)); // Seeds random number generator

}

int Dice::rollDice() const

{

 return (rand() % numSides) + 1;

}

// Take two dice objects, roll them, and return the sum

 int rollTwoDice(const Dice& die1, const Dice& die2)

{

 return die1.rollDice() + die2.rollDice();

}

Write a main function that creates two Dice objects with a number of sides of
your choosing. Invoke the rollTwoDice function in a loop that iterates ten times
and verify that the functions are working as expected.

 Next create your own class, LoadedDice , that is derived from Dice . Add a default
constructor and a constructor that takes the number of sides as input. Override
the rollDice function in LoadedDice so that with a 50% chance the function
returns the largest number possible (i.e., numSides), otherwise it returns what
Dice’s rollDice function returns.

 Test your class by replacing the Dice objects in main with LoadedDice objects.
You should not need to change anything else. There should be many more dice
rolls with the highest possible value. Polymorphism results in LoadedDice’s
rollDice function to be invoked instead of Dice’s rollDice function
inside rollTwoDice .

Programming Projects 691

This page intentionally left blank

www.itpub.net

 16.3 TEMPLATES AND INHERITANCE 718
 Example: Template Class for a Partially Filled Array

with Backup 719

 16.1 FUNCTION TEMPLATES 694
 Syntax for Function Templates 695
 Pitfall: Compiler Complications 698
 Tip: How to Define Templates 700
 Example: A Generic Sorting Function 701
 Pitfall: Using a Template with an

Inappropriate Type 705

 16.2 CLASS TEMPLATES 707
 Syntax for Class Templates 708
 Example: An Array Template Class 712
 The vector and basic_string Templates 718

 16 Templates

 Chapter Summary 724 Answers to Self-Test Exercises 724 Programming Projects 728

 All men are mortal.

 Aristotle is a man.

 Therefore, Aristotle is mortal.

 All X's are Y.

 Z is an X.

 Therefore, Z is Y.

 All cats are mischievous.

 Garfield is a cat.

 Therefore, Garfield is mischievous.

 A Short Lesson on Syllogisms

 Introduction
 This chapter discusses C++ templates, which allow you to define functions and classes
that have parameters for type names. This enables you to design functions that can be
used with arguments of different types and to define classes that are much more general
than those you have seen before this chapter .

 Section 16.1 requires only material from Chapters 1 through 5 . Section 16.2 uses
material from Section 16.1 as well as Chapters 1 through 11 but does not require the
material from Chapters 12 through 15 . Section 16.3 requires the previous sections
as well as Chapter 14 on inheritance and all the chapters needed for Section 16.2 .
 Section 16.3 does mark some member functions as virtual . Virtual functions are
covered in Chapter 15 . However, this use of virtual functions is not essential to the
material presented. It is possible to read Section 16.3 ignoring (or even omitting) all
occurrences of the keyword virtual .

 16.1 Function Templates

 Many of our previously discussed C++ function definitions have an underlying
algorithm that is much more general than the algorithm we gave in the function
definition. For example, consider the function swapValues , which we first discussed in
 Chapter 4 . For reference, we now repeat the function definition:

void swapValues(int& variable1, int& variable2)
{

int temp;
 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

16 Templates

www.itpub.net

Function Templates 695

 Notice that the function swapValues applies only to variables of type int . Yet
the algorithm given in the function body could just as well be used to swap the values
in two variables of type char . If we want to also use the function swapValues with
variables of type char , we can overload the function name swapValues by adding the
following definition:

void swapValues(char& variable1, char& variable2)
{

char temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

 But there is something inefficient and unsatisfying about these two definitions
of the swapValues function: They are almost identical. The only difference is that
one definition uses the type int in three places and the other uses the type char
in the same three places. Proceeding in this way, if we wanted to have the function
swapValues apply to pairs of variables of type double , we would have to write a
third, almost identical function definition. If we wanted to apply swapValues to still
more types, the number of almost identical function definitions would be even larger.
This would require a good deal of typing and would clutter up our code with lots of
definitions that look identical. We should be able to say that the following function
definition applies to variables of any type:

void swapValues(Type_Of_The_Variables& variable1,
Type_Of_The_Variables& variable2)

{
Type_Of_The_Variables temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

 As we will see, something like this is possible. We can define one function that applies
to all types of variables, although the syntax is a bit more complicated than what we
have just shown. The proper syntax is described in the next subsection.

 Syntax for Function Templates

 Display 16.1 shows a C++ template for the function swapValues . This function
template allows you to swap the values of any two variables, of any type, as long as the
two variables have the same type. The definition and the function declaration begin
with the line

template<class T>

696 CHAPTER 16 Templates

 This is often called the template prefix . It tells the compiler that the definition or
function declaration that follows is a template and that T is a type parameter . In this
context, the word class actually means type. 1 As we will see, the type parameter T
can be replaced by any type, whether the type is a class or not. Within the body of the
function definition, the type parameter T is used just like any other type.

 The function template definition is, in effect, a large collection of function
definitions. For the function template for swapValues shown in Display 16.1 , there is,
in effect, one function definition for each possible type name. Each of these definitions
is obtained by replacing the type parameter T with a type name. For example, the
function definition shown next is obtained by replacing T with the type name double :

void swapValues(double& variable1, double& variable2)
{

double temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

 Another definition for swapValues is obtained by replacing the type parameter T
in the function template with the type name int . Yet another definition is obtained
by replacing the type parameter T with char . The one function template shown in
 Display 16.1 overloads the function name swapValues so that there is a slightly
different function definition for every possible type.

 The compiler will not literally produce definitions for every possible type for the
function name swapValues , but it will behave exactly as if it had produced all those
function definitions. A separate definition will be produced for each different type for
which you use the template, but not for any types you do not use. Only one definition
is generated for a single type regardless of the number of times you use the template for
that type. Notice that the function swapValues is called twice in Display 16.1 : One
time the arguments are of type int , and the other time the arguments are of type char .
Consider the following function call from Display 16.1 :

swapValues(integer1, integer2);

1 In fact, the ANSI/ISO standard provides that the keyword typename may be used instead of class
in the template prefix. It would make more sense to use the keyword typename rather than class ,
but everybody uses class , so we will do the same. (It is often true that consistency in coding is more
important than optimality.)

type parameter

A template
overloads the

function name

template prefix

www.itpub.net

Function Templates 697

 Display 16.1 A Function Template

1 //Program to demonstrate a function template.
2 #include <iostream>
3 using std::cout;
4 using std::endl;

5 //Interchanges the values of variable1 and variable2.
6 //The assignment operator must work for the type T.
7 template<class T>
8 void swapValues(T& variable1, T& variable2)
9 {
10 T temp;

11 temp = variable1;
12 variable1 = variable2;
13 variable2 = temp;
14 }

15 int main()
16 {
17 int integer1 = 1, integer2 = 2;
18 cout << "Original integer values are "
19 << integer1 << " " << integer2 << endl;
20 swapValues(integer1, integer2);
21 cout << "Swapped integer values are "
22 << integer1 << " " << integer2 << endl;

23 char symbol1 = 'A', symbol2 = 'B';
24 cout << "Original character values are: "
25 << symbol1 << " " << symbol2 << endl;
26 swapValues(symbol1, symbol2);
27 cout << "Swapped character values are: "
28 << symbol1 << " " << symbol2 << endl;
29 return 0;
30 }

Sample Dialogue

Original integer values are: 1 2

Swapped integer values are: 2 1

Original character values are: A B

Swapped character values are: B A

 Many compilers still have
problems with templates.
To be certain that your
templates work on the
widest selection of
compilers, place the
template definition in the
same file in which it is
used and have the
template definition
precede all uses of the
template.

698 CHAPTER 16 Templates

 When the C++ compiler gets to this function call, it notices the types of the
arguments—in this case, int —and then it uses the template to produce a function
definition with the type parameter T replaced with the type name int . Similarly, when
the compiler sees the function call

swapValues(symbol1, symbol2);

 it notices the types of the arguments—in this case, char —and then it uses the template
to produce a function definition with the type parameter T replaced with the type
name char .

 Notice that you need not do anything special when you call a function that
is defined with a function template; call it just as you would any other function.
The compiler does all the work of producing the function definition from the
function template.

 A function template may have a function declaration and a definition, just like an
ordinary function. You may be able to place the function declaration and definition
for a function template in the same locations that you place function declarations
and definitions for ordinary functions. However, separate compilation of template
definitions and template function declarations is not yet implemented on most
compilers, so it is safest to place your template function definition in the file where
you invoke the template function, as we did in Display 16.1 . In fact, most compilers
require that the template function definition appear before the first invocation of
the template. You may simply #include the file containing your template function
definitions prior to calling the template function. Your particular compiler may behave
differently; you should ask a local expert about the details.

 In the function template in Display 16.1 , we used the letter T as the parameter
for the type. This is traditional but is not required by the C++ language. The type
parameter can be any identifier (other than a keyword). T is a good name for the type
parameter, but other names can be used.

 It is possible to have function templates that have more than one type parameter.
For example, a function template with two type parameters named T1 and T2 would
begin as follows:

template<class T1, class T2>

 However, most function templates require only one type parameter. You cannot have
unused template parameters; that is, each template parameter must be used in your
template function.

calling a
function
template

more than
one type

parameter

 PITFALL: Compiler Complications

 Many compilers do not allow separate compilation of templates, so you may need
to include your template definition with your code that uses it. As usual, at least the
function declaration must precede any use of the function template.

 Some C++ compilers have additional special requirements for using templates. If
you have trouble compiling your templates, check your manuals or check with a local
expert. You may need to set special options or rearrange the way you order the template
defi nitions and the other items in your fi les.

www.itpub.net

Function Templates 699

PITFALL: (continued)

 The template program layout that seems to work with the widest selection of compilers
is the following: Place the template definition in the same file in which it is used and
have the template definition precede all uses (all invocations) of the template. If you
want to place your function template definition in a file separate from your application
program, you can #include the file with the function template definition in the
application file. ■

 Self-Test Exercises

 1. Write a function template named maximum . The function takes two values of the
same type as its arguments and returns the larger of the two arguments (or either
value if they are equal). Give both the function declaration and the function
defi nition for the template. You will use the operator < in your defi nition.
Therefore, this function template will apply only to types for which < is defi ned.
Write a comment for the function declaration that explains this restriction.

 2. We have used three kinds of absolute value functions: abs , labs , and fabs .
These functions differ only in the type of their argument. It might be better
to have a function template for the absolute value function. Give a function
template for an absolute value function called absolute . The template will
apply only to types for which < is defi ned, for which the unary negation operator
is defi ned, and for which the constant 0 can be used in a comparison with a value
of that type. Thus, the function absolute can be called with any of the number
types, such as int , long , and double . Give both the function declaration and
the function defi nition for the template.

 3. Defi ne or characterize the template facility for C++.

 4. In the template prefi x

template < class T>

 what kind of variable is the parameter T ? Choose from the answers listed here.

 a. T must be a class.
 b. T must not be a class.
 c. T can be only a type built into the C++ language.
 d. T can be any type, whether built into C++ or defined by the programmer.
 e. T can be any kind of type, whether built into C++ or defined by the

programmer, but T does have some requirements that must be met. (What
are they?)

700 CHAPTER 16 Templates

 Algorithm Abstraction
As we saw in our discussion of the swapValues function, there is a very general algorithm
for interchanging the value of two variables that applies to variables of any type. Using a
function template, we were able to express this more general algorithm in C++. This is
a very simple example of algorithm abstraction. When we say we are using algorithm

abstraction, we mean that we are expressing our algorithms in a very general way so that
we can ignore incidental detail and concentrate on the substantive part of the algorithm.
Function templates are one feature of C++ that supports algorithm abstraction.

 TIP: How to Define Templates

 When we defined the function templates in Display 16.1 , we started with a function
that sorts an array of elements of type int . We then created a template by replacing
the base type of the array with the type parameter T . This is a good general strategy
for writing templates. If you want to write a function template, first write a version
that is not a template at all but is just an ordinary function. Then completely debug
the ordinary function, and finally convert the ordinary function to a template by
replacing some type names with a type parameter. There are two advantages to this
method. First, when you are defining the ordinary function, you are dealing with a
much more concrete case, which makes the problem easier to visualize. Second, you
have fewer details to check at each stage; when worrying about the algorithm itself,
you need not concern yourself with template syntax rules. ■

 Function Template

The function definition and the function declaration for a function template are each prefaced
with the following:

template<class Type_Parameter>

The function declaration (if used) and definition are then the same as any ordinary function
declaration and definition, except that the Type_Parameter can be used in place of a type.

For example, the following is a function declaration for a function template:

template<class T>
void showStuff(int stuff1, T stuff2, T stuff3);

The definition for this function template might be as follows:

template<class T>
void showStuff(int stuff1, T stuff2, T stuff3)
{
 cout << stuff1 << endl
 << stuff2 << endl
 << stuff3 << endl;
}

www.itpub.net

Function Templates 701

The function template given in this example is equivalent to having one function declaration
and one function definition for each possible type name. The type name is substituted
for the type parameter (which is T in the preceding example). For instance, consider the
following function call:

showStuff(2, 3.3, 4.4);

When this function call is executed, the compiler uses the function definition obtained by
replacing T with the type name double. A separate definition will be produced for each
different type for which you use the template, but not for any types you do not use. Only
one definition is generated for a specific type regardless of the number of times you use
the template.

 EXAMPLE: A Generic Sorting Function

 Chapter 5 gave the selection sorting algorithm for sorting an array of values of type int .
The algorithm was realized in C++ code as the function sort , given in Display 5.8 .
In the following, we repeat the definitions of this function sort :

void sort(int a[], int numberUsed)
{

int indexOfNextSmallest;
for (int index = 0; index < numberUsed - 1; index++)

 { //Place the correct value in a[index]:
 indexOfNextSmallest =
 indexOfSmallest(a, index, numberUsed);
 swapValues(a[index], a[indexOfNextSmallest]);

//a[0] <= a[1] <=...<= a[index] are the smallest of the
// original array elements. The rest of the elements
//are in the remaining positions.

 }
}

 If you study the preceding definition of the function sort , you will see that the base
type of the array is never used in any significant way. If we replaced the base type of
the array in the function header with the type double , we would obtain a sorting
function that applies to arrays of values of type double . Of course, we also must
adjust the helping functions so that they apply to arrays of elements of type double .
Let’s consider the helping functions that are called inside the body of the function
sort . The two helping functions are swapValues and indexOfSmallest .

 We already saw that swapValues can apply to variables of any type for which
the assignment operator works, provided we define it as a function template (as in
 Display 16.1). Let’s see if indexOfSmallest depends in any significant way on the

(continued)

702 CHAPTER 16 Templates

base type of the array being sorted. The definition of indexOfSmallest is repeated
next so you can study its details.

int indexOfSmallest(const int a[], int startIndex, int numberUsed)
{

int min = a[startIndex],
 indexOfMin = startIndex;

for (int index = startIndex + 1; index < numberUsed; index++)
if (a[index] < min)

 {
 min = a[index];
 indexOfMin = index;

//min is the smallest of a[startIndex] through
//a[index]

 }

return indexOfMin;
}

 The function indexOfSmallest also does not depend in any significant way on the
base type of the array. If we replace the two highlighted instances of the type int with
the type double , then we will have changed the function indexOfSmallest so that
it applies to arrays whose base type is double .

 To change the function sort so that it can be used to sort arrays with the base
type double , we need only to replace a few instances of the type name int with
the type name double . Moreover, there is nothing special about the type double .
We can do a similar replacement for many other types. The only thing we need to
know about the type is that the assignment operator and the operator, < , are defined
for that type. This is the perfect situation for function templates. If we replace a few
instances of the type name int (in the functions sort and indexOfSmallest) with
a type parameter, then the function sort can sort an array of values of any type,
provided that the values of that type can be assigned with the assignment operator
and compared using the < operator. In Display 16.2 , we have written just such a
function template.

 Notice that the function template sort shown in Display 16.2 can be used with
arrays of values that are not numbers. In the demonstration program, the function
template sort is called to sort an array of characters. Characters can be compared
using the < operator, which compares characters according to the order of their
ASCII numbers (see Appendix 3) . Thus, when applied to two uppercase letters, the
operator, < , tests to see if the first character comes before the second in alphabetic
order. Also, when applied to two lowercase letters, the operator, < , tests to see if the
first character comes before the second in alphabetic order. When you mix upper-
and lowercase letters, the situation is not so well behaved, but the program shown in
 Display 16.2 deals only with uppercase letters. In that program, an array of uppercase
letters is sorted into alphabetical order with a call to the function template sort .
(The function template sort will even sort an array of objects of a class that you
define, provided you overload the < operator to apply to objects of the class.)

EXAMPLE: (continued)

www.itpub.net

Function Templates 703

 Our generic sorting function has separated the implementation from the declaration
of the sorting function by placing the definition of the sorting function in the
file sort.cpp (Display 16.3). However, most compilers do not allow for separate
compilation of templates in the usual sense. So, we have separated the implementation
from the programmer’s point of view, but from the compiler’s point of view it looks
like everything is in one file. The file sort.cpp is #include d in our main file,
so it is as if everything were in one file. Note that the include directive for
sort.cpp is placed before any invocation of the functions defined by templates. For
most compilers, this is the only way you can get templates to work.

EXAMPLE: (continued)

 Display 16.2 A Generic Sorting Function (part 1 of 2)

1 //Demonstrates a template function that implements
2 //a generic version of the selection sort algorithm.
3 #include <iostream>
4 using std::cout;
5 using std::endl;

6 template<class T>
7 void sort(T a[], int numberUsed);
8 //Precondition: numberUsed <= declared size of the array a.
9 //The array elements a[0] through a[numberUsed - 1] have values.
10 //The assignment and < operator work for values of type T.
11 //Postcondition: The values of a[0] through a[numberUsed - 1] have
12 //been rearranged so that a[0] <= a[1] <=... <= a[numberUsed - 1].

13 template<class T>
14 void swapValues(T& variable1, T& variable2);
15 //Interchanges the values of variable1 and variable2.
16 //The assignment operator must work correctly for the type T.

17 template<class T>
18 int indexOfSmallest(const T a[], int startIndex, int numberUsed);
19 //Precondition: 0 <= startIndex < numberUsed. Array elements have

//values.
20 //The assignment and < operator work for values of type T.
21 //Returns the index i such that a[i] is the smallest of the values
22 //a[startIndex], a[startIndex + 1],..., a[numberUsed - 1].

23 #include "sort.cpp"

24 int main()
25 {
26 int i;
27 int a[10] = {9, 8, 7, 6, 5, 1, 2, 3, 0, 4};
28 cout << "Unsorted integers:\n";

 This is equivalent to placing the function
template definitions in this file at this
location.

(continued)

704 CHAPTER 16 Templates

29 for (i = 0; i < 10; i++)
30 cout << a[i] << " ";
31 cout << endl;
32 sort(a, 10);
33 cout << "In sorted order the integers are:\n";
34 for (i = 0; i < 10; i++)
35 cout << a[i] << " ";
36 cout << endl;
37 double b[5] = {5.5, 4.4, 1.1, 3.3, 2.2};
38 cout << "Unsorted doubles:\n";
39 for (i = 0; i < 5; i++)
40 cout << b[i] << " ";
41 cout << endl;
42 sort(b, 5);
43 cout << "In sorted order the doubles are:\n";
44 for (i = 0; i < 5; i++)
45 cout << b[i] << " ";
46 cout << endl;

47 char c[7] = {'G', 'E', 'N', 'E', 'R', 'I', 'C'};
48 cout << "Unsorted characters:\n";
49 for (i = 0; i < 7; i++)
50 cout << c[i] << " ";
51 cout << endl;
52 sort(c, 7);
53 cout << "In sorted order the characters are:\n";
54 for (i = 0; i < 7; i++)
55 cout << c[i] << " ";
56 cout << endl;

57 return 0;
58 }

 Sample Dialogue

Unsorted integers:

9 8 7 6 5 1 2 3 0 4

In sorted order the integers are:

0 1 2 3 4 5 6 7 8 9

Unsorted doubles:

5.5 4.4 1.1 3.3 2.2

In sorted order the doubles are:

1.1 2.2 3.3 4.4 5.5

Unsorted characters:

G E N E R I C

In sorted order the characters are:

C E E G I N R

Display 16.2 A Generic Sorting Function (part 2 of 2)

www.itpub.net

Function Templates 705

 Display 16.3 Implementation of the Generic Sorting Function

1 // This is the file sort.cpp.

2 template<class T>
3 void sort(T a[], int numberUsed)
4 {
5 int indexOfNextSmallest;
6 for (int index = 0; index < numberUsed - 1; index++)
7 { //Place the correct value in a[index]:
8 indexOfNextSmallest =
9 indexOfSmallest(a, index, numberUsed);
10 swapValues(a[index], a[indexOfNextSmallest]);
11 //a[0] <= a[1] <=...<= a[index] are the smallest of the original
12 //array elements. The rest of the elements are in the remaining

//positions.
13 }
14 }

15 template<class T>
16 void swapValues(T& variable1, T& variable2)
 <The rest of the definition of swapValues is given in Display 16.1 .>

17 template<class T>
18 int indexOfSmallest(const T a[], int startIndex, int numberUsed)
19 {
20 T min = a[startIndex];
21 int indexOfMin = startIndex;

22 for (int index = startIndex + 1; index < numberUsed; index++)
23 if (a[index] < min)
24 {
25 min = a[index];
26 indexOfMin = index;
27 //min is the smallest of a[startIndex] through a[index] .
28 }

29 return indexOfMin;
30 }

 Note that the type parameter may be used
in the body of the function definition.

 PITFALL: Using a Template with an Inappropriate Type

 You can use a template function with any type for which the code in the
function definition makes sense. However, all the code in the template function
must be clear and must behave in an appropriate way. For example, you cannot
use the swapValues template (Display 16.1) with the type parameter replaced

(continued)

706 CHAPTER 16 Templates

PITFALL: (continued)

by a type for which the assignment operator does not work at all, or does not
work “correctly.”

 As a more concrete example, suppose that your program defi nes the template function
swapValues as in Display 16.1 . You cannot add the following to your program:

int a[10], b[10];
 <some code to fill arrays>
swapValues(a, b);

 This code will not work, because assignment does not work with array types. ■

 Self-Test Exercises

 5. Display 5.6 shows a function called search , which sequentially searches an
array for a specifi ed integer. Give a function template version of search that
can be used to search an array of elements of any type. Give both the function
declaration and the function defi nition for the template. (Hint: It is almost
identical to the function given in Display 5.6 .)

 6. Compare and contrast overloading of a function name with the defi nition of a
function template for the function name.

 7. (This exercise is only for those who have already read at least Chapter 6 on
 structures and classes and preferably also read Chapter 8 on overloading
operators.) Can you use the sort template function (Display 16.3) to sort an
array with base type DayOfYear defi ned in Display 6.4 ?

 8. (This exercise is only for those who have already read Chapter 10 on pointers
and dynamic arrays.)

 Although the assignment operator does not work with ordinary array variables, it
does work with pointer variables that are used to name dynamic arrays. Suppose
that your program defi nes the template function swapValues (as in Display 16.1)
and contains the following code. What is the output produced by this code?

typedef int* ArrayPointer;
ArrayPointer a, b, c;
a = new int[3];
b = new int[3];

int i;
for (i = 0; i < 3; i++)
{
 a[i] = i;
 b[i] = i * 100;
}
c = a;

www.itpub.net

Class Templates 707

 16.2 Class Templates

 Equal wealth and equal opportunities of culture … have simply made us

all members of one class.

 EDWARD BELLAMY, Looking Backward 2000–1887

 As you saw in the previous section, function definitions can be made more general
by using templates. In this section, you will see that templates can also make class
definitions more general.

Self-Test Exercises (continued)

cout << "a contains: ";
for (i = 0; i < 3; i++)
 cout << a[i] << " ";
cout << endl;
cout << "b contains: ";
for (i = 0; i < 3; i++)
 cout << b[i] << " ";
cout << endl;
cout << "c contains: ";
for (i = 0; i < 3; i++)
 cout << c[i] << " ";
cout << endl;

swapValues(a, b);
b[0] = 42;

cout << "After swapping a and b,\n"
 << "and changing b:\n";
cout << "a contains: ";
for (i = 0; i < 3; i++)
 cout << a[i] << " ";
cout << endl;
cout << "b contains: ";
for (i = 0; i < 3; i++)
 cout << b[i] << " ";
cout << endl;
cout << "c contains: ";
for (i = 0; i < 3; i++)
 cout << c[i] << " ";
cout << endl;

708 CHAPTER 16 Templates

 Syntax for Class Templates

 The syntax details for class templates are basically the same as those for function
templates. The following is placed before the template definition:

template<class T>

 The type parameter T is used in the class definition just like any other type. As with
function templates, the type parameter T represents a type that can be any type
at all; the type parameter does not have to be replaced with a class type. As with
function templates, you may use any (nonkeyword) identifier instead of T , although it
is traditional to use T .

 Display 16.4 shows an example of a class template. An object of this class contains
a pair of values of type T : If T is int , the object values are pairs of integers; if T is char ,
the object values are pairs of characters, and so on. 2

 Once the class template is defined, you can declare objects of this class. The
declaration must specify what type is to be filled in for T . For example, the following
declares the object score so it can record a pair of integers, and it declares the object
seats so it can record a pair of characters:

Pair<int> score;
Pair<char> seats;

 The objects are then used just like any other objects. For example, the following sets
score to be 3 for the first team and 0 for the second team:

score.setFirst(3);
score.setSecond(0);

type parameter

declaring
objects

 Display 16.4 Class Template Defi nition (part 1 of 2)

1 //Class for a pair of values of type T:
2 template<class T>
3 class Pair
4 {
5 public:
6 Pair();
7 Pair(T firstValue, T secondValue);
8 void setFirst(T newValue);
9 void setSecond(T newValue);
10 T getFirst() const;
11 T getSecond() const;
12 private:
13 T first;
14 T second;
15 };

2Pair is a template version of the class intPair given in Display 8.6 . However, since they would not
be appropriate for all types T, we have omitted the increment and decrement operators.

www.itpub.net

Class Templates 709

16 template<class T>
17 Pair<T>::Pair(T firstValue, T secondValue)
18 {
19 first = firstValue;
20 second = secondValue;
21 }

22 template<class T>
23 void Pair<T>::setFirst(T newValue)
24 {
25 first = newValue;
26 }

27 template<class T>
28 T Pair<T>::getFirst() const
29 {
30 return first;
31 }

 Not all the member functions
are shown here.

Display 16.4 Class Template Defi nition (part 2 of 2)

 The member functions for a class template are defined the same way as member
functions for ordinary classes. The only difference is that the member function
definitions are themselves templates. For example, Display 16.4 shows appropriate
definitions for the member functions setFirst and getFirst , and for the constructor
with two arguments for the template class Pair . Notice that the class name before the
scope resolution operator is Pair<T> , and not simply Pair . However, the constructor
name after the scope resolution operator is the simple name Pair without any <T> .

 The name of a class template may be used as the type for a function parameter.
For example, the following is a possible function declaration for a function with a
parameter for a pair of integers:

int addUp(const Pair< int>& thePair);
//Returns the sum of the two integers in thePair.

 Note that we specified the type—in this case, int —that is to be filled in for the type
parameter T .

 You can even use a class template within a function template. For example, rather than
defining the specialized function addUp given in the preceding code, you could instead
define a function template as follows so that the function applies to all kinds of numbers:

template<class T>
T addUp(const Pair<T>& thePair);
//Precondition: The operator + is defined for values of type T.
//Returns the sum of the two values in thePair.

defining
member

functions

class templates
as parameters

710 CHAPTER 16 Templates

 Almost all template class definitions have some restrictions on what types can
reasonably be substituted for the type parameter (or parameters). Even a straightforward
template class such as Pair does not work well with absolutely all types T . The
type Pair<T> will not be well behaved unless the assignment operator and copy
constructor are well behaved for the type T , since the assignment operator is used in
member function definitions and since there are member functions with call-by-value
parameters of type T . If T involves pointers and dynamic variables, then T should
also have a suitable destructor. However, these are requirements you might expect a
well-behaved class type T to have. So, these requirements are minimal. With other
template classes, the requirements on the types that can be substituted for a type
parameter may be more restrictive.

restrictions on
the type

parameter

 Class Template Syntax

A class template definition and the definitions of its member functions are prefaced with
the following:

template<class Type_Parameter>

The class and member function definitions are then the same as for any ordinary class,
except that the Type_Parameter can be used in place of a type.

For example, the following is the beginning of a class template definition:

template<class T>
class Pair
{
public:
 Pair();
 Pair(T firstValue, T secondValue);
 ...

Member functions and overloaded operators are then defined as function templates. For
example, the definition of the two-argument constructor for the preceding sample class
template would begin as follows:

template<class T>
Pair<T>::Pair(T firstValue, T secondValue)
{
 ...

You can specialize a class template by giving a type argument to the class name, as in the
following example:

Pair<int>

The specialized class name, like Pair<int>, can then be used just like any class name. It
can be used to declare objects or to specify the type of a formal parameter.

www.itpub.net

Class Templates 711

 Type Definitions

You can define a new class type name that has the same meaning as a specialized class template
name, such as Pair<int>. The syntax for such a defined class type name is as follows:

typedef Class_Name<Type_Argument> New_Type_Name;

For example,

typedef Pair< int> PairOfInt;

The type name PairOfInt can then be used to declare objects of type Pair<int>, as in
the following example:

PairOfInt pair1, pair2;

The type name PairOfInt can also be used to specify the type of a formal parameter or
used anyplace else a type name is allowed.

 Self-Test Exercises

 9. Give the definition for the default (zero-argument) constructor for the class
template Pair in Display 16.4 .

 10. Give the complete definition for the following function, which was discussed in
the previous subsection:

int addUp(const Pair< int>& thePair);
//Returns the sum of the two integers in thePair.

 11. Give the complete definition for the following template function, which was
discussed in the previous subsection:

template<class T>
T addUp(const Pair<T>& thePair);
//Precondition: The operator + is defined for values of type T.
//Returns the sum of the two values in thePair

712 CHAPTER 16 Templates

 EXAMPLE: An Array Template Class

 In Chapter 10 , we defined a class for a partially filled array of doubles (Displays 10.10
and 10.11). In this example, we convert that definition to a template class for a partially
filled array of values of any type. The template class PFArray has a type parameter T for
the base type of the array.

 The conversion is routine. We just replace double (when it occurs as the base type
of the array) with the type parameter T and convert both the class definition and the
member function definitions to template form. The template class definition is given
in Display 16.5 . The member function template definitions are given in Display 16.6 .

 Note that we have placed the template definitions in a namespace. Namespaces
are used with templates in the same way as they are used with simple, nontemplate
definitions.

 A sample application program is given in Display 16.7 . Note that we have separated
the class template interface, implementation, and application program into three
files. Unfortunately, these files cannot be used for the traditional method of separate
compilation. Most compilers do not yet accommodate such separate compilation. So,
we do the best we can by #include- ing the interface and implementation files in the
application file. To the compiler, that makes it look like everything is in one file.

 Display 16.5 Interface for the PFArray Template Class (part 1 of 2)

1 //This is the header file pfarray.h. This is the interface for the class
2 //PFArray. Objects of this type are partially filled arrays with base
 //type T.
3 #ifndef PFARRAY_H
4 #define PFARRAY_H

5 namespace PFArraySavitch
6 {
7 template<class T>
8 class PFArray
9 {
10 public:
11 PFArray(); //Initializes with a capacity of 50.

12 PFArray(int capacityValue);

13 PFArray(const PFArray<T>& pfaObject);

14 void addElement(const T& element);
15 //Precondition: The array is not full.
16 //Postcondition: The element has been added.

www.itpub.net

Class Templates 713

17 bool full() const; //Returns true if the array is full;
 //false, otherwise.

18 int getCapacity() const;

19 int getNumberUsed() const;

20 void emptyArray();
21 //Resets the number used to zero, effectively emptying the

//array.

22 T& operator[](int index);
23 //Read and change access to elements 0 through numberUsed - 1.

24 PFArray<T>& operator =(const PFArray<T>& rightSide);

25 virtual ~PFArray();
26 private:
27 T *a; //for an array of T.
28 int capacity; //for the size of the array.
29 int used; //for the number of array positions currently in use.
30 };
31 } // PFArraySavitch
32 #endif //PFARRAY_H

Display 16.5 Interface for the PFArray Template Class (part 2 of 2)

 Display 16.6 Implementation for PFArray Template Class (part 1 of 3)

1 //This is the implementation file pfarray.cpp.
2 //This is the implementation of the template class PFArray.
3 //The interface for the template class PFArray is in the file pfarray.h.

4 #include "pfarray.h"
5 #include <iostream>
6 using std::cout;

7 namespace PFArraySavitch
8 {
9 template < class T>

10 PFArray<T>::PFArray() :capacity(50), used(0)
11 {
12 a = new T[capacity];
13 }

(continued)

 Note that the T is used before the
scope resolution operator, but no
 T is used for the constructor name.

714 CHAPTER 16 Templates

14 template<class T>
15 PFArray<T>::PFArray(int size) :capacity(size), used(0)
16 {
17 a = new T[capacity];
18 }

19 template<class T>
20 PFArray<T>::PFArray(const PFArray<T>& pfaObject)
21 :capacity(pfaObject.getCapacity()),

used(pfaObject.getNumberUsed())
22 {
23 a = new T[capacity];
24 for (int i = 0; i < used; i++)
25 a[i] = pfaObject.a[i];
26 }
27
28 template<class T>
29 void PFArray<T>::addElement(const T& element)
30 {
31 if (used >= capacity)
32 {
33 cout << "Attempt to exceed capacity in PFArray.\n";
34 exit(0);
35 }
36 a[used] = element;
37 used++;
38 }

39 template<class T>
40 bool PFArray<T>::full() const
41 {
42 return (capacity == used);
43 }

44 template<class T>
45 int PFArray<T>::getCapacity() const
46 {
47 return capacity;
48 }

49 template<class T>
50 int PFArray<T>::getNumberUsed() const
51 {
52 return used;
53 }

Display 16.6 Implementation for PFArray Template Class (part 2 of 3)

www.itpub.net

Class Templates 715

54 template<class T>
55 void PFArray<T>::emptyArray()
56 {
57 used = 0;
58 }

59 template<class T>
61 T& PFArray<T>::operator[](int index)
62 {
63 if (index >= used)
64 {
65 cout << "Illegal index in PFArray.\n";
66 exit(0);
67 }
68 return a[index];
69 }

70 template<class T>
71 PFArray<T>& PFArray<T>::operator =(const PFArray<T>& rightSide)
72 {
73 if (capacity != rightSide.capacity)
74 {
75 delete [] a;
76 a = new T[rightSide.capacity];
77 }

78 capacity = rightSide.capacity;
79 used = rightSide.used;
80 for (int i = 0; i < used; i++)
81 a[i] = rightSide.a[i];

82 return * this;
83 }

84 template<class T>
85 PFArray<T>::~PFArray()
86 {
87 delete [] a;
88 }
89 } // PFArraySavitch

Display 16.6 Implementation for PFArray Template Class (part 3 of 3)

716 CHAPTER 16 Templates

 Display 16.7 Demonstration Program for Template Class PFArray (part 1 of 2)

1 //Program to demonstrate the template class PFArray.
2 #include <iostream>
3 #include <string>
4 using std::cin;
5 using std::cout;
6 using std::endl;
7 using std::string;

8 #include "pfarray.h"
9 #include "pfarray.cpp"
10 using PFArraySavitch::PFArray;

11 int main()
12 {
13 PFArray< int> a(10);

14 cout << "Enter up to 10 nonnegative integers.\n";
15 cout << "Place a negative number at the end.\n";
16 int next;
17 cin >> next;
18 while ((next >= 0) && (!a.full()))
19 {
20 a.addElement(next);
21 cin >> next;
22 }
23 if (next >= 0)
24 {
25 cout << "Could not read all numbers.\n";
26 //Clear the unread input:
27 while (next >= 0)
28 cin >> next;
29 }

30 cout << "You entered the following:\n ";
31 int index;
32 int count = a.getNumberUsed();
33 for (index = 0; index < count; index++)
34 cout << a[index] << " ";
35 cout << endl;
36 PFArray<string> b(3);

37 cout << "Enter three words:\n";
38 string nextWord;

www.itpub.net

Class Templates 717

39 for (index = 0; index < 3; index++)
40 {
41 cin >> nextWord;
42 b.addElement(nextWord);
43 }

44 cout << "You wrote the following:\n";
45 count = b.getNumberUsed();
46 for (index = 0; index < count; index++)
47 cout << b[index] << " ";
48 cout << endl;
49 cout << "I hope you really mean it.\n";

50 return 0;
51 }

 Sample Dialogue

Enter up to 10 nonnegative integers.

Place a negative number at the end.

1 2 3 4 5 -1

You entered the following:

1 2 3 4 5

Enter three words:

I love you

You wrote the following:

I love you

I hope you really mean it

Display 16.7 Demonstration Program for Template Class PFArray (part 2 of 2)

 Friend Functions

Friend functions are used with template classes in the same way that they are used with ordinary
classes. The only difference is that you must include a type parameter where appropriate.

 Self-Test Exercise

 12. What do you have to do to make the following function a friend of the template
class PFArray in Display 16.5 ?

void showData(PFArray<T> theObject);
//Displays the data in theObject to the screen.
//Assumes that << is defined for values of type T.

718 CHAPTER 16 Templates

 The vector and basic_string Templates

 If you have not yet done so, this would be a good time to read Section 7.3 of Chapter 7 ,
which covers the template class vector .

 Another predefined template class is the basic_string template class. This class
can deal with strings of elements of any type. The class basic_string<char> is the
class for strings of characters. The class basic_string<double> is the class for strings
of numbers of type double . The class basic_string<YourClass> is the class for
strings of objects of the class YourClass (whatever that may be).

 You have already been using a special case of the basic_string template class. The
unadorned name string , which we have been using, is an alternate name for the class
basic_string<char> . All the member functions you learned for the class string
apply and behave similarly for the template class basic_string<T> .

 The template class basic_string is defined in the library with header file <string> ,
and the definition is placed in the std namespace. When using the class basic_string ,
you therefore need the following or something similar near the beginning of your file:

#include <string>
using namespace std;

 or

#include <string>
using std::basic_string;
using std::string; //Only if you use the name string by itself

 16.3 Templates and Inheritance

 The ruling ideas of each age have ever been the ideas of its ruling class.

 KARL MARX and FRIEDRICH ENGELS, The Communist Manifesto

 There is very little new to learn about templates and inheritance. To define a derived
template class, start with a template class (or sometimes a nontemplate class) and derive
another template class from it. Do this in the same way that you derive an ordinary
class from an ordinary base class. An example should clarify any questions you might
have about syntax details.

vector

basic_string

string

www.itpub.net

Templates and Inheritance 719

 EXAMPLE: Template Class For a Partially Filled Array with Backup

 Chapter 14 (Displays 14.10 and 14.11) defined the class PFArrayDBak for partially
filled arrays of double with backup. We defined it as a derived class of PFArrayD
(Displays 14.8 and 14.9). The class PFArrayD was a class for a partially filled array,
but it only worked for the base type double . Displays 16.5 and 16.6 converted the
class PFArrayD to the template class PFArray so that it would work for any type
as the array base type. In this program, we will define a template class PFArrayBak
for a partially filled array with backup that will work for any type as the array base
type. We will define the template class PFArrayBak as a derived class of the template
PFArray . We can do this almost automatically by starting with the regular derived
class PFArarryDBak and replacing all occurrences of the array base type double with
a type parameter T , replacing the class PFArrayD with the template class PFArray ,
and cleaning up the syntax so it fully conforms to template syntax.

 The interface to the template class PFArrayBak is given in Display 16.8 . Note that
the base class is PFArray<T> with the array parameter, not simply PFArray . If you think
about it, you will realize that you need the <T> . A partially filled array of T with backup
is a derived class of a partially filled array of T . The T , and how it is used, is important.

 The implementation for the template class PFArrayBak is given in Display 16.9 .
In what follows, we reproduce the first constructor definition in the implementation:

template<class T>
PFArrayBak<T>::PFArrayBak() : PFArray<T>(), usedB(0)
{
 b = new T[getCapacity()];
}

 Note that, as with any definition of a template class function, it starts with

template<class T>

 Also notice that the base type of the array (given after the new) is the type parameter T .
Other details may not be quite as obvious, but do make sense.

 Next consider the following line:

PFArrayBak<T>::PFArrayBak() : PFArray<T>(), usedB(0)

 As with any definition of a template class function, the definition has PFArray<T>
with the type parameter before the scope resolution operator, but the constructor
name is just plain, old PFArrayBak without any type parameter. Also notice
that the base class constructor includes the type parameter T in the initialization
PFArray<T>() . This is so that the constructor will match the base type PFArray<T>
as given in the following line of the interface:

class PFArrayBak : public PFArray<T>

 A sample program using the template class PFArrayBak is given in Display 16.10 .

720 CHAPTER 16 Templates

 Display 16.8 Interface for the Template Class PFArrayBak

1 //This is the header file pfarraybak.h. This is the interface for the
2 //template class PFArrayBak. Objects of this type are partially filled
3 //arrays of any type T. This version allows the programmer to make a
4 //backup copy and restore to the last saved copy of the partially filled

//array.
5 #ifndef PFARRAYBAK_H
6 #define PFARRAYBAK_H
7 #include "pfarray.h"

8 namespace PFArraySavitch
9 {
10 template<class T>
11 class PFArrayBak : public PFArray<T>
12 {
13 public:
14 PFArrayBak();
15 //Initializes with a capacity of 50.

16 PFArrayBak(int capacityValue);

17 PFArrayBak(const PFArrayBak<T>& Object);

18 void backup();
19 //Makes a backup copy of the partially filled array.

20 void restore();
21 //Restores the partially filled array to the last saved version.
22 //If backup has never been invoked, this empties the partially
23 //filled array.

24 PFArrayBak<T>& operator =(const PFArrayBak<T>& rightSide);
25 virtual ~PFArrayBak();
26 private:
27 T *b; //for a backup of main array.
28 int usedB; //backup for inherited member variable used.
29 };

30 } // PFArraySavitch
31 #endif //PFARRAY_H

 Display 16.9 Implementation for the Template Class PFArrayBak (part 1 of 3)

1 //This is the file pfarraybak.cpp.
2 //This is the implementation for the template class PFArrayBak. The
3 //interface for the template class PFArrayBak is in the file

//pfarraybak.h.
4 #include "pfarraybak.h"
5 #include <iostream>

www.itpub.net

Templates and Inheritance 721

6 using std::cout;

7 namespace PFArraySavitch
8 {

9 template<class T>
10 PFArrayBak<T>::PFArrayBak() : PFArray<T>(),usedB(0)
11 {
12 b = new T[getCapacity()];
13 }

14 template<class T>
15 PFArrayBak<T>::PFArrayBak(int capacityValue)
16 : PFArray<T>(capacityValue),usedB(0)
17 {
18 b = new T[getCapacity()];
19 }

20 template<class T>
21 PFArrayBak<T>::PFArrayBak(const PFArrayBak<T>& oldObject)
22 : PFArray<T>(oldObject),usedB(0)
23 {
24 b = new T[getCapacity()];
25 usedB = oldObject.getNumberUsed();
26 for (int i = 0; i < usedB; i++)
27 b[i] = oldObject.b[i];
28 }
29 template<class T>
30 void PFArrayBak<T>::backup()
31 {
32 usedB = getNumberUsed();
33 for (int i = 0; i < usedB; i++)
34 b[i] = operator[](i);
35 }

36 template<class T>
37 void PFArrayBak<T>::restore()
38 {
39 emptyArray();

40 for (int i = 0; i < usedB; i++)
41 addElement(b[i]);
42 }

43 template<class T>
44 PFArrayBak<T>& PFArrayBak<T>:: operator =

 (const PFArrayBak<T>& rightSide)

Display 16.9 Implementation for the Template Class PFArrayBak (part 2 of 3)

(continued)

722 CHAPTER 16 Templates

45 {
46 PFArray<T>:: operator =(rightSide);

47 if (getCapacity() != rightSide.getCapacity())
48 {
49 delete [] b;
50 b = new T[rightSide.getCapacity()];
51 }
52 usedB = rightSide.usedB;
53 for (int i = 0; i < usedB; i++)
54 b[i] = rightSide.b[i];

55 return * this;
56 }

57 template<class T>
58 PFArrayBak<T>::~PFArrayBak()
59 {
60 delete [] b;
61 }
62 } // PFArraySavitch

Display 16.9 Implementation for the Template Class PFArrayBak (part 3 of 3)

 Display 16.10 Demonstration Program for Template Class PFArrayBak (part 1 of 2)

1 //Program to demonstrate the template class PFArrayBak.
2 #include <iostream>
3 #include <string>
4 using std::cin;
5 using std::cout;
6 using std::endl;
7 using std::string;

8 #include "pfarraybak.h"
9 #include "pfarray.cpp"
10 #include "pfarraybak.cpp"
11 using PFArraySavitch::PFArrayBak;

12 int main()
13 {
14 int cap;
15 cout << "Enter capacity of this super array: ";
16 cin >> cap;
17 PFArrayBak<string> a(cap);

18 cout << "Enter " << cap << " strings\n";
19 cout << "separated by blanks.\n";

20 string next;

 Do not forget to include the
implementation of the base class
template.

www.itpub.net

Templates and Inheritance 723

Display 16.10 Demonstration Program for Template Class PFArrayBak (part 2 of 2)

21 for (int i = 0; i < cap; i++)
22 {
23 cin >> next;
24 a.addElement(next);
25 }
26 int count = a.getNumberUsed();
27 cout << "The following " << count
28 << " strings read and stored:\n";
29 int index;
30 for (index = 0; index < count; index++)
31 cout << a[index] << " ";
32 cout << endl;

33 cout << "Backing up array.\n";
34 a.backup();
35 cout << "Emptying array.\n";
36 a.emptyArray();
37 cout << a.getNumberUsed()
38 << " strings are now stored in the array.\n";
39 cout << "Restoring array.\n";
40 a.restore();
41 count = a.getNumberUsed();
42 cout << "The following " << count
43 << " strings are now stored:\n";
44 for (index = 0; index < count; index++)
45 cout << a[index] << " ";
46 cout << endl;

47 cout << "End of demonstration.\n";
48 return 0;
49 }

 Sample Dialogue

Enter capacity of this super array: 3

Enter 3 strings

separated by blanks.

I love you

The following 3 strings read and stored:

I love you

Backing up array.

Emptying array.

0 strings are now stored in the array.

Restoring array.

The following 3 strings are now stored:

I love you

End of demonstration.

724 CHAPTER 16 Templates

 Self-Test Exercises

 13. Is it legal for a derived template class to start as shown in the following code?
The template class TwoDimPFArrayBak is designed to be a two-dimensional
partially fi lled array with backup.

template<class T>
class TwoDimPFArrayBak : public PFArray< PFArray<T> >
{
public:
 TwoDimPFArrayBak();

 Note that the space in < PFArray<T> > is important, or at least the last space is.
If the space between the next-to-last > and the last > is omitted, then the compiler
may interpret >> to be the extraction operator used for input in expressions such
as cin >> n; rather than interpreting it as a nested < > .

 14. Give the heading for the default (zero-argument) constructor for the class
TwoDimPFArrayBak given in Self-Test Exercise 13 . (Assume all instance variables
are initialized in the body of the constructor defi nition, so you are not being
asked to do that.)

 Chapter Summary

• Using function templates, you can define functions that have a parameter for a type.

• Using class templates, you can define a class with a type parameter for subparts of
the class.

• The predefined vector and basic_string classes are actually template classes.

• You can define a template class that is a derived class of a template base class.

 Answers to Self-Test Exercises

 1. Function declaration:

template<class T>
T maximum(T first, T second);
//Precondition: The operator < is defined for the type T.
//Returns the maximum of first and second.

www.itpub.net

Answers to Self-Test Exercises 725

 Definition:

template<class T>
T maximum(T first, T second)
{

if (first < second)
return second;

else
return first;

}

 2. Function declaration:

template<class T>
T absolute(T value);
//Precondition: The expressions x < 0 and -x are defined
//whenever x is of type T.
//Returns the absolute value of its argument.

 Definition:

template<class T>
T absolute(T value)
{

if (value < 0)
return −value;

else
return value;

}

 3. Templates provide a facility to allow the definition of functions and classes that
have parameters for type names.

 4. e. Any type, whether a primitive type (provided by C++) or a type defined by the
user (a class or struct type, an enum type, or a type defined array, or int , float ,
double , etc.), but T must be a type for which the code in the template makes sense.
For example, for the swapValues template function (Display 16.1), the type T
must have a correctly working assignment operator.

 5. The function declaration and function definition are given in the following code.
 They are basically identical to those for the versions given in Display 5.6 except
that two instances of int are changed to T in the parameter list.

 Function declaration:

template<class T>
int search(const T a[], int numberUsed, T target);
//Precondition: numberUsed is <= the declared size of a.
//Also, a[0] through a[numberUsed -1] have values.
//Returns the first index such that a[index] == target,
//provided there is such an index, otherwise returns -1.

726 CHAPTER 16 Templates

 Definition:

template<class T>
int search(const T a[], int numberUsed, T target)
{

int index = 0;
bool found = false;
while ((!found) && (index < numberUsed))

if (target == a[index])
 found = true;

else
 index++;

if (found)
return index;

else
return -1;

}

 6. Function overloading works only for types for which an overloading is provided.
(Overloading may work for types that automatically convert to some type for which
an overloading is provided, but it may not do what you expect.) The template solu-
tion will work for any type that is defined at the time of invocation, provided that
the template function body makes sense for that type.

 7. No, you cannot use an array with base type DayOfYear with the template function
sort because the < operator is not defined on values of type DayOfYear . (If you
overload < , as we discussed in Chapter 8 , to give a suitable ordering on values of type
DayOfYear , then you can use an array with base type DayOfYear with the template
function sort . For example, you might overload < so it means one date comes before
the other on the calendar and then sort an array of dates by calendar ordering.)

 8. a contains: 0 1 2
b contains: 0 100 200

c contains: 0 1 2

After swapping a and b,

and changing b:

a contains: 0 100 200

b contains: 42 1 2

c contains: 42 1 2

 Note that before swapValues(a, b); c is an alias (another name) for the array a .
After swapValues(a, b); c is an alias for b . Although the values of a and b are
in some sense swapped, things are not as simple as you might have hoped. With
pointer variables, there can be side effects of using swapValues .

 The point illustrated here is that the assignment operator is not as well behaved
as you might want on array pointers and so the template swapValues does not
work as you might want with variables that are pointers to arrays. The assignment
operator does not do element-by-element swapping but merely swaps two
pointers. So, the swapValues function used with pointers to arrays simply swaps
two pointers. It might be best to not use swapValues with pointers to arrays

www.itpub.net

Answers to Self-Test Exercises 727

(or any other pointers), unless you are very aware of how it behaves on the
pointers. The swapValues template function used with a type T is only as good,
or as bad, as the assignment operator is on type T .

 9. Since the type can be any type at all, there are no natural candidates for the default
initialization values. So this constructor does nothing, but it does allow you to
declare (uninitialized) objects without giving any constructor arguments.

template<class T>
Pair<T>::Pair()
{
//Do nothing .
}

 10. int addUp(const Pair<int >& thePair)

{
return (thePair.getFirst() + thePair.getSecond());

}

 11. template<class T>
T addUp(const Pair< T>& thePair)
{

return (thePair.getFirst() + thePair.getSecond());
}

 12. Add the following to the public section of the template class definition of
PFArray :

friend void showData(PFArray<T> theObject);
//Displays the data in theObject to the screen.
//Assumes that << is defined for values of type T.

 You also need to add a function template definition of showData . One possible
definition is as follows:

namespace PFArraySavitch
{

template<class T>
void showData(PFArray< T > theObject)

 {
for (int i = 0; i < theObject.used; i++)

 cout << theObject[i] << endl;
 }
}//PFArraySavitch

 13. Yes, it is perfectly legal. There are other, possibly preferable, ways to accomplish
the same thing, but this is legal and not even crazy.

 14. template < class T>
TwoDimPFArrayBak<T>::TwoDimPFArrayBak()
 : PFArray< PFArray<T> >()

728 CHAPTER 16 Templates

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a template version of the iterative binary search algorithm from Display 13.8
which only searches an array of integers for an integer key. Specify requirements on the
template parameter type. Discuss the requirements on the template parameter type.

 2. Write a template version of the recursive binary search function from Display 13.6 .
Specify requirements on the template parameter type. Discuss the requirements on
the template parameter type.

 3. The template sort routine in Display 16.3 is based on an algorithm called the
selection sort . Another related sorting algorithm is called insertion sort . The
 insertion sort algorithm is the sort method often used to sort a Bridge hand. Con-
sider each element in turn, inserting it into its proper place among the elements
at the start of the array that are already sorted. The element being considered is
inserted by moving the larger elements “to the right” to make space and inserting
the vacated place. For example, the following shows the steps in a selection sort of
an array of int s a . The values of a[0] through a[4] are given on each line. The
asterisk marks the boundary between the sorted and unsorted portions of the array.

2 * 5 3 4
2 5 * 3 4
2 3 5 * 4
2 3 4 5 *

 First, write an insertion sort function that works for int s. Next, write the template
version of this sort function. Finally, test thoroughly using several primitive types,
using a type you create with the minimal machinery necessary to use the sort routine.

 4. Write a template-based function that calculates and returns the absolute value of
two numeric values passed in. The function should operate with any numeric data
types (e.g., float , int , double , char).

 5. Write a template-based class that implements a set of items. The class should allow
the user to

 a. Add a new item to the set.

 b. Get the number of items in the set.

 c. Get a pointer to a dynamically created array containing each item in the set. The
caller of this function is responsible for deallocating the memory.

 Test your class by creating sets of different data types (e.g., integers, strings).

 6. Do Programming Project 10.6 for the wrapper class around a dynamic array of
strings that allowed for the deletion and addition of string entries. Except this time,
use a template-based class so the implementation is not limited to strings. Test the
class with dynamic arrays of integers in addition to strings.

Solution to
Programming
Project 16.3

VideoNote

www.itpub.net

www.myprogramminglab.com

Programming Projects 729

 7. In this chapter, we used only a single template class type parameter. C++ allows
you to specify multiple type parameters. For example, the following code specifies
that the class accepts two type parameters:

template
<class T, class V>
class Example
{

...
}

 When creating an instance of the class, we must now specify two data types, such as

Example<int, char> demo;

 Modify the Pair class given in Display 16.4 so that the pair of items can be differ-
ent data types. Write a main function that tests the class with pairs of different
data types.

Solution to
Programming
Project 16.7

VideoNote

This page intentionally left blank

www.itpub.net

 Linked Data
 Structures

 Efficiency of Hash Tables 783
 Example: A Set Template Class 784
 Efficiency of Sets Using Linked Lists 790

 17.3 ITERATORS 791
 Pointers as Iterators 792
 Iterator Classes 792
 Example: An Iterator Class 794

 17.4 TREES 800
 Tree Properties 801
 Example: A Tree Template Class 803

 17.1 NODES AND LINKED LISTS 733
 Nodes 733
 Linked Lists 738
 Inserting a Node at the Head of a List 740
 Pitfall: Losing Nodes 743
 Inserting and Removing Nodes Inside a List 743
 Pitfall: Using the Assignment Operator with Dynamic

 Data Structures 747
 Searching a Linked List 747
 Doubly Linked Lists 750
 Adding a Node to a Doubly Linked List 752
 Deleting a Node from a Doubly Linked List 752
 Example: A Generic Sorting Template Version of

 Linked List Tools 759

 17.2 LINKED LIST APPLICATIONS 763
 Example: A Stack Template Class 763
 Example: A Queue Template Class 770
 Tip: A Comment on Namespaces 773
 Friend Classes and Similar Alternatives 774
 Example: Hash Tables with Chaining 777

 17

 Chapter Summary 808 Answers to Self-Test Exercises 809 Programming Projects 818

 If somebody there chanced to be

 Who loved me in a manner true

 My heart would point him out to me

 And I would point him out to you.

 GILBERT AND SULLIVAN, Ruddigore

 Introduction
 A linked list is a list constructed using pointers. A linked list is not fixed in size but can
grow and shrink while your program is running. A tree is another kind of data structure
constructed using pointers. This chapter introduces the use of pointers for building
such data structures. The Standard Template Library (STL) has predefined versions
of these and other similar data structures. The STL is covered in Chapter 19 . It often
makes more sense to use the predefined data structures in the STL rather than defining
your own. However, there are cases where you need to define your own data structures
using pointers. (Somebody had to define the STL.) Also, this material will give you
some insight into how the STL might have been defined and will introduce you to
some basic widely used material.

 Linked data structures produce their structures using dynamic variables, which
are created with the new operator. The linked data structures use pointers to connect
these variables. This gives you complete control over how you build and manage your
data structures, including how you manage memory. This allows you to sometimes do
things more efficiently. For example, it is easier and faster to insert a value into a sorted
linked list than into a sorted array.

 There are basically three ways to handle data structures of the kind discussed in this
chapter:

1. The C-style approach of using global functions and struct s with everything public

2. Using classes with all member variables private and using accessor and mutator
functions

3. Using friend classes (or something similar, such as private or protected inheritance
or locally defi ned classes)

 We give examples of all three methods. We introduce linked lists using method 1. We
then present more details about basic linked lists and introduce both the stack and
queue data structures using method 2. We give an alternate definition of our queue
template class using friend classes (method 3), and also use friend classes (method 3)
to present a tree template class. This way you can see the virtues and shortcomings of
each approach. Our personal preference is to use friend classes, but each method has its
own advocates.

 17 Linked Data Structures

www.itpub.net

 Nodes and Linked Lists 733

 Sections 17.1 through 17.3 do not use the material in Chapters 13 through 15
(recursion, inheritance, and polymorphism) , with one small exception: We have
marked our class destructors with the modifier virtual following the advice given
in Chapter 15 . If you have not yet read about virtual functions (Chapter 15) , you
can pretend that "virtual" does not appear in the code. For in the purposes of this
chapter, it makes no difference whether "virtual" is present or not. Section 17.4 uses
recursion (Chapter 13) but does not use Chapters 14 and 15 .

 17.1 Nodes and Linked Lists

 A linked list, such as the one diagrammed in Display 17.1 , is a simple example of
a dynamic data structure. It is called a dynamic data structure because each of the
boxes in Display 17.1 is a variable of a struct or class type that has been dynamically
created with the new operator. In a dynamic data structure, these boxes, known as
nodes , contain pointers, diagrammed as arrows, that point to other nodes. This section
introduces the basic techniques for building and maintaining linked lists.

 Nodes

 A structure like the one shown in Display 17.1 consists of items that we have drawn
as boxes connected by arrows. The boxes are called nodes , and the arrows represent
pointers. Each of the nodes in Display 17.1 contains a string value, an integer, and a
pointer that can point to other nodes of the same type. Note that pointers point to
the entire node, not to the individual items (such as 10 or "rolls") that are inside
the node.

 Nodes are implemented in C++ as struct s or classes. For example, the struct type
definitions for a node of the type shown in Display 17.1 , along with the type definition
for a pointer to such nodes, can be as follows:

struct ListNode
{

 string item;
int count;

 ListNode *link;

}

Typedef ListNode* ListNodePtr;

 The order of the type definitions is important. The definition of ListNode must come
first, since it is used in the definition of ListNodePtr .

 The box labeled head in Display 17.1 is not a node but a pointer variable that can
point to a node. The pointer variable head is declared as follows:

ListNodePtr head;

dynamic data
structure

node structures

node type
definition

734 CHAPTER 17 Linked Data Structures

 Even though we have ordered the type definitions to avoid some illegal forms of
circularity, the preceding definition of the struct type ListNode is still circular.
The definition of the type ListNode uses the type name ListNode to define the
member variable link . There is nothing wrong with this particular circularity, which
is allowed in C++. One indication that this definition is not logically inconsistent
is the fact that you can draw pictures, such as Display 17.1 , that represent such
structures.

 We now have pointers inside struct s and have these pointers pointing to struct s
that contain pointers, and so forth. In such situations the syntax can sometimes get
involved, but in all cases the syntax follows those few rules we have described for
pointers and struct s. As an illustration, suppose the declarations are as just shown,
the situation is as diagrammed in Display 17.1 , and you want to change the number
in the first node from 10 to 12 . One way to accomplish this is with the following
statement:

(*head).count = 12;

 The expression on the left side of the assignment operator may require a bit of
explanation. The variable head is a pointer variable. The expression *head is thus the
thing it points to, namely the node (dynamic variable) containing "rolls" and the
integer 10 . This node, referred to by *head , is a struct , and the member variable of
this struct , which contains a value of type int , is called count ; therefore, (*head).
count is the name of the int variable in the first node. The parentheses around *head
are not optional. You want the dereferencing operation, * , to be performed before the
dot operation. However, the dot operator has higher precedence than the dereferencing

changing
node data

head
"rolls"

10

"jam"

3

"tea"

2

end marker

 Display 17.1 Nodes and Pointers

www.itpub.net

 Nodes and Linked Lists 735

operator, * , and so without the parentheses, the dot operation would be performed first
(which would produce an error). The next paragraph describes a shortcut notation that
can avoid this worry about parentheses.

 C++ has an operator that can be used with a pointer to simplify the notation for
specifying the members of a struct or a class. Chapter 10 introduced the arrow
operator, -> , but we have not used it extensively before now. So, a review is in order.
The arrow operator combines the actions of a dereferencing operator, * , and a dot
operator to specify a member of a dynamic struct or class object that is pointed to
by a given pointer. For example, the previous assignment statement for changing the
number in the first node can be written more simply as

head->count = 12;

 This assignment statement and the previous one mean the same thing, but this one is
the form normally used.

 The string in the first node can be changed from "rolls" to "bagels" with the
following statement:

head->item = "bagels";

 The result of these changes to the first node in the list is diagrammed in Display 17.2 .

the -> operator

head->count = 12;
head->item = "bagels";

head
"bagels"

12

"jam"

3

"tea"

2

NULL

head
"rolls"

10

"jam"

3

"tea"

2

NULL

Before After

 Display 17.2 Accessing Node Data

736 CHAPTER 17 Linked Data Structures

 Look at the pointer member in the last node in the list shown in Display 17.2 . This
last node has the word NULL written where there should be a pointer. In Display 17.1 ,
we filled this position with the phrase “end marker,” but “end marker” is not a C++
expression. In C++ programs we use the constant NULL as a marker to signal the end of
a linked list (or the end of any other kind of linked data structure).

NULL is typically used for two different (but often coinciding) purposes. First,
NULL is used to give a value to a pointer variable that otherwise would not have
any value. This prevents an inadvertent reference to memory, since NULL is not
the address of any memory location. The second category of use is that of an end
marker. A program can step through the list of nodes as shown in Display 17.2 and
know that it has come to the end of the list when the program reaches the node that
contains NULL .

 As noted in Chapter 10 , the constant NULL is actually the number 0, but we prefer
to think of it and spell it as NULL to make it clear that it means this special-purpose
value that you can assign to pointer variables. The definition of the identifier NULL
is in a number of the standard libraries, such as <iostream> and <cstddef> , so you
should use an include directive with either <iostream> , <cstddef> , or some other
suitable library when you use NULL . The definition of NULL is handled by the C++
preprocessor, which replaces NULL with 0 . Thus, the compiler never actually sees
"NULL" , so there are no namespace issues; therefore, no using directive is needed
for NULL .

 The Arrow Operator, ->
The arrow operator, ->, specifies a member of a struct or a member of a class object that
is pointed to by a pointer variable. The syntax is

Pointer_Variable->Member_Name

This refers to a member of the struct or class object pointed to by the Pointer_
Variable. Which member it refers to is given by the Member_Name. For example, suppose
you have the following definition:

struct Record
{

int number;
char grade;

};

The following creates a dynamic variable of type Record and sets the member variables of
the dynamic struct variable to 2001 and 'A':

Record *p;
p = new Record;
p->number = 2001;
p->grade = 'A';

NULL

NULL is 0

www.itpub.net

 Nodes and Linked Lists 737

 A pointer can be set to NULL using the assignment operator, as in the following,
which declares a pointer variable called there and initializes it to NULL :

double *there = NULL;

 The constant NULL can be assigned to a pointer variable of any pointer type.

 NULL
NULL is a special constant value that is used to give a value to a pointer variable that would
not otherwise have a value. NULL can be assigned to a pointer variable of any type. The
identifier NULL is defined in a number of libraries including the library with header file
<cstddef> and the library with header file <iostream>. The constant NULL is actually
the number 0, but we prefer to think of it and spell it as NULL.

 Linked Lists as Arguments
You should always keep one pointer variable pointing to the head of a linked list. This
pointer variable is a way to name the linked list. When you write a function that takes a
linked list as an argument, this pointer (which points to the head of the linked list) can be
used as the linked list argument.

 Self-Test Exercises

 1. Suppose your program contains the following type defi nitions:

struct Box
{
 string name;

int number;
 Box *next;
};

typedef Box* BoxPtr;

 What is the output produced by the following code?

BoxPtr head;
head = new Box;
head->name = "Sally";
head->number = 18;
cout << (*head).name << endl;
cout << head->name << endl;
cout << (*head).number << endl;
cout << head->number << endl;

(continued)

738 CHAPTER 17 Linked Data Structures

 Linked Lists

 Lists such as those shown in Display 17.1 are called linked lists. A linked list is a list
of nodes in which each node has a member variable that is a pointer that points to the
next node in the list. The first node in a linked list is called the head , which is why
the pointer variable that points to the first node is named head . Note that the pointer
named head is not itself the head of the list but only points to it. The last node has no
special name, but it does have a special property: It has NULL as the value of its member
pointer variable. To test whether a node is the last node, you need only test whether the
pointer variable in the node is equal to NULL .

 Our goal in this section is to write some basic functions for manipulating linked
lists. For variety, and to simplify the notation, we will use a simpler type of data for
the nodes than that used in Display 17.2 . These nodes will contain only an integer and
a pointer. However, we will make our nodes more complicated in one sense. We will
make them objects of a class, rather than just a simple struct . The node and pointer
type definitions that we will use are as follows:

class IntNode
{
public:
 IntNode() {}
 IntNode(int theData, IntNode* theLink)
 : data(theData), link(theLink) {}
 IntNode* getLink() const { return link; }

int getData() const { return data; }

 2. Suppose that your program contains the type defi nitions and code given in
 Self-Test Exercise 1 . That code creates a node that contains the string "Sally"
and the number 18. What code would you add to set the value of the member
variable next of this node equal to NULL?

 3. Consider the following structure defi nition:

struct ListNode
{
 string item;

int count;
 ListNode *link;
};
ListNode *head = new ListNode;

 Give code to assign the string "Wilbur's brother Orville" to the member
variable item of the variable to which head points.

Self-Test Exercises (continued)

linked list

head

node type
definition

www.itpub.net

 Nodes and Linked Lists 739

void setData(int theData) { data = theData; }
void setLink(IntNode* pointer) { link = pointer; }
private:

int data;
 IntNode *link;
 };

typedef IntNode* IntNodePtr;

 Note that all the member functions in the class IntNode are simple enough to have
inline definitions.

 Notice the two-parameter constructor for the class IntNode . It will allow us to
create nodes with a specified integer as data and with a specified link member. For
example, if p1 points to a node n1 , then the following creates a new node pointed to by
p2 such that this new node has data 42 and has its link member pointing to n1 :

IntNodePtr p2 = new IntNode(42, p1);

 After we derive some basic functions for creating and manipulating linked lists with
this node type, we will convert the node type and the functions to template versions so
they will work to store any type of data in the nodes.

 As a warm-up exercise, let us see how we might construct the start of a linked list
with nodes of this type. We first declare a pointer variable, called head , that will point
to the head of our linked list:

IntNodePtr head;

 To create our first node, we use the operator new to create a new dynamic variable that
will become the first node in our linked list:

head = new IntNode;

 We then give values to the member variables of this new node:

head->setData(3);
head->setLink(NULL);

 Notice that the pointer member of this node is set equal to NULL because this node is
the last node in the list (as well as the first node in the list). At this stage our linked list
looks like this:

3

NULL

head

 That was more work than we needed to do. By using the IntNode constructor with
two parameters, we can create our one-node linked list much easier. The following is
an easier way to obtain the one-node linked list just pictured:

head = new IntNode(3, NULL);

a one-node
linked list

740 CHAPTER 17 Linked Data Structures

 As it turns out, we will always create new nodes using this two-argument constructor
for IntNode . Many programs would even omit the zero-argument constructor from
the definition of IntNode so that it would be impossible to create a node without
specifying values for each member variable.

 Our one-node list was built in an ad hoc way. To have a larger linked list, your
program must be able to add nodes in a systematic way. We next describe one simple
way to insert nodes in a linked list.

 Inserting a Node at the Head of a List

 In this subsection we assume that our linked list already contains one or more nodes,
and we develop a function to add another node. The first parameter for the insertion
function will be a call-by-reference parameter for a pointer variable that points to the
head of the linked list—that is, a pointer variable that points to the first node in the
linked list. The other parameter will give the number to be stored in the new node.
The function declaration for our insertion function is as follows:

void headInsert(IntNodePtr& head, int theData);

 To insert a new node into the linked list, our function will use the new operator and
our two-argument constructor for IntNode . The new node will have theData as its
data and will have its link member pointing to the first node in the linked list (before
insertion). The dynamic variable is created as follows:

new IntNode(theData, head)

 We want the pointer head to point to this new node, so the function body can simply be

{
 head = new IntNode(theData, head);
}

 Display 17.3 contains a diagram of the action

head = new IntNode(theData, head);

 when theData is 12 . The complete function definition is given in Display 17.4 .
 You will want to allow for the possibility that a list contains nothing. For example, a

shopping list might have nothing in it because there is nothing to buy this week. A list
with nothing in it is called an empty list . A linked list is named by naming a pointer
that points to the head of the list, but an empty list has no head node. To specify an
empty list, use the value NULL . If the pointer variable head is supposed to point to the
head node of a linked list and you want to indicate that the list is empty, then set the
value of head as follows:

head = NULL;

 Whenever you design a function for manipulating a linked list, you should always
check to see if it works on the empty list. If it does not, you may be able to add a
special case for the empty list. If you cannot design the function to apply to the empty

empty list

www.itpub.net

 Nodes and Linked Lists 741

list, then your program must be designed to handle empty lists some other way or to
avoid them completely. Fortunately, the empty list can often be treated just like any
other list. For example, the function headInsert in Display 17.4 was designed with
nonempty lists as the model, but a check will show that it works for the empty list
as well.

head

3

NULL

15

head

12

3

NULL

15

head

12

3

NULL

15

Linked list before insertion
Node created by
new IntNode(12, head)

Linked list after execution of
head = new IntNode(12, head);

 Display 17.3 Adding a Node to the Head of a Linked List

742 CHAPTER 17 Linked Data Structures

 Display 17.4 Functions for Adding a Node to a Linked List

 NODE AND POINTER TYPE DEFINITIONS

class IntNode
 {
public:
 IntNode() {}
 IntNode(int theData, IntNode* theLink)
 : data(theData), link(theLink) {}
 IntNode* getLink() const { return link; }

int getData() const { return data; }
void setData(int theData) { data = theData; }
void setLink(IntNode* pointer) { link = pointer; }

private:
int data;

 IntNode *link;
};

typedef IntNode* IntNodePtr;

 FUNCTION TO ADD A NODE AT THE HEAD OF A LINKED LIST

 FUNCTION DECLARATION

void headInsert(IntNodePtr& head, int theData);
//Precondition: The pointer variable head points to
//the head of a linked list .
//Postcondition: A new node containing theData
//has been added at the head of the linked list .

 FUNCTION DEFINITION

void headInsert(IntNodePtr& head, int theData)
 {
 head = new IntNode(theData, head);
 }

 FUNCTION TO ADD A NODE IN THE MIDDLE OF A LINKED LIST
 FUNCTION DECLARATION

void insert(IntNodePtr afterMe, int theData);
//Precondition: afterMe points to a node in a linked list .
//Postcondition: A new node containing theData
//has been added after the node pointed to by afterMe .

 FUNCTION DEFINITION

void insert(IntNodePtr afterMe, int theData)
 {
 afterMe->setLink(new IntNode(theData, afterMe->getLink()));
 }

www.itpub.net

 Nodes and Linked Lists 743

 Inserting and Removing Nodes Inside a List

 We next design a function to insert a node at a specified place in a linked list. If you
want the nodes in some particular order, such as numerical or alphabetical, you cannot
simply insert the node at the beginning or end of the list. We will therefore design a
function to insert a node after a specified node in the linked list.

 We assume that some other function or program part has correctly placed a pointer
called afterMe pointing to some node in the linked list. We want the new node to be
placed after the node pointed to by afterMe , as illustrated in Display 17.6 . The same
technique works for nodes with any kind of data, but to be concrete, we are using

 PITFALL: Losing Nodes

 You might be tempted to write the function definition for headInsert (Display 17.4)
using the zero-argument constructor to set the member variables of the new node. If
you were to try, you might start the function as follows:

head = new IntNode;
head->setData(theData);

 At this point, the new node is constructed, contains the correct data, and is
pointed to by the pointer head —all as it is supposed to be. All that is left to do is
attach the rest of the list to this node by setting the pointer member in this new
node so that it points to what was formerly the first node of the list. You could do
it with the following, if only you could figure out what pointer to put in place of
the question mark:

head->setLink(?);

 Display 17.5 shows the situation when the new data value is 12 and illustrates the
problem. If you were to proceed in this way, there would be nothing pointing to the
node containing 15 . Since there is no named pointer pointing to it (or to a chain
of pointers extending to that node), there is no way the program can reference this
node. The node and all nodes below this node are lost. A program cannot make a
pointer point to any of these nodes, nor can it access the data in these nodes or do
anything else to them. It simply has no way to refer to the nodes. Such a situation
ties up memory for the duration of the program. A program that loses nodes is
sometimes said to have a memory leak . A significant memory leak can result in the
program running out of memory and terminating abnormally. Worse, a memory
leak (lost nodes) in an ordinary users program can, in rare situations, cause the
operating system to crash. To avoid such lost nodes, the program must always keep
some pointer pointing to the head of the list, usually the pointer in a pointer variable
like head . ■

memory leak

inserting in
the middle

of a list

744 CHAPTER 17 Linked Data Structures

the same type of nodes as in previous subsections. The type definitions are given in
 Display 17.4 . The function declaration for the function we want to define is given in
the following:

void insert(IntNodePtr afterMe, int theData);
//Precondition: afterMe points to a node in a linked list .
//Postcondition: A new node containing theData
//has been added after the node pointed to by afterMe .

 The new node is inserted inside the list in basically the same way a node is added to
the head (start) of a list, which we have already discussed. The only difference is that
we use the pointer afterMe->link instead of the pointer head . The insertion is done
as follows:

afterMe->setLink(new IntNode(theData, afterMe->getLink()));

 The details with theData equal to 5 are pictured in Display 17.6 , and the final
function definition is given in Display 17.4 .

 If you go through the code for the function insert , you will see that it works
correctly even if the node pointed to by afterMe is the last node in the list. However,
insert will not work for inserting a node at the beginning of a linked list. The
function headInsert given in Display 17.4 can be used to insert a node at the
beginning of a list.

 By using the function insert , you can maintain a linked list in numerical or
alphabetical order or in some other ordering. You can squeeze a new node into the
correct position by simply adjusting two pointers. This is true no matter how long the
linked list is or where in the list you want the new data to go. If you instead use an
array, much—and in extreme cases, all—of the array would have to be copied in order

head

3

NULL

15

Linked list before insertion

head
12

?

3

NULL

15

Lost nodes

Situation after executing
head = new IntNode;
head->setData(theData);

 Display 17.5 Lost Nodes

insertion
at the ends

comparison
to arrays

www.itpub.net

 Nodes and Linked Lists 745

to make room for a new value in the correct spot. Despite the overhead involved in
positioning the pointer afterMe , inserting into a linked list is frequently more efficient
than inserting into an array.

 Removing a node from a linked list is also quite easy. Display 17.7 illustrates the
method. Once the pointers before and discard have been positioned, all that is
required to remove the node is the following statement:

before->setLink(discard->getLink());

afterMe

head
2

9

3

18

NULL

5

afterMe

head
2

9

3

18

NULL

5

Node created by
new IntNode(5, afterMe->getLink());

afterMe->getLink()

is highlighted.

Final result of
afterMe->setLink(
 new IntNode(theData, afterMe->getLink()));

 Display 17.6 Inserting in the Middle of a Linked List

removing
a node

746 CHAPTER 17 Linked Data Structures

 This is sufficient to remove the node from the linked list. However, if you are not using
this node for something else, you should destroy the node and return the memory it
uses for recycling; you can do this with a call to delete as follows:

delete discard;

head

discard

before

2

6

1

5
NULL

head

discard

before

2

6

1

3

5
NULL

recycled

before->setLink(discard->getLink());

delete discard;

 Display 17.7 Removing a Node

www.itpub.net

 Nodes and Linked Lists 747

 As we noted in Chapter 10 , the memory for dynamic variables is kept in an area of
memory known as the freestore . Because the freestore is not unlimited, when a dynamic
variable (node) is no longer needed by your program, you should return this memory
for recycling using the delete operator. We include a review of the delete operator in
the accompanying box.

 The delete Operator
The delete operator eliminates a dynamic variable and returns the memory that the
dynamic variable occupied to the freestore. The memory can then be reused to create new
dynamic variables. For example, the following eliminates the dynamic variable pointed to by
the pointer variable p:

delete p;

After a call to delete, the value of the pointer variable, like p just shown, is undefined.

 PITFALL: Using the Assignment Operator with Dynamic Data Structures

 If head1 and head2 are pointer variables and head1 points to the head node of a
linked list, the following will make head2 point to the same head node and hence the
same linked list:

head2 = head1;

 However, you must remember that there is only one linked list, not two. If you
change the linked list pointed to by head1 , then you will also change the linked list
pointed to by head2 , because they are the same linked lists.

 If head1 points to a linked list and you want head2 to point to a second, identical
copy of this linked list, the preceding assignment statement will not work. Instead, you
must copy the entire linked list node by node. ■

 Searching a Linked List

 Next we will design a function to search a linked list in order to locate a particular
node. We will use the same node type, called IntNode , that we used in the previous
subsections. (The definitions of the node and pointer types are given in Display 17.4 .)
The function we design will have two arguments: the linked list and the integer we
want to locate. The function will return a pointer that points to the first node that
contains that integer. If no node contains the integer, the function will return NULL .

748 CHAPTER 17 Linked Data Structures

This way our program can test whether the int is in the list by checking to see if the
function returns a pointer value that is not equal to NULL . The function declaration
and header comment for our function are as follows:

IntNodePtr search(IntNodePtr head, int target);
//Precondition: The pointer head points to the head of a
//linked list. The pointer variable in the last node is NULL .
//If the list is empty, then head is NULL.
//Returns a pointer that points to the first node that contains the
//target. If no node contains the target, the function returns NULL .

 We will use a local pointer variable, called here , to move through the list looking
for the target . The only way to move around a linked list, or any other data structure
made up of nodes and pointers, is to follow the pointers. Thus, we will start with here

pointing to the first node and move the pointer from node to node, following the
pointer out of each node. This technique is diagrammed in Display 17.8 .

 Since empty lists present some minor problems that would clutter our discussion,
we will at first assume that the linked list contains at least one node. Later we will
come back and make sure the algorithm works for the empty list as well. This search
technique yields the following algorithm:

 Pseudocode for search Function
 Make the pointer variable here point to the head node (that is, first node) of the linked list.

while (here is not pointing to a node containing target

and here is not pointing to the last node)

{
Make here point to the next node in the list.

}
if (the node pointed to by here contains target)

return here;
else

return NULL;

 To move the pointer here to the next node, we must think in terms of the named
pointers we have available. The next node is the one pointed to by the pointer member
of the node currently pointed to by here . The pointer member of the node currently
pointed to by here is given by the expression

here->getLink()

 To move here to the next node, we want to change here so that it points to the node
that is pointed to by the above-named pointer. Hence, the following will move the
pointer here to the next node in the list:

here = here->getLink();

search

algorithm

www.itpub.net

 Nodes and Linked Lists 749

here

?

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

here

target is 6

Not here

Found

Not here

1

4

2

3

 Display 17.8 Searching a Linked List

750 CHAPTER 17 Linked Data Structures

 Putting these pieces together yields the following refinement of the algorithm
pseudocode for the search function:

here = head;

while (here->getData() != target && here->getLink() != NULL)
here = here->getLink();

if (here->getData() == target)
return here;

else
return NULL;

 Notice the Boolean expression in the while statement. We test to see if here is
pointing to the last node by testing to see if the member variable here->getLink()

is equal to NULL .
 We still must go back and take care of the empty list. If we check the previous code,

we find that there is a problem with the empty list. If the list is empty, then here is
equal to NULL and hence the following expressions are undefined:

here->getData()
here->getLink()

 When here is NULL , it is not pointing to any node, so there is no data member or
link member. Hence, we make a special case of the empty list. The complete function
definition is given in Display 17.9 .

 Doubly Linked Lists

 An ordinary linked list allows you to move down the list in only one direction
(following the links). A doubly linked list has one link that is a pointer to the next
node and an additional link that is a pointer to the previous node. In some cases the
link to the previous node can simplify our code. For example, if removing a node from
the list, we will no longer need to have a before variable to remember the node that
links to the node we wish to discard. Diagrammatically, a doubly linked list looks like
the sample list in Display 17.10 .

algorithm
refinement

empty list

doubly linked
list

 Display 17.9 Function to Locate a Node in a Linked List (part 1 of 2)

 FUNCTION DECLARATION

IntNodePtr search(IntNodePtr head, int target);
 //Precondition: The pointer head points to the head of a
 //linked list. The pointer variable in the last node is NULL .
 //If the list is empty, then head is NULL .
 //Returns a pointer that points to the first node that contains the
//target. If no node contains the target, the function returns NULL .

 FUNCTION DEFINITION

 //Uses cstddef:

www.itpub.net

 Nodes and Linked Lists 751

The definitions of IntNode
and IntNodePtr are given in
Display 17.4.

head

2
NULL

1 6
NULL

 Display 17.10 A Doubly Linked List

 The node class for a doubly linked list of integers can be defined as follows:

class DoublyLinkedIntNode
{
public:

 DoublyLinkedIntNode () {}
 DoublyLinkedIntNode (int theData, DoublyLinkedIntNode* previous,
 DoublyLinkedIntNode* next)
 : data(theData), nextLink(next), previousLink(previous) {}
 DoublyLinkedIntNode* getNextLink() const { return nextLink; }
 DoublyLinkedIntNode* getPreviousLink() const
 { return previousLink; }

int getData() const { return data; }
void setData(int theData) { data = theData; }
void setNextLink(DoublyLinkedIntNode* pointer)

 { nextLink = pointer; }

IntNodePtr search(IntNodePtr head, int target)
{

IntNodePtr here = head;

if (here == NULL) //if empty list
{

return NULL;
}
else
{

while (here->getData() != target && here->getLink() != NULL)
here = here->getLink();

if (here->getData() == target)
return here;

else
return NULL;

}
}

Display 17.9 Function to Locate a Node in a Linked List (part 2 of 2)

752 CHAPTER 17 Linked Data Structures

void setPreviousLink(DoublyLinkedIntNode* pointer)
 { previousLink = pointer; }
private:
int data;

 DoublyLinkedIntNode *nextLink;
 DoublyLinkedIntNode *previousLink;
};
typedef DoublyLinkedIntNode* DoublyLinkedIntNodePtr;

 The code is almost identical to the version for the singly linked list except that we
have added a private member variable, previousLink , to store a link to the previous
node in the list. The functions setPreviousLink and getPreviousLink have been
added to get and set the link, along with an additional parameter to the constructor
to initialize previousLink . What used to be called link has also been renamed
nextLink to differentiate between linking to the previous node or to the next node.

 Adding a Node to a Doubly Linked List

 To add a new DoublyLinkedIntNode to the front of the list, we must set links on two
nodes instead of one. The general process is shown in Display 17.11 . The declaration
for the insertion function is basically the same as in the singly linked case:

void headInsert(DoublyLinkedIntNodePtr& head, int theData);

 First, we create a new node whose nextLink points to the old head and whose
previousLink is NULL , because it will become the new head:

DoublyLinkedIntNode* newHead = new DoublyLinkedIntNode

 (theData, NULL, head);

 The old head has to link its previous pointer to the new head:

head->setPreviousLink(newHead);

 Finally, we set head to the new head:

head = newHead;

 The complete function definition is given in Display 17.13 .

 Deleting a Node from a Doubly Linked List

 To remove a node from the doubly linked list also requires updating the references on
both sides of the node we wish to delete. Thanks to the backward link we do not need
a separate variable to keep track of the previous node in the list as we did for the singly
linked list. The general process of deleting a node referenced by position is shown
in Display 17.12 . Note that some special cases must be handled separately, such as
deleting a node from the beginning or the end of the list.

adding a node
to a doubly

linked list

deleting a
node from

a doubly
linked list

www.itpub.net

 Nodes and Linked Lists 753

head

2

NULL

1 6

NULL

Existing list before adding new node

newHead = new DoublyLinkedIntNode(5, NULL, head);

Node created by

head

2

NULL

1 6

NULL

5

NULL

head->setPreviousNode(newHead);

Set the previous link of the original head node

newHead

head

2 1 6

NULL

5

NULLnewHead

head = newHead;

Set head to newHead

head

2 1 6

NULL

5

NULLnewHead NULL

 Display 17.11 Adding a Node to the Front of a Doubly Linked List

754 CHAPTER 17 Linked Data Structures

head

2

NULL

1 6

NULL

Existing list before deleting discard

discard

head

2

NULL

1 6

NULL

Set pointers to the previous and next nodes

discard

DoublyLinkedIntNodePtr prev = discard->getPreviousLink();
DoublyLinkedIntNodePtr next = discard->getNextLink();

prev

next

head

2

NULL

1

6

NULL

Bypass discard

discard

prev->setNextLink(next);
next->setPreviousLink(prev);

prev

next

head

2

NULL
6

NULL

Delete discard

delete discard;

prev

next

 Display 17.12 Deleting a Node from a Doubly Linked List

www.itpub.net

 Nodes and Linked Lists 755

 The function declaration for our delete function is now

void delete(DoublyLinkedIntNodePtr& head,
 DoublyLinkedIntNodePtr discard);

 The parameter discard is a pointer to the node we wish to remove. We must also
input the head of the list to handle the case where discard is the same as head :

if (head == discard)
{
 head = head->getNextLink();
 head->setPreviousLink(NULL);
}

 In this case we have to advance head to the next node in the list. We then set the
previous link to NULL because there is no prior node. In the more general case, the
variable discard points to any other node that is not the head. We handle this case by
redirecting the links to bypass discard, as shown in Display 17.12 :

else
{
 DoublyLinkedIntNodePtr prev = discard->getPreviousLink();
 DoublyLinkedIntNodePtr next = discard->getNextLink();
 prev->setNextLink(next);

if (next != NULL)
 {
 next->setPreviousLink(prev);
 }

 The previous node now links to discard ’s next node, and the next node now links to
discard ’s previous node. Since discard might be the last node in the list, we have
to check and make sure that next != NULL so we do not try to dereference a NULL
pointer in the function setPreviousLink .

 The complete function definition is given in Display 17.13 .

 Display 17.13 Functions to Add and Remove a Node from a Doubly Linked List (part 1 of 3)

 NODE AND POINTER TYPE DEFINITIONS

class DoublyLinkedIntNode
{
public:

DoublyLinkedIntNode () {}
DoublyLinkedIntNode (int theData, DoublyLinkedIntNode* previous,

DoublyLinkedIntNode* next)
: data(theData), nextLink(next), previousLink(previous) {}

DoublyLinkedIntNode* getNextLink() const
{ return nextLink; }

(continued)

756 CHAPTER 17 Linked Data Structures

 DoublyLinkedIntNode* getPreviousLink() const
 { return previousLink; }
 int getData() const
 { return data; }
 void setData(int theData)
 { data = theData; }
 void setNextLink(DoublyLinkedIntNode* pointer)
 { nextLink = pointer; }
 void setPreviousLink(DoublyLinkedIntNode* pointer)
 { previousLink = pointer; }
 private :
 int data;
 DoublyLinkedIntNode *nextLink;
 DoublyLinkedIntNode *previousLink;
 }
 typedef DoublyLinkedIntNode* DoublyLinkedIntNodePtr;

 FUNCTION TO ADD A NODE AT THE HEAD OF A LINKED LIST

 FUNCTION DECLARATION

 void headInsert(DoublyLinkedIntNode& head, int theData);
 //Precondition: The pointer variable head points to
 //the head of a linked list .
 //Postcondition: A new node containing theData
 //has been added at the head of the linked list .

 FUNCTION DEFINITION

 void headInsert(DoublyLinkedIntNodePtr& head, int theData)
 {
 DoublyLinkedIntNode* newHead = new Doubly LinkedIntNode

(theData, NULL, head);
 head->setPreviousLink(newHead);
 head = newHead;
 }

 FUNCTION TO REMOVE A NODE

 FUNCTION DECLARATION

 void deleteNode(DoublyLinkedIntNodePtr& head,
 DoublyLinkedIntNodePtr discard);
 //Precondition: The pointer variable head points to
 //the head of a linked list and discard points to the node to remove .
 //Postcondition: The node pointed to by discard is removed from the list .

Display 17.13 Functions to Add and Remove a Node from a Doubly Linked List (part 2 of 3)

www.itpub.net

 Nodes and Linked Lists 757

 FUNCTION DEFINITION

void deleteNode(DoublyLinkedIntNodePtr& head,
DoublyLinkedIntNodePtr discard);

{
if (head == discard)
{
head = head->getNextLink();
head->setPreviousLink(NULL);

}
else
{
DoublyLinkedIntNodePtr prev = discard->getPreviousLink();
DoublyLinkedIntNodePtr next = discard->getNextLink();
prev->setNextLink(next);
if (next != NULL)
{
next->setPreviousLink(prev);

}
}
delete discard;

}

Display 17.13 Functions to Add and Remove a Node from a Doubly Linked List (part 3 of 3)

 Self-Test Exercises

 4. Write type defi nitions for the nodes and pointers in a linked list. Call the node
type NodeType and call the pointer type PointerType . The linked lists will be
lists of letters.

 5. A linked list is normally referred to via a pointer that points to the fi rst node in
the list, but an empty list has no fi rst node. What pointer value is normally used
to represent an empty list?

 6. Suppose your program contains the following type defi nitions and pointer
variable declarations:

struct Node
{

double data;
 Node *next;
}

typedef Node* Pointer;
Pointer p1, p2;

(continued)

758 CHAPTER 17 Linked Data Structures

 Suppose p1 points to a node of the above type that is in a linked list. Write
code that will make p1 point to the next node in this linked list. (The pointer
p2 is for the next exercise and has nothing to do with this exercise.)

 7. Suppose your program contains type defi nitions and pointer variable
declarations as in Self-Test Exercise 6 . Suppose further that p2 points to a node
of the above type that is in a linked list and that is not the last node on the list.
Write code that will delete the node after the node pointed to by p2 . After this
code is executed, the linked list should be the same, except that there will be
one less node in the linked list. (Hint: You may want to declare another pointer
variable to use.)

 8. Suppose your program contains the following type defi nitions and pointer
variable declarations:

class Node
{
public:
 Node(double theData, Node* theLink)
 : data(theData), next(theLink) {}
 Node* getLink() const { return next; }

double getData() const { return data; }
void setData(double theData) { data = theData; }
void setLink(Node* pointer) { next = pointer; }

private:
double data;

 Node *next;

}
typedef Node* Pointer;
Pointer p1, p2;

 Suppose p1 points to a node of the above type that is in a linked list. Write
code that will make p1 point to the next node in this linked list. (The pointer
p2 is for the next exercise and has nothing to do with this exercise.)

 9. Suppose your program contains type defi nitions and pointer variable
declarations as in Self-Test Exercise 8 . Suppose further that p2 points to a node
of the previous type that is in a linked list and that is not the last node on the
list. Write code that will delete the node after the node pointed to by p2 . After
this code is executed, the linked list should be the same, except that there will
be one less node in the linked list. (Hint: You may want to declare another
pointer variable to use.)

Self-Test Exercises (continued)

www.itpub.net

 Nodes and Linked Lists 759

 10. Choose an ending to the following statement, and explain:

 For a large array and a large list holding the same type objects, inserting a new
object at a known location into the middle of a linked list compared to insertion
in an array is

 a. more effi cient.

 b. less effi cient.

 c. about the same.

 11. Complete the body of the following function:

void insert(DoublyLinkedIntNodePtr afterMe, int theData);

 The function should insert a new node with the value in theData after the
node afterMe in a doubly linked list.

 12. What operations are easier to implement with a doubly linked list than with
a singly linked list? What operations are more diffi cult?

Self-Test Exercises (continued)

 EXAMPLE: A Generic Sorting Template Version of Linked List Tools

 It is a routine matter to convert our type definitions and function definitions to
templates so that they will work for linked lists with data of any type T in the nodes.
However, there are some details to worry about. The heart of what you need to do is
replace the data type of the data in a node (the type int in Display 17.4) by a type
parameter T and insert the following at the appropriate locations:

template<class T>

 However, you should also do a few more things to account for the fact that the
type T might be a class type. Since the type T might be a class type, a value parameter
of type T should be changed to a constant reference parameter and a returned type
of type T should have a const added so that it is returned by constant value. (The
reason for returning by const value is explained in Chapter 8 .)

 The final templates with the changes we described are shown in Displays 17.14
and 17.15 . It was necessary to do one more change from the simple case of a linked
list of integers. Since template typedefs are not implemented in most compilers, we
have not been able to use them. This means that on occasion we needed to use the
following hard-to-read parameter type specification:

Node<T>*&

(continued)

760 CHAPTER 17 Linked Data Structures

 This is a call-by-reference parameter for a pointer to a node of type Node<T> . Next,
we have reproduced a function declaration from Display 17.15 so you can see this
parameter type specification in context:

template<class T>
void headInsert(Node<T>*& head, const T& theData);

EXAMPLE: (continued)

 Display 17.14 Interface File for a Linked List Library (part 1 of 2)

1 //This is the header file listtools.h. This contains type definitions
2 //and function declarations for manipulating a linked list to store
3 //data of any type T. The linked list is given as a pointer of type
4 //Node<T>* that points to the head (first) node of the list. The
5 //implementation of the functions is given in the file listtools.cpp
6 #ifndef LISTTOOLS_H
 7 #define LISTTOOLS_H

8 namespace LinkedListSavitch
9 {
10 template<class T>
11 class Node
12 {
13 public:
14 Node(const T& theData, Node<T>* theLink) : data(theData),

 link(theLink){}
15 Node<T>* getLink() const { return link; }
16 const T getData() const { return data; }
17 void setData(const T& theData) { data = theData; }
18 void setLink(Node<T>* pointer) { link = pointer; }
19 private:
20 T data;
21 Node<T> *link;
22 };
23 template<class T>
24 void headInsert(Node<T>*& head, const T& theData);
25 //Precondition: The pointer variable head points to
26 //the head of a linked list .
27 //Postcondition: A new node containing theData
28 //has been added at the head of the linked list .

29 template<class T>
30 void insert(Node<T>* afterMe, const T& theData);
31 //Precondition: afterMe points to a node in a linked list .
32 //Postcondition: A new node containing theData
33 //has been added after the node pointed to by afterMe .

It would be acceptable to use T as a parameter
type where we have used const T&. We used a
constant reference parameter because we
anticipate that T will frequently be a class type.

www.itpub.net

 Nodes and Linked Lists 761

 Display 17.14 Interface File for a Linked List Library (part 2 of 2)

34 template<class T>
35 void deleteNode(Node<T>* before);
36 //Precondition: The pointer before points to a node that has
37 //at least one node after it in the linked list .
38 //Postcondition: The node after the node pointed to by before
39 //has been removed from the linked list and its storage
40 //returned to the freestore .

41 template<class T>
42 void deleteFirstNode(Node<T>*& head);
43 //Precondition: The pointer head points to the first
44 //node in a linked list with at least one node .
45 //Postcondition: The node pointed to by head has been removed
46 //from the linked list and its storage returned to the freestore .

47 template<class T>
48 Node<T>* search(Node<T>* head, const T& target);
49 //Precondition: The pointer head points to the head of a linked list .
50 //The pointer variable in the last node is NULL .
51 //== is defined for type T .
52 //(== is used as the criterion for being equal.)
53 //If the list is empty, then head is NULL .
54 //Returns a pointer that points to the first node that
55 //is equal to the target. If no node equals the target,
56 //then the function returns NULL .
57 }//LinkedListSavitch

58 #endif //LISTTOOLS_H

 Display 17.15 Implementation File for a Linked List Library (part 1 of 2)

 1 //This is the implementation file listtools.cpp. This file contains
 2 //function definitions for the functions declared in listtools.h.
 3 #include <cstddef>
 4 #include "listtools.h"

 5 namespace LinkedListSavitch
 6 {
 7 template<class T>
 8 void headInsert(Node<T>*& head, const T& theData)
 9 {
10 head = new Node<T>(theData, head);
11 }

(continued)

762 CHAPTER 17 Linked Data Structures

Display 17.15 Implementation File for a Linked List Library (part 2 of 2)

12 template<class T>
13 void insert(Node<T>* afterMe, const T& theData)
14 {
15 afterMe->setLink(new Node<T>(theData, afterMe->getLink()));
16 }

17 template<class T>
18 void deleteNode(Node<T>* before)
19 {
20 Node<T> *discard;
21 discard = before->getLink();
22 before->setLink(discard->getLink());
23 delete discard;
24 }

25 template<class T>
26 void deleteFirstNode(Node<T>*& head)
27 {
28 Node<T> *discard;
29 discard = head;
30 head = head->getLink();
31 delete discard;
32 }

33 //Uses cstddef:
34 template<class T>
35 Node<T>* search(Node<T>* head, const T& target)
36 {
37 Node<T>* here = head;
38 if (here == NULL) //if empty list
39 {
40 return NULL;
41 }
42 else
43 {
44 while (here->getData() != target && here->getLink() != NULL)
45 here = here->getLink();

46 if (here->getData() == target)
47 return here;
48 else
49 return NULL;
50 }
51 }
52 } //LinkedListSavitch

www.itpub.net

 Linked List Applications 763

 17.2 Linked List Applications

 But many who are first now will be last, and many who are last now will
be first.

 Matthew 19:30

 First come first served

 A common (and more secular) saying

 Linked lists have many applications. This section presents only a few small examples of
their use—namely, common data structures that all use a linked list as the heart of their
implementation.

A

B
A

C

A

B

C
B
A

A

B
A

C

A

B

pushing

popping

 Display 17.16 A Stack

 EXAMPLE: A Stack Template Class

 A stack is a data structure that retrieves data in the reverse of the order in which the
data is stored. Suppose you place the letters 'A' , 'B' , and then 'C' in a stack. When
you take these letters out of the stack, they will be removed in the order 'C' , then
'B' , and then 'A' . This use of a stack is diagrammed in Display 17.16 . As shown
there, you can think of a stack as a hole in the ground. In order to get something out
of the stack, you must first remove the items on top of the one you want. For this
reason a stack is often called a last-in/first-out data structure.

(continued)

764 CHAPTER 17 Linked Data Structures

EXAMPLE: (continued)

Stacks are used for many language processing tasks. Chapter 13 discussed how the
computer system uses a stack to keep track of C++ function calls. However, here we
will only be concerned with one very simple application. Our goal in this example
is to show how you can use the linked list techniques to implement specific data
structures, such as a stack.

 The interface for our stack class is given in Display 17.17 . This is a template
class with a type parameter T for the type of data stored in the stack. One item
stored in the stack is a value of type T . In the example we present, T is replaced by
the type char . However, in most applications, an item stored in the stack is likely to
be a struct or class object. Each record (item of type T) that is stored in the stack
is called a stack frame , which will explain why we occasionally use stackFrame as
an identifier name in the definition of the stack template class. There are two basic
operations you can perform on a stack: adding an item to the stack and removing an
item from the stack. Adding an item is called pushing the item onto the stack, and so
we called the member function that does this push . Removing an item from a stack
is called popping the item off the stack, and so we called the member function that
does this pop .

 The names push and pop derive from a particular way of visualizing a stack.
A stack is analogous to a mechanism that is sometimes used to hold plates in a
cafeteria. The mechanism stores plates in a hole in the countertop. There is a spring
underneath the plates with its tension adjusted so that only the top plate protrudes
above the countertop. If this sort of mechanism were used as a stack data structure,
the data would be written on plates (which might violate some health laws, but still
makes a good analogy). To add a plate to the stack, put it on top of the other plates,
and the weight of this new plate pushes down the spring. When you remove a plate,
the plate below it pops into view.

 Display 17.18 shows a simple program that illustrates how the Stack class is used.
This program reads a line of text one character at a time and places the characters in
a stack. The program then removes the characters one by one and writes them to the
screen. Because data is removed from a stack in the reverse of the order in which it
enters the stack, the output shows the line written backward. We have #included

the implementation of the Stack class in our application program, as we normally
do with template classes. That means we cannot run or even compile our application
program until we do the implementation of our Stack class template.

 The definitions of the member functions for the template class Stack are given in
the implementation file shown in Display 17.19 . Our stack class is implemented as
a linked list in which the head of the list serves as the top of the stack. The member

push

pop

(continued on page 769)

www.itpub.net

 Linked List Applications 765

 Display 17.17 Interface File for a Stack Template Class

1 //This is the header file stack.h. This is the interface for the class
2 //Stack, which is a template class for a stack of items of type T .
3 #ifndef STACK_H
4 #define STACK_H

5 namespace StackSavitch
6 {
7 template<class T>
8 class Node
9 {
10 public:
11 Node(T theData, Node<T>* theLink) : data(theData), link(theLink){}
12 Node<T>* getLink() const { return link; }
13 const T getData() const { return data; }
14 void setData(const T& theData) { data = theData; }
15 void setLink(Node<T>* pointer) { link = pointer; }
16 private:
17 T data;
18 Node<T> *link;
19 };
20 template<class T>
21 class Stack
22 {
23 public:
24 Stack();
25 //Initializes the object to an empty stack .

26 Stack(const Stack<T>& aStack);

27 Stack<T>& operator =(const Stack<T>& rightSide);

28 virtual ˜Stack();

29 void push(T stackFrame);
30 //Postcondition: stackFrame has been added to the stack .

31 T pop();
32 //Precondition: The stack is not empty .
33 //Returns the top stack frame and removes that top
34 //stack frame from the stack .
35 bool isEmpty() const;
36 //Returns true if the stack is empty. Returns false otherwise .
37 private:
38 Node<T> *top;
39 };

40 } //StackSavitch
41 #endif //STACK_H

You might prefer to replace the
parameter type T with const T&.

Copy Constructor.

The destructor destroys the stack
and returns all the memory to the
freestore.

766 CHAPTER 17 Linked Data Structures

 Display 17.18 Program Using the Stack Template Class (part 1 of 2)

1 //Program to demonstrate use of the Stack template class .
2 #include <iostream>
3 #include "stack.h"
4 #include "stack.cpp"
5 using std::cin;
6 using std::cout;
7 using std::endl;
8 using StackSavitch::Stack;
9 int main()
10 {
11 char next, ans;

12 do
13 {
14 Stack<char> s;
15 cout << "Enter a line of text:\n";
16 cin.get(next);
17 while (next != '\n')
18 {
19 s.push(next);
20 cin.get(next);
21 }

22 cout << "Written backward that is:\n";
23 while (! s.isEmpty())
24 cout << s.pop();
25 cout << endl;

26 cout << "Again?(y/n): ";
27 cin >> ans;
28 cin.ignore(10000, '\n');
29 } while (ans != 'n' && ans != 'N');

30 return 0;
31 }

 Sample Dialogue

Enter a line of text:

straw

Written backward that is:

warts

Again?(y/n): y

The ignore member of cin is
discussed in Chapter 9. It
discards input remaining on
the line.

www.itpub.net

 Linked List Applications 767

Enter a line of text:

I love C++

Written backward that is:

++C evol I

Again?(y/n): n

 Display 17.19 Implementation of the Stack Template Class (part 1 of 2)

1 //This is the implementation file stack.cpp .
2 //This is the implementation of the template class Stack .
3 //The interface for the template class Stack is in the header file

//stack.h.

4 #include <iostream>
5 #include <cstdlib>
6 #include <cstddef>
7 #include "stack.h"
8 using std::cout;

9 namespace StackSavitch
10 {

11 //Uses cstddef:
12 template<class T>
13 Stack<T>::Stack() : top(NULL)
14 {
15 //Intentionally empty
16 }

17 template<class T>
18 Stack<T>::Stack(const Stack<T>& aStack)
19 < The definition of the copy constructor is Self-Test Exercise 14 .>
20 template<class T>
21 Stack<T>& Stack<T>::operator =(const Stack<T>& rightSide)
22 < The definition of the overloaded assignment operator is Self-Test Exercise 15 .>

23 template<class T>
24 Stack<T>::˜Stack()
25 {
26 T next;

Display 17.18 Program Using the Stack Template Class (part 2 of 2)

(continued)

768 CHAPTER 17 Linked Data Structures

 Display 17.19 Implementation of the Stack Template Class (part 2 of 2)

27 while (! isEmpty())
28 next = pop();//pop calls delete.
29 }
30
31 //Uses cstddef:
32 template<class T>
33 bool Stack<T>::isEmpty() const
34 {
35 return (top == NULL);
36 }
37 template<class T>
38 void Stack<T>::push(T stackFrame)
39 < The rest of the definition is Self-Test Exercise 13 .>

40 //Uses cstdlib and iostream:
41 template<class T>
42 T Stack<T>::pop()
43 {
44 if (isEmpty())
45 {
46 cout << "Error: popping an empty stack.\n";
47 exit(1);
48 }

49 T result = top->getData();

50 Node<T> *discard;
51 discard = top;
52 top = top->getLink();

53 delete discard;
54 return result;
55 }
56 } //StackSavitch

www.itpub.net

 Linked List Applications 769

EXAMPLE: (continued)

variable top is a pointer that points to the head of the linked list. The pointer top
serves the same purpose as the pointer head did in our previous discussions of
linked lists.

 Self-Test Exercise 13 is to write the definition of the member function push .
However, we have already given the algorithm for this task. The code for the push
member function is essentially the same as the function headInsert shown in
 Display 17.15 , except that in the member function push we use a pointer named
top in place of a pointer named head .

 An empty stack is just an empty linked list, so an empty stack is implemented
by setting the pointer top equal to NULL. Once you realize that NULL represents the
empty stack, the implementations of the default constructor and of the member
function empty are obvious.

 The definition of the copy constructor is a bit more complicated but does not
use any techniques we have not already discussed. The details are left to Self-Test
 Exercise 14 .

 The pop member function first checks to see if the stack is empty. If it is not
empty, it proceeds to remove the top character in the stack. It sets the local variable
result equal to the top symbol on the stack as follows:

T result = top->getData();

 After the data in the top node is saved in the variable result , the pointer top is
moved to the next node in the linked list, effectively removing the top node from the
list. The pointer top is moved with the statement

top = top->getLink();

 However, before the pointer top is moved, a temporary pointer, called discard, is
positioned so that it points to the node that is about to be removed from the list.
The storage for the removed node can then be recycled with the following call
to delete:

delete discard;

 Each node that is removed from the linked list by the member function pop has
its memory recycled with a call to delete , so all that the destructor needs to do is
remove each item from the stack with a call to pop . Each node will then have its
memory returned to the freestore for recycling.

770 CHAPTER 17 Linked Data Structures

 Push and Pop
Adding a data item to a stack data structure is referred to as pushing the data item onto the
stack. Removing a data item from a stack is referred to as popping the item off the stack.

 Stacks
A stack is a last-in/first-out data structure; that is, data items are retrieved in the opposite
order to which they were placed in the stack.

 Self-Test Exercises

13 . Give the defi nition of the member function push of the template class Stack
described in Displays 17.17 and 17.19 .

14 . Give the defi nition of the copy constructor for the template class Stack
described in Displays 17.17 and 17.19 .

15 . Give the defi nition of the overloaded assignment operator for the template class
Stack described in Displays 17.17 and 17.19 .

 EXAMPLE: A Queue Template Class

 A stack is a last-in/first-out data structure. Another common data structure is a
queue , which handles data in a first-in/first-out fashion. A queue can be implemented
with a linked list in a manner similar to our implementation of the Stack template
class. However, a queue needs a pointer at both the head of the list and at the end of
the linked list, since action takes place in both locations. It is easier to remove a node
from the head of a linked list than from the other end of the linked list. Therefore,
our implementation will remove nodes from the head of the list (which we will now
call the front of the list) and will add nodes to the other end of the list, which we will
now call the back of the list (or the back of the queue).

 The definition of the Queue template class is given in Display 17.20 . A sample
application that uses the class Queue is shown in Display 17.21 . The definitions
of the member functions are left as Self-Test Exercises (but remember that the
answers are given at the end of the chapter should you have any problems filling in
the details).

www.itpub.net

 Linked List Applications 771

 Display 17.20 Interface File for a Queue Template Class (part 1 of 2)

 1
 2 //This is the header file queue.h. This is the interface for the class
 3 //Queue, which is a template class for a queue of items of type T .
 4 #ifndef QUEUE_H
 5 #define QUEUE_H

 6 namespace QueueSavitch
 7 {
 8 template<class T>
 9 class Node
10 {
11 public:
12 Node(T theData, Node<T>* theLink) : data(theData),

link(theLink){}
13 Node<T>* getLink() const { return link; }
14 const T getData() const { return data; }
15 void setData(const T& theData) { data = theData; }
16 void setLink(Node<T>* pointer) { link = pointer; }
17 private:
18 T data;
19 Node<T> *link;
20 };

21 template<class T>
22 class Queue
23 {
24 public:
25 Queue();
26 //Initializes the object to an empty queue .

27 Queue(const Queue<T>& aQueue);

28 Queue<T>& operator =(const Queue<T>& rightSide);

29 virtual ~Queue();

30
31 void add(T item);
32 //Postcondition: item has been added to the back of the queue .

33 T remove();
34 //Precondition: The queue is not empty .
35 //Returns the item at the front of the queue
36 //and removes that item from the queue .

(continued)

This is the same definition of the template
class Node that we gave for the stack interface in
Display 17.17. See the “Tip: A Comment on Namespaces”
for a discussion of this duplication.

You might prefer to replace the
parameter type T with const T&.

Copy constructor.

The destructor destroys the
queue and returns all the
memory to the freestore.

772 CHAPTER 17 Linked Data Structures

37 bool isEmpty() const;
38 //Returns true if the queue is empty. Returns false otherwise .
39 private:
40 Node<T> *front; //Points to the head of a linked list .
41 //Items are removed at the head
42 Node<T> *back; //Points to the node at the other end of the

//linked list .
43 //Items are added at this end .
44 };

45 } //QueueSavitch

46 #endif //QUEUE_H

Display 17.20 Interface File for a Queue Template Class (part 2 of 2)

 Display 17.21 Program Using the Queue Template Class (part 1 of 2)

 1 //Program to demonstrate use of the Queue template class .
 2 #include <iostream>
 3 #include "queue.h"
 4 #include "queue.cpp"
 5 using std::cin;
 6 using std::cout;
 7 using std::endl;
 8 using QueueSavitch::Queue;

 9 int main()
10 {
11 char next, ans;

12 do
13 {
14 Queue< char> q;
15 cout << "Enter a line of text:\n";
16 cin.get(next);
17 while (next != '\n')
18 {
19 q.add(next);
20 cin.get(next);
21 }

22 cout << "You entered:\n";
23 while (! q.isEmpty())
24 cout << q.remove();
25 cout << endl;

Contrast this with the similar program using a
stack instead of a queue that we gave in
Display 17.18.

www.itpub.net

 Linked List Applications 773

26 cout << "Again?(y/n): ";
27 cin >> ans;
28 cin.ignore(10000, '\n');
29 } while (ans != 'n' && ans != 'N');

30 return 0;
31 }

Sample Dialogue

Enter a line of text:
straw
You entered:
straw
Again?(y/n): y
Enter a line of text:
I love C++
You entered:
I love C++
Again?(y/n): n

Display 17.21 Program Using the Queue Template Class (part 2 of 2)

 Queue
A queue is a first-in/first-out data structure; that is, the data items are removed from the
queue in the same order that they were added to the queue.

 TIP: A Comment on Namespaces

 Notice that both of the namespaces StackSavitch (Display 17.17) and
QueueSavitch (Display 17.20) define a template class called Node . As it turns out,
the two definitions of Node are the same, but the point discussed here is the same
whether the two definitions are the same or different. C++ does not allow you to
define the same identifier twice, even if the two definitions are the same, unless the
two names are somehow distinguished. In this case, the two definitions are allowed
because they are in two different namespaces. It is even legal to use both the Stack

template class and the Queue template class in the same program. However, you
should use

using StackSavitch::Stack;
using QueueSavitch::Queue;

(continued)

774 CHAPTER 17 Linked Data Structures

 rather than

using namespace StackSavitch;
using namespace QueueSavitch;

 Most compilers will allow either set of using directives if you do not use the identifier
Node , but the second set of using directives provides two definitions of the identifier
Node and therefore should be avoided.

 It would be fine to use either, but not both, of the following:

using StackSavitch::Node;

 or

using QueueSavitch::Node; ■

TIP: (continued)

 Self-Test Exercises

16 . Give the defi nitions for the default (zero-argument) constructor and the
member functions Queue<T>::isEmpty for the template class Queue
(Display 17.20).

17 . Give the defi nitions for the member functions Queue<T>::add and
Queue<T>::remove for the template class Queue (Display 17.20).

18 . Give the defi nition for the destructor for the template class Queue
(Display 17.20).

19 . Give the defi nition for the copy constructor for the template class Queue
(Display 17.20).

20 . Give the defi nition for the overloaded assignment operator for the template
class Queue (Display 17.20).

 Friend Classes and Similar Alternatives

 You may have found it a nuisance to use the accessor and mutator functions getLink
and setLink in the template class Node (see Display 17.17 or Display 17.20). You
might be tempted to avoid the invocations of getLink and setLink by simply making
the member variable link of the class Node public instead of private. Before you
abandon the principle of making all member variables private, note two things. First,
using getLink and setLink is not really any harder for you, the programmer, than
directly accessing the links in the nodes. (However, getLink and setLink do introduce
some overhead and so may slightly reduce efficiency.) Second, there is a way to avoid
using getLink and setLink and instead directly access the links of nodes without
making the link member variable public. Let us explore this second possibility.

 Chapter 8 discussed friend functions. As you will recall, if f is a friend function of
a class C , then f is not a member function of C ; however, when you write the definition

www.itpub.net

 Linked List Applications 775

of the function f , you can access private members of C just as you can in the definitions
of member functions of C . A class can be a friend of another class in the same way
that a function can be a friend of a class. If the class F is a friend of the class C , then
every member function of the class F is a friend of the class C . Thus, if, for example,
the Queue template class were a friend of the Node template class, then the private
link member variables would be directly available in the definitions of the member
functions of Queue . The details are outlined in Display 17.22 .

friend class

 Display 17.22 A Queue Template Class as a Friend of the Node Class (part 1 of 2)

 1 //This is the header file queue.h. This is the interface for the class
 2 //Queue, which is a template class for a queue of items of type T .
 3 #ifndef QUEUE_H
 4 #define QUEUE_H

 5 namespace QueueSavitch
 6 {
 7 template<class T>
 8 class Queue;

 9 template<class T>
10 class Node
11 {
12 public:
13 Node(T theData, Node<T>* theLink) : data(theData),

 link(theLink){}
14 friend class Queue<T>;
15 private:
16 T data;
17 Node<T> *link;
18 };

19 template<class T>
20 class Queue
21 {
22 < The definition of the template class Queue is identical to the one given in Display 17.20 .
 However, the definitions of the member functions will be different from the ones we gave
23 (in the Self-Test Exercises) for the nonfriend version of Queue .>
24 }
25 } //QueueSavitch

26 #endif //QUEUE_H
27 #include <iostream>
28 #include <cstdlib>
29 #include <cstddef>
30 #include "queue.h"
31 using std::cout;
32 namespace QueueSavitch

 A forward declaration. Do not forget
the semicolon.

This is an alternate approach to that given in
Display 17.20. In this version, the Queue template
class is a friend of the Node template class.

The implementation file would contain these
definitions and the definitions of the other member
functions similarly modified to allow access by name
to the link and data member variables of the nodes.

(continued)

If Node<T> is only used in the definition
of the friend class Queue<T>, there is no
need for mutator or accessor functions.

776 CHAPTER 17 Linked Data Structures

33 {
34 template<class T> //Uses cstddef:
35 void Queue<T>::add(T item)
36 {
37 if (isEmpty())
38 front = back = new Node<T>(item, NULL);
39 else
40 {
41 back->link = new Node<T>(item, NULL);
42 back = back->link;
43 }
44 }

45 template<class T> //Uses cstdlib and iostream:
46 T Queue<T>::remove()
47 {
48 if (isEmpty())
49 {
50 cout << "Error: Removing an item from an empty queue.\n";
51 exit(1);
52 }

53 T result = front->data;

54 Node<T> *discard;
55 discard = front;
56 front = front->link;
57 if (front == NULL) //if you removed the last node
58 back = NULL;

59 delete discard;
60 return result;
61 }
62 } //QueueSavitch

Display 17.22 A Queue Template Class as a Friend of the Node Class (part 2 of 2)

If efficiency is a major issue, you might want to use
(front == NULL) instead of (isEmpty()).

Contrast these implementations with the ones given
as the answer to Self-Test Exercise 17.

 When one class is a friend of another class, it is typical for the classes to reference each
other in their class definitions. This requires that you include a forward declaration to
the class or class template defined second, as illustrated in Display 17.22 . Note that the
forward declaration is just the heading of the class or class template definition followed
by a semicolon. A complete example using a friend class is given in Section 17.4 (see
the programming example “A Tree Template Class”).

 Two approaches that serve pretty much the same purpose as friend classes and
that can be used in pretty much the same way with classes and template classes such
as Node and Queue are (1) using protected or private inheritance to derive Queue

forward
declaration

www.itpub.net

 Linked List Applications 777

from Node , and (2) giving the definition of Node within the definition of Queue , so
that Node is a local class (template) definition. (Protected inheritance is discussed in
 Chapter 14 , and classes defined locally within a class are discussed in Chapter 7 .)

 EXAMPLE: Hash Tables with Chaining

 A hash table or hash map is a data structure that efficiently stores and retrieves data
from memory. There are many ways to construct a hash table; in this section we will
use an array in combination with singly linked lists. In Section 17.1 , we searched a
linked list by iterating through every node in the list looking for a target. This process
might require the examination of every node in the list, a potentially time-consuming
process if the list is very long. In contrast, a hash table has the potential to find
the target very quickly, although in a worst-case (but highly unlikely) scenario our
implementation would run as slowly as using a singly linked list.

 An object is stored in a hash table by associating it with a key. Given the key, we
can retrieve the object. Ideally, the key is unique to each object. If the object has no
intrinsically unique key, then we can use a hash function to compute one. In most
cases the hash function computes a number.

 For example, let us use a hash table to store a dictionary of words. Such a hash table
might be useful to make a spell-checker—words missing from the hash table might
not be spelled correctly. We will construct the hash table with a fixed array, where
each array element references a linked list. The key computed by the hash function
will map to the index of the array. The actual data will be stored in a linked list at the
hash value’s index. Display 17.23 illustrates the idea with a fixed array of ten entries.
Initially each entry of the array hasharray contains a reference to an empty singly
linked list. First, we add the word “cat,” which has been assigned the key or hash value
of 2 (we will show how this was computed shortly). Next, we add “dog” and “bird,”
which are assigned hash values of 4 and 7, respectively. Each of these strings is inserted
as the head of the linked list using the hash value as the index in the array. Finally,
we add “turtle,” which also has a hash of 2. Since “cat” is already stored at index 2,
we now have a collision . Both “turtle” and “cat” map to the same index in the array.
When this occurs in a hash table with chaining , we simply insert the new node onto
the existing linked list. In our example, there are now two nodes at index 2: “turtle”
and “cat.”

 To retrieve a value from the hash table, we first compute the hash value of the target.
Next we sequentially search the linked list that is stored at hasharray[hashvalue]
for the target. If the target is not found in this linked list, then the target is not stored
in the hash table. If the size of the linked list is small, then the retrieval process will
be quick.

 hash table

 hash map

 hash function

 collision

 chaining

(continued)

778 CHAPTER 17 Linked Data Structures

A HASH FUNCTION FOR STRINGS

 A simple way to compute a numeric hash value for a string is to sum the ASCII value
of every character in the string and then compute the modulus of the sum using
the size of the fixed array. A subset of ASCII codes is given in Appendix 3 . Code to
compute the hash value is shown in the function computeHash .

int computeHash(string s)
{

int hash = 0;
for (int i = 0; i < s.length(); i++)

 {
 hash = hash + s[i];
 }

return hash % SIZE; //SIZE = 10 in example
}

 For example, the ASCII codes for the string “dog” are

d -> 100
o -> 111
g -> 103

 The hash function is computed as

Sum = 100 + 111 + 103 = 314
Hash = Sum % 10 = 314 % 10 = 4

 In this example, we first compute an unbounded value, the sum of the ASCII values
in the string. However, the array was defined to hold a finite number of elements.
To scale the sum to the size of the array, we compute the modulus of the sum with
respect to the size of the array, which is 10 in the example. In practice, the size of
the array is generally a prime number larger than the number of items that will be
put into the hash table 1 . The computed hash value of 4 serves as a fingerprint for the
string “dog.” However, other strings may also map to the same value. For example,
we can verify that “cat” maps to (99 + 97 + 116) , 10 = 2 and “turtle” maps to
(116 + 117 + 114 + 116 + 108 + 101) , 10 = 2.

 A complete code listing for a hash table class is given in Displays 17.24 and 17.25 .
A demo is shown in Display 17.26 . The hash table definition uses an array where
each element is a Node class defined in Display 17.14 . The linked list is implemented
using the generic linked list library defined in Displays 17.14 and 17.15 .

EXAMPLE: (continued)

 1A prime number avoids common divisors after modulus that can lead to collisions.

www.itpub.net

 Linked List Applications 779

 Display 17.23 Constructing a Hash Table

Existing hash table with 10 empty linked lists

Node<string> *hashArray[10];
for (int i=0; i<10; i++) hashArray[i] = NULL;

hashArray NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

After adding ”cat” with a hash of 2

hashArray NULL NULL NULL NULL NULL NULL NULL NULL NULL

cat

After adding ”dog” with a hash of 4 and ”bird” with a hash of 7

hashArray NULL NULL NULL NULL NULL NULL NULL

cat dog bird

After adding ”turtle” with a hash of 2 - collision and chained to linked list with ”cat”

hashArray NULL NULL NULL NULL NULL NULL NULL

turtle dog bird

cat

780 CHAPTER 17 Linked Data Structures

 Display 17.24 Interface File for a HashTable Class

 1 //This is the header file hashtable.h. This is the interface
 2 //for the class HashTable, which is a class for a hash table
 3 //of strings .
 4 #ifndef HASHTABLE_H
 5 #define HASHTABLE_H

 6 #include <string>
 7 #include "listtools.h"

 8 using LinkedListSavitch::Node;
 9 using std::string;

10 namespace HashTableSavitch
11 {
12 const int SIZE = 10; //Maximum size of the hash table array

13 class HashTable
14 {
15 public:
16 HashTable(); //Initialize empty hash table .

17 //Normally a copy constructor and overloaded assignment
18 //operator would be included. They have been omitted
19 //to save space .

20 virtual ~HashTable(); //Destructor destroys hash table .

21 bool containsString(string target) const;
22 //Returns true if target is in the hash table,
23 //false otherwise .

24 void put(string s);
25 //Adds a new string to the hash table .

26 private:
27 Node<string> *hashArray[SIZE]; //The actual hash table
28 static int computeHash(string s); //Compute a hash value
29 }; //HashTable
30 } //HashTableSavitch
31 #endif //HASHTABLE_H

The library “listtools.h” is the linked list
library interface from Display 17.14.

www.itpub.net

 Linked List Applications 781

 Display 17.25 Implementation of the HashTable Class (part 1 of 2)

 1 //This is the implementation file hashtable.cpp .
 2 //This is the implementation of the class HashTable .

 3 #include <string>
 4 #include "listtools.h"
 5 #include "hashtable.h"

 6 using LinkedListSavitch::Node;
 7 using LinkedListSavitch::search;
 8 using LinkedListSavitch::headInsert;
 9 using std::string;

10 namespace HashTableSavitch
11 {
12 HashTable::HashTable()
13 {
14 for (int i = 0; i < SIZE; i++)
15 {
16 hashArray[i] = NULL;
17 }
18 }

19 HashTable::~HashTable()
20 {
21 for (int i=0; i<SIZE; i++)
22 {
23 Node<string> *next = hashArray[i];
24 while (next != NULL)
25 {
26 Node<string> *discard = next;
27 next = next->getLink();
28 delete discard;
29 }
30 }
31 }

32 int HashTable::computeHash(string s)
33 {
34 int hash = 0;
35 for (int i = 0; i < s.length(); i++)
36 {
37 hash = hash + s[i];
38 }
39 return hash % SIZE;
40 }

(continued)

782 CHAPTER 17 Linked Data Structures

 Display 17.26 Hash Table Demonstration (part 1 of 2)

 1 //Program to demonstrate use of the HashTable class

 2 #include <string>
 3 #include <iostream>
 4 #include "hashtable.h"
 5 #include "listtools.cpp"
 6 #include "hashtable.cpp"
 7 using std::string;
 8 using std::cout;
 9 using std::endl;
10 using HashTableSavitch::HashTable;

11 int main()
12 {
13 HashTable h;

14 cout << "Adding dog, cat, turtle, bird" << endl;
15 h.put("dog");
16 h.put("cat");
17 h.put("turtle");
18 h.put("bird");
19 cout << "Contains dog? " << h.containsString("dog") << endl;
20 cout << "Contains cat? " << h.containsString("cat") << endl;
21 cout << "Contains turtle? " << h.containsString("turtle") << endl;
22 cout << "Contains bird? " << h.containsString("bird") << endl;

23 cout << "Contains fish? " << h.containsString("fish") << endl;
24 cout << "Contains cow? " << h.containsString("cow") << endl;

25 return 0;
26 }

41 void HashTable::put(string s)
42 {
43 int hash = computeHash(s);
44 if (search(hashArray[hash], s)==NULL)
45 {
46 //Only add the target if it's not in the list
47 headInsert(hashArray[hash], s);
48 }
49 }
50 //HashTableSavitch

Display 17.25 Implementation of the HashTable Class (part 2 of 2)

www.itpub.net

 Linked List Applications 783

 Efficiency of Hash Tables

 The efficiency of our hash table depends on several factors. First, let us examine some
extreme cases. The worst-case run-time performance occurs if every item inserted
into the table has the same hash key. Everything will then be stored in a single linked
list, and the find operation may require searching through each item in the list.
Fortunately, if the items that we insert are somewhat random, the possibility that all
of them hash to the same key is highly unlikely. In contrast, the best-case run-time
performance occurs if every item inserted into the table has a different hash key. This
means that there will be no collisions, so the find operation will only need to search
through a one-item list because the target will always be the first node in the linked list.

 We can decrease the chance of collisions by using a better hash function. For
example, the simple hash function that sums each letter of a string ignores the ordering
of the letters. The words “rat” and “tar” would hash to the same value. A better hash
function for a string s is to multiply each letter by an increasing weight depending on
the position in the word:

int hash = 0;
for (int i = 0; i < s.length(); i++)
{
 hash = 31 * hash + s[i];
}

 Another way to decrease the chance of collisions is by making the hash table bigger.
For example, if the hash table array had a 10,000-entry capacity but we were only
inserting 1000 items, then the probability of a collision would be much smaller than if
the hash table array could store only 1000 entries. However, inserting only 1000 items

Sample Dialogue

Adding dog, cat, turtle, bird

Contains dog? 1

Contains cat? 1

Contains turtle? 1

Contains bird? 1

Contains fish? 0

Contains cow? 0

Display 17.26 Hash Table Demonstration (part 2 of 2)

 Hash Table
A hash table is a data structure that associates a data item with a key. The key is computed
by a hash function.

784 CHAPTER 17 Linked Data Structures

in a 10,000-entry hash table would mean 9000 memory locations will go unused, which
is a waste of memory. This illustrates the time-space tradeoff . It is usually possible to
increase run-time performance at the expense of memory space, and vice versa.

time-space
tradeoff

 Self-Test Exercises

21 . Suppose that every student in your university is assigned a unique nine-digit ID
number. You would like to create a hash table that indexes ID numbers to an
object representing a student. The hash table has a size of N where N has fewer
than nine digits. Describe a simple hash function that you can use to map from
ID number to a hash index.

22 . Write an outputHashTable() function for the HashTable class that outputs
every item stored in the hash table.

 EXAMPLE: A Set Template Class

 A set is a collection of elements in which no element occurs more than once. Many
problems in computer science can be solved with the aid of a set data structure.
A variation on linked lists is a straightforward way to implement a set. In this
implementation, the items in each set are stored using a singly linked list. The data

variable for each node simply contains an item in the set.
 Display 17.27 illustrates two sample sets stored using this data structure. The set

round contains “peas,” “ball,” and “pie” while the set green contains “peas” and
“grass.” The string “peas” is in both sets because it is both round and green. Note that
if the data type used to fill the Node template is a pointer to an object, then multiple
lists might reference a common object instead of creating multiple copies of the same
object in each list.

FUNDAMENTAL SET OPERATIONS

 Some fundamental operations that our set class should support are

add element. Add a new item into a set.
contains. Determine if a target item is a member of the set.
union. Return a set that is the union of two sets.
intersection. Return a set that is the intersection of two sets.

 We should also include a way to iterate through each element in the set. Other useful
set operations include functions to retrieve the cardinality of the set and to remove
items from the set. The implementation of these operations is given as an exercise in
 Programming Project 17.7 .

www.itpub.net

 Linked List Applications 785

 The code for implementing a generic set of elements appears in Displays 17.28 and
 17.29 . The Set class uses the linked list tools from Display 17.14 . The add function
simply adds a node to the front of the linked list, but only if the item is not already in
the set. The contains function uses the search function from the linked list library.
We simply loop through every item in the list looking for the target.

 The union function combines the elements in the calling objects set with the
elements from the set of the input argument, otherSet . To union these sets we first
create a new empty Set object. Next, we iterate through both the calling object’s set
and otherSet ’s set. All elements are added to the new set. The add function enforces
uniqueness so we do not have to check for duplicate elements in the union function.

 The intersection function is similar to the union function in that it also
creates a new, empty Set object. In this case, we populate the set with items that are
common to both the calling object’s set and otherSet ’s set. This is accomplished by
iterating through every item in the calling object’s set. For each item, we invoke the
contains function for otherSet . If contains returns true , then the item is in both
sets and can be added to the new set.

 A short demonstration program is in Display 17.30 .

EXAMPLE: (continued)

 Display 17.27 Set Implementation Using Linked Lists

round

green

peas ball pie null

peas grass null

 Set
A set is an unordered collection of data elements.

786 CHAPTER 17 Linked Data Structures

 Display 17.28 Interface File for a Set Template Class

 1 //This is the header file set.h. This is the interface
 2 //for the class Set, which is a class for a generic set .
 3 #ifndef SET_H
 4 #define SET_H

 5 #include "listtools.h"
 6 using LinkedListSavitch::Node;

 7 namespace SetSavitch
 8 {
 9 template<class T>
10 class Set
11 {
12 public:
13 Set() { head = NULL; } //Initialize empty set.

14 //Normally a copy constructor and overloaded assignment
15 //operator would be included. They have been omitted
16 //to save space .

17 virtual ~Set(); //Destructor destroys set .
18 bool contains(T target) const;
19 //Returns true if target is in the set, false otherwise .

20 void add(T item);
21 //Adds a new element to the set.

22 void output();
23 //Outputs the set to the console.

24 Set<T>* setUnion(const Set<T>& otherSet);
25 //Union calling object's set with otherSet
26 //and return a pointer to the new set.

27 Set<T>* setIntersection(const Set<T>& otherSet);
28 //Intersect calling object's set with otherSet
29 //and return a pointer to the new set.
30 private:
31 Node<T> *head;
32 }; //Set
33 } //SetSavitch
34 #endif //SET_H

The library “listtools.h” is the linked list
library interface from Display 17.14.

www.itpub.net

 Linked List Applications 787

 Display 17.29 Implementation File for a Set Template Class (part 1 of 2)

 1 //This is the implementation file set.cpp .
 2 //This is the implementation of the class Set .

 3 #include <iostream>
 4 #include "listtools.h"
 5 #include "set.h"
 6 using std::cout;
 7 using std::endl;
 8 using LinkedListSavitch::Node;
 9 using LinkedListSavitch::search;
10 using LinkedListSavitch::headInsert;

11 namespace SetSavitch
12 {

13 template<class T>
14 Set<T>::~Set()
15 {
16 Node<T> *toDelete = head;
17 while (head != NULL)
18 {
19 head = head->getLink();
20 delete toDelete;
21 toDelete = head;
22 }
23 }

24 template<class T>
25 bool Set<T>::contains(T target) const
26 {
27 Node<T>* result = search(head, target);
28 if (result == NULL)
29 return false;
30 else
31 return true;
32 }

33 void Set<T>::output()
34 {
35 Node<T> *iterator = head;
36 while (iterator != NULL)
37 {
38 cout << iterator->getData() << " ";
39 iterator = iterator->getLink();
40 }

(continued)

788 CHAPTER 17 Linked Data Structures

41 cout << endl;
42 }

43 template<class T>
44 void Set<T>::add(T item)
45 {
46 if (search(head, item)==NULL)
47 {
48 //Only add the target if it's not in the list
49 headInsert(head, item);
50 }
51 }

52 template<class T>
53 Set<T>* Set<T>::setUnion(const Set<T>& otherSet)
54 {
55 Set<T> *unionSet = new Set<T>();
56 Node<T>* iterator = head;
57 while (iterator != NULL)
58 {
59 unionSet->add(iterator->getData());
60 iterator = iterator->getLink();
61 }
62 iterator = otherSet.head;
63 while (iterator != NULL)
64 {
65 unionSet->add(iterator->getData());
66 iterator = iterator->getLink();
67 }
68 return unionSet;
69 }

70 template<class T>
71 Set<T>* Set<T>::setIntersection(const Set<T>& otherSet)
72 {
73 Set<T> *interSet = new Set<T>();
74 Node<T>* iterator = head;
75 while (iterator != NULL)
76 {
77 if (otherSet.contains(iterator->getData()))
78 {
79 interSet->add(iterator->getData());
80 }
81 iterator = iterator->getLink();
82 }
83 return interSet;
84 }
85 } //SetSavitch

Display 17.29 Implementation File for a Set Template Class (part 2 of 2)

www.itpub.net

 Linked List Applications 789

 Display 17.30 Program Using the Set Template Class (part 1 of 2)

 1 //Program to demonstrate use of the Set class

 2 #include <iostream>
 3 #include <string>
 4 #include "set.h"
 5 #include "listtools.cpp"
 6 #include "set.cpp"
 7 using std::cout;
 8 using std::endl;
 9 using std::string;
10 using namespace SetSavitch;

11 int main()
12 {
13 Set<string> round; //Round things
14 Set<string> green; //Green things

15 round.add("peas"); //Sample data for both sets
16 round.add("ball");
17 round.add("pie");
18 round.add("grapes");
19 green.add("peas");
20 green.add("grapes");
21 green.add("garden hose");
22 green.add("grass");

23 cout << "Contents of set round: ";
24 round.output();
25 cout << "Contents of set green: ";
26 green.output();

27 cout << "ball in set round? " <<
28 round.contains("ball") << endl;
29 cout << "ball in set green? " <<
30 green.contains("ball") << endl;

31 cout << "ball and peas in same set? ";
32 if ((round.contains("ball") && round.contains("peas")) ||
33 (green.contains("ball") && green.contains("peas")))
34 cout << " true" << endl;
35 else
36 cout << " false" << endl;

37 cout << "pie and grass in same set? ";
38 if ((round.contains("pie") && round.contains("grass")) ||
39 (green.contains("pie") && green.contains("grass")))
40 cout << " true" << endl;

(continued)

790 CHAPTER 17 Linked Data Structures

 Efficiency of Sets Using Linked Lists

 We can analyze the run-time efficiency of our set data structure in terms of the
fundamental set operations. Adding an item to the set always inserts a new node
on the front of the list. This requires setting only one link on the linked list. The
contains function iterates through the entire set looking for the target, which may
require examining every node in the list. When we invoke the setUnion function for
sets A and B, it iterates through both sets and adds each item into a new set. If there
are n items in set A and m items in set B, then this requires examining n + m items.
However, there is a hidden cost because the add function searches through its entire
list for any duplicates before a new item is added. This cost becomes significant as
the number of items added to the new set increases. Finally, the setIntersection

function applied to sets A and B invokes the contains function of set B for each item
in set A. Since the contains function requires examining up to m nodes for each item in
set A, then setIntersection requires examining at most m * n nodes. These are
inefficient functions in our implementation of sets. A different approach to represent
the set—for example, one that used hash tables instead of a linked list—could result

41 else
42 cout << " false" << endl;

43 cout << "Union of green and round: " << endl;
44 Set<string> *unionset = round.setUnion(green);
45 unionset->output();
46 delete unionset;

47 cout << "Intersection of green and round: " << endl;
48 Set<string> *interset = round.setIntersection(green);
49 interset->output();
50 delete interset;

51 return 0;
52 }

 Sample Dialogue

Contents of set round: grapes pie ball peas
Contents of set green: grass garden hose grapes peas
ball in set round? 1
ball in set green? 0
ball and peas in same set? true
pie and grass in same set? false
Union of green and round:
garden hose grass peas ball pie grapes
Intersection of green and round:
peas grapes

Display 17.30 Program Using the Set Template Class (part 2 of 2)

Some compilers may
output true and false
instead of 1 and 0.

set

www.itpub.net

 Iterators 791

in a setIntersection function that examines at most n + m nodes. Nevertheless,
our linked list implementation would probably be fine for an application that uses
small sets or for an application that does not frequently invoke the setIntersection

function, and we have the benefit of relatively simple code that is easy to understand.
 If we really needed the efficiency, we could maintain the same interface to the

Set<T> class but replace our linked list implementation with something else. If we
used the hash table implementation from Display 17.25 , the contains function
would run much more quickly. However, switching to a hash table makes it more
difficult to iterate through the set of items. Instead of traversing a single linked list to
retrieve every item in the set, the hash table version must now iterate through the hash
table array and then, for each index in the array, iterate through the linked list at that
index. Examination of each entry in the hash table array takes extra time that was not
necessary in the singly linked list implementation of a set. So while we have decreased
the number of steps it takes to look up an item, we have increased the number of steps
it takes to iterate over every item. If this were troublesome, you could overcome this
problem with an implementation of Set<T> that used both a linked list (to facilitate
iteration) and a hash table (for fast lookup). However, the complexity of the code is
significantly increased using such an approach. You are asked to explore the hash table
implementation in Programming Project 17.10 .

 Self-Test Exercise

23 . Write a function named difference for the Set class that returns the
difference between two sets. The function should return a pointer to a new
set that has items from the fi rst set that are not in the second set.
For example, if setA contains {1, 2, 3, 4} and setB contains {2, 4, 5}, then
setA.difference(setB) should return the set {1, 3}.

 17.3 Iterators

 The white rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked.
 “Begin at the beginning,” the King said, very gravely, “And go on till you
 come to the end: then stop.”

LEWIS CARROLL, Alice in Wonderland

 An important notion in data structures is that of an iterator. An iterator is a construct
(typically an object of some iterator class) that allows you to cycle through the data
items stored in a data structure so that you can perform whatever action you want on
each data item.

iterator

792 CHAPTER 17 Linked Data Structures

 Pointers as Iterators

 The basic idea, and in fact the prototypical model, for iterators can easily be seen in
the context of linked lists. A linked list is one of the prototypical data structures, and a
pointer is a prototypical example of an iterator. You can use a pointer as an iterator by
moving through the linked list one node at a time starting at the head of the list and
cycling through all the nodes in the list. The general outline is as follows:

Node_Type *iterator;
for (iterator = Head; iterator != NULL;
 iterator = iterator-> Link)
 Do whatever you want with the node pointed to by iterator;

 where Head is a pointer to the head node of the linked list and Link is the name of the
member variable of a node that points to the next node in the list.

 For example, to output the data in all the nodes in a linked list of the kind we
discussed in Section 17.1 , you could use the following:

IntNode *iterator;
for(iterator = head; iterator != NULL;
 iterator = iterator->getLink())
 cout << (iterator->getData());

 The definition of IntNode is given in Display 17.4 .
 Note that you test to see if two pointers are pointing to the same node by comparing

them with the equal operator, == . A pointer is a memory address. If two pointer
variables contain the same memory address, then they compare as equal and point to
the same node. Similarly, you can use != to compare two pointers to see if they do not
point to the same node.

 Iterator Classes

 An iterator class is a more versatile and more general notion than a pointer. It very
often does have a pointer member variable as the heart of its data, as in the next
programming example, but that is not required. For example, the heart of the iterator
might be an array index. An iterator class has functions and overloaded operators that
allow you to use pointer syntax with objects of the iterator class no matter what you use
for the underlying data structure, node type, or basic location marker (pointer or array
index or whatever). Moreover, it provides a general framework that can be used across
a wide range of data structures.

 Iterator
An iterator is a construct (typically an object of some iterator class) that allows you to cycle
through the data items stored in a data structure so that you can perform whatever action
you want on each data item in the data structure.

iterator
class

www.itpub.net

 An iterator class typically has the following overloaded operators:

++ Overloaded increment operator, which advances the iterator to the next item.

-- Overloaded decrement operator, which moves the iterator to the previous item.

== Overloaded equality operator to compare two iterators and return true if they
both point to the same item.

!= Overloaded not-equal operator to compare two iterators and return true if
they do not point to the same item.

 * Overloaded dereferencing operator that gives access to one item. (Often it
returns a reference to allow both read and write access.)

 When thinking of this list of operators, you can use a linked list as a concrete
example. In that case, remember that the items in the list are the data in the list, not the
entire nodes and not the pointer members of the nodes. Everything but the data items
is implementation detail that is meant to be hidden from the programmer who uses the
iterator and data structure classes.

 An iterator is used in conjunction with some particular structure class that stores
data items of some type. The data structure class normally has the following member
functions that provide iterators for objects of that class:

begin() : A member function that takes no argument and returns an iterator that
is located at (“points to”) the first item in the data structure.

end() : A member function that takes no argument and returns an iterator that can
be used to test for having cycled through all items in the data structure. If i is an
iterator and it has been advanced beyond the last item in the data structure, then i
should equal end() .

 Using an iterator, you can cycle through the items in a data structure ds as follows:

for (i = ds.begin(); i != ds.end(); i++)
 process *i //*i is the current data item .

 Iterator Class
An iterator class typically has the following overloaded operators: ++, move to next item; -,
move to previous item; ==, overloaded equality; !=, overloaded not-equal operator; and *,
overloaded dereferencing operator that gives access to one data item.

The data structure corresponding to an iterator class typically has the following two member
functions: begin(), which returns an iterator that is located at (“points to”) the first item in
the data structure; and end(), which returns an iterator that can be used to test for having
cycled through all items in the data structure. If i is an iterator and it has been advanced
beyond the last item in the data structure, then i should equal end().

Using an iterator, you can cycle through the items in a data structure ds as follows:

for (i = ds.begin(); i != ds.end(); i++)
process *i //*i is the current data item .

 Iterators 793

794 CHAPTER 17 Linked Data Structures

 where i is an iterator. Chapter 19 discusses iterators with a few more items and
refinements than these, but these will do for an introduction.

 This abstract discussion will not come alive until we give an example. So, let us walk
through one.

 EXAMPLE: An Iterator Class

 Display 17.31 contains the definition of an iterator class that can be used for data
structures (such as a stack or queue) that are based on a linked list. We have placed
the node class and the iterator class into a namespace of their own. This makes
sense, since the iterator is intimately related to the node class and since any class that
uses this node class can also use the iterator class. This iterator class does not have a
decrement operator, because a definition of a decrement operator depends on the
details of the linked list and does not depend solely on the type Node<T> . (There is
nothing wrong with having the definition of the iterator depend on the underlying
linked list. We have just decided to avoid this complication.)

 As you can see, the template class ListIterator is essentially a pointer wrapped
in a class so that it can have the needed member operators. The definitions of the
overload operators are straightforward and in fact so short that we have defined all of
them as inline functions. Note that the dereferencing operator, * , produces the data
member variable of the node pointed to. Only the data member variable is data. The
pointer member variable in a node is part of the implementation detail that the user
programmer should not need to be concerned with.

 You can use the ListIterator class as an iterator for any class based on a linked
list that uses the template class Node . As an example, we have rewritten the template
class Queue so that it has iterator facilities. The interface for the template class Queue
is given in Display 17.32 . This definition of the Queue template is the same as our
previous version (Display 17.20) except that we have added a type definition as well
as the following two member functions:

Iterator begin() const { return Iterator(front); }
Iterator end() const { return Iterator(); }
//The end iterator has end().current == NULL.

 Let us discuss the member functions first.
 The member function begin() returns an iterator located at (“pointing to”) the

front node of the queue, which is the head node of the underlying linked list. Each
application of the increment operator, ++, moves the iterator to the next node. Thus,
you can move through the nodes, and hence the data, in a queue named q as follows:

for (i = q.begin(); Stopping_Condition; i++)
 process *i //*i is the current data item .

 where i is a variable of the iterator type.

(continued)

www.itpub.net

 Display 17.31 An Iterator Class for Linked Lists (part 1 of 2)

 1 //This is the header file iterator.h. This is the interface for the
 2 //class ListIterator, which is a template class for an iterator to use
 3 //with linked lists of items of type T. This file also contains the
 4 //node type for a linked list
 5 #ifndef ITERATOR_H
 6 #define ITERATOR_H

 7 namespace ListNodeSavitch
 8 {
 9 template<class T>
10 class Node
11 {
12 public:
13 Node(T theData, Node<T>* theLink) : data(theData),

 link(theLink){}
14 Node<T>* getLink() const { return link; }
15 const T& getData() const { return data; }
16 void setData(const T& theData) { data = theData; }
17 void setLink(Node<T>* pointer) { link = pointer; }
18 private:
19 T data;
20 Node<T> *link;
21 };

22 template<class T>
23 class ListIterator
24 {
25 public:
26 ListIterator() : current(NULL) {}

27 ListIterator(Node<T>* initial) : current(initial) {}
28 const T& operator *() const { return current->getData(); }
29 //Precondition: Not equal to the default constructor object ;
30 //that is, current != NULL .
31 ListIterator& operator ++() //Prefix form
32 {
33 current = current->getLink();
34 return *this;
35 }
36 ListIterator operator ++(int) //Postfix form
37 {
38 ListIterator startVersion(current);
39 current = current->getLink();
40 return startVersion;

(continued)

Note that the dereferencing operator *
produces the data member of the node,
not the entire node. This version does not
allow you to change the data in the node.

 Iterators 795

796 CHAPTER 17 Linked Data Structures

 The member function end() returns an iterator whose current member variable is
NULL . Thus, when the iterator i has passed the last node, the Boolean expression

i != q.end()

 changes from true to false . This is the desired Stopping_Condition. This queue
class and iterator class allow you to cycle through the data in the queue in the way we
outlined for an iterator:

for (i = q.begin(); i != q.end(); i++)
 process *i //*i is the current data item .

 Note that i is not equal to q.end() when i is at the last node. The iterator i is
not equal to q.end() until i has been advanced one position past the last node. To
remember this detail, think of q.end() as being an end marker like NULL ; in this
case, it is essentially a version of NULL . A sample program that uses such a for loop is
shown in Display 17.33 .

 Notice the type definition in our new queue template class:

typedef ListIterator<T> Iterator;

EXAMPLE: (continued)

(continued on page 799)

41 }
42 bool operator ==(const ListIterator& rightSide) const
43 { return (current == rightSide.current); }

44 bool operator !=(const ListIterator& rightSide) const
45 { return (current != rightSide.current); }

46 //The default assignment operator and copy constructor
47 //should work correctly for ListIterator .
48 private:
49 Node<T> *current;
50 };

51 } //ListNodeSavitch

52 #endif //ITERATOR_H

Display 17.31 An Iterator Class for Linked Lists (part 2 of 2)

www.itpub.net

 Display 17.32 Interface File for a Queue with Iterators Template Class

 1 //This is the header file queue.h. This is the interface for the class
 2 //Queue, which is a template class for a queue of items of type T,
 3 //including iterators .
 4 #ifndef QUEUE_H
 5 #define QUEUE_H
 6 #include "iterator.h"
 7 using namespace ListNodeSavitch;

 8 namespace QueueSavitch
 9 {
10 template<class T>
11 class Queue
12 {
13 public:
14 typedef ListIterator<T> Iterator;

15 Queue();
16 Queue(const Queue<T>& aQueue);
17 Queue<T>& operator =(const Queue<T>& rightSide);
18 virtual ~Queue();
19 void add(T item);
20 T remove();
21 bool isEmpty() const;

22 Iterator begin() const { return Iterator(front);}
23 Iterator end() const { return Iterator(); }
24 //The end iterator has end().current == NULL .
25 //Note that you cannot dereference the end iterator .
26 private:
27 Node<T> *front; //Points to the head of a linked list .
28 //Items are removed at the head .
29 Node<T> *back; //Points to the node at the other end of
30 //the linked list .
31 //Items are added at this end .
32 };

33 } //QueueSavitch

34 #endif //QUEUE_H

The definitions of Node<T> and
ListIterator<T> are in the namespace
List NodeSavitch in the file iterator.h.

 Iterators 797

798 CHAPTER 17 Linked Data Structures

 Display 17.33 Program Using the Queue Template Class with Iterators

 1 //Program to demonstrate use of the Queue template class with iterators .
 2 #include <iostream>
 3 #include "queue.h" //not needed
 4 #include "queue.cpp"
 5 #include "iterator.h" //not needed
 6 using std::cin;
 7 using std::cout;
 8 using std::endl;
 9 using namespace QueueSavitch;
10 int main()
11 {
12 char next, ans;
13 do
14 {
15 Queue< char> q;
16 cout << "Enter a line of text:\n";
17 cin.get(next);
18 while (next != '\n')
19 {
20 q.add(next);
21 cin.get(next);
22 }

23 cout << "You entered:\n";
24 Queue< char>::Iterator i;

25 for (i = q.begin(); i != q.end(); i++)
26 cout << *i;
27 cout << endl;

28 cout << "Again?(y/n): ";
29 cin >> ans;
30 cin.ignore(10000, '\n');
31 } while (ans != 'n' && ans != 'N');

32 return 0;
33 }

Sample Dialogue

Enter a line of text:
Where shall I begin?
You entered:
Where shall I begin?
Again?(y/n): y
Enter a line of text:
Begin at the beginning
You entered:
Begin at the beginning
Again?(y/n): n

Even though they are not needed,
many programmers prefer to include
these include directives for the
sake of documentation.

If your compiler is unhappy with
Queue<char>::Iterator i;
try using namespace ListNodeSavitch;
ListIterator<char> i;

www.itpub.net

 This typedef is not absolutely necessary. You can always use ListIterator<T>
instead of the type name Iterator . However, this type definition does make for
cleaner code. With this type definition, an iterator for the class Queue<char> is
written

Queue<char>::Iterator i;

 This makes it clear with which class the iterator is meant to be used.
 The implementation of our new template class Queue is given in Display 17.34 .

Since the only member functions we added to this new Queue class are defined inline,
the implementation file contains nothing really new, but we include the implementation
file to show how it is laid out and to show which directives it would include.

EXAMPLE: (continued)

 Display 17.34 Implementation File for a Queue with Iterators Template Class (part 1 of 2)

 1 //This is the file queue.cpp. This is the implementation of the
 2 //template class Queue. The interface for the template class Queue is
 3 //in the header file queue.h .
 4 #include <iostream>
 5 #include <cstdlib>
 6 #include <cstddef>
 7 #include "queue.h"
 8 using std::cout;

 9 using namespace ListNodeSavitch;
10 namespace QueueSavitch
11 {
12 template<class T>
13 Queue<T>::Queue() : front(NULL), back(NULL)
14 < The rest of the definition is given in the answer to Self-Test Exercise 16 .>

15 template<class T>
16 Queue<T>::Queue(const Queue<T>& aQueue)
17 < The rest of the definition is given in the answer to Self-Test Exercise 19 .>

18 template<class T>
19 Queue<T>& Queue<T>::operator =(const Queue<T>& rightSide)
20 < The rest of the definition is given in the answer to Self-Test Exercise 20 .>
21 template<class T>
22 Queue<T>::~Queue()

The member function definitions are the same as in
the previous version of the Queue template. This is
given to show the file layout and use of namespaces.

(continued)

 Iterators 799

800 CHAPTER 17 Linked Data Structures

 17.4 Trees

 I think that I shall never see a data structure as useful as a tree.

Anonymous

 A detailed treatment of trees is beyond the scope of this chapter. The goal of this
chapter is to teach you the basic techniques for constructing and manipulating data
structures based on nodes and pointers. The linked list served as a good example for
our discussion. However, there is one detail about the nodes in a singly linked list that
is quite restricted: They have only one pointer member variable to point to another
node. A tree node has two (and in some applications more than two) member variables
for pointers to other nodes. Moreover, trees are a very important and widely used
data structure. So, we will briefly outline the general techniques used to construct and
manipulate trees.

 This section uses recursion , which is covered in Chapter 13 .

Display 17.34 Implementation File for a Queue with Iterators Template Class (part 2 of 2)

23 < The rest of the definition is given in the answer to Self-Test Exercise 18 .>
24 template<class T>
25 bool Queue<T>::isEmpty() const
26 < The rest of the definition is given in the answer to Self-Test Exercise 16 .>

27 template<class T>
28 void Queue<T>::add(T item)
29 < The rest of the definition is given in the answer to Self-Test Exercise 17 .>

30 template<class T>
31 T Queue<T>::remove()
32 < The rest of the definition is given in the answer to Self-Test Exercise 17 .>
33 } //QueueSavitch
34 #endif //QUEUE_H

 Self-Test Exercise

24 . Write the defi nition of the template function inQ shown here. Use iterators.
Use the defi nition of Queue given in Display 17.32 .

template<class T>
bool inQ(Queue<T> q, T target);
//Returns true if target is in the queue q ;
//otherwise, returns false .

www.itpub.net

 Tree Properties

 A tree is a data structure that is structured as shown in Display 17.35 . Note that a
tree must have the sort of structure illustrated in Display 17.35 . In particular, in a
tree you can reach any node from the top (root) node by some path that follows the
links (pointers). Note that there are no cycles in a tree. If you follow the pointers, you
eventually get to an end. A definition for a node class for this sort of tree of int s is also
shown in Display 17.35 . Note that each node has two links (two pointers) coming
from it. This sort of tree is called a binary tree because it has exactly two link member

 Display 17.35 A Binary Tree

40

20

60NULL NULL30NULL NULL10NULL NULL

50NULL

root

class IntTreeNode
{
public:
 IntTreeNode(int theData, IntTreeNode* left, IntTreeNode* right)
 : data(theData), leftLink(left), rightLink(right){}
private:

int data;
 IntTreeNode *leftLink;
 IntTreeNode *rightLink;
};

IntTreeNode *root;

Trees 801

802 CHAPTER 17 Linked Data Structures

variables. There are other kinds of trees with different numbers of link member
variables, but the binary tree is the most common case.

 The pointer named root serves a purpose similar to that of the pointer head
in a linked list (Display 17.1). The node pointed to by the root pointer is called
the root node . Note that the pointer root is not itself the root node, but rather
points to the root node. Any node in the tree can be reached from the root node by
following the links.

 The term tree may seem like a misnomer. The root is at the top of the tree and
the branching structure looks more like a root branching structure than a true tree
branching structure. The secret to the terminology is to turn the picture (Display 17.35)
upside down. The picture then does resemble the branching structure of a tree and the
root node is where the trees root would begin. The nodes at the ends of the branches
with both link member variables set to NULL are known as leaf nodes , a terminology
that may now make some sense.

 By analogy to an empty linked list, an empty tree is denoted by setting the pointer
variable root equal to NULL .

 Note that a tree has a recursive structure. Each tree has two subtrees whose root
nodes are the nodes pointed to by the leftLink and rightLink of the root node.
These two subtrees are circled in Display 17.35 . This natural recursive structure make
trees particularly amenable to recursive algorithms. For example, consider the task
of searching the tree in such a way that you visit each node and do something with
the data in the node (such as writing it to the screen). The general plan of attack is
as follows:

Preorder Processing

1. Process the data in the root node.
2. Process the left subtree.
3. Process the right subtree.

 You can obtain a number of variants on this search process by varying the order of
these three steps. Two more versions are given next.

 In-order Processing

1. Process the left subtree.
2. Process the data in the root node.
3. Process the right subtree.

 Postorder Processing

1. Process the left subtree.
2. Process the right subtree.
3. Process the data in the root node.

 The tree in Display 17.35 has stored each number in the tree in a special way known
as the Binary Search Tree Storage Rule . The rule is given in the accompanying box.
A tree that satisfies the Binary Search Tree Storage Rule is referred to as a binary
search tree .

binary tree

root node

leaf node

empty tree

preorder

in order

postorder

binary
search tree

www.itpub.net

 Note that if a tree satisfies the Binary Search Tree Storage Rule and you output the
values using the in-order processing method, the numbers will be output in order from
smallest to largest.

 For trees that follow the Binary Search Tree Storage Rule that are short and fat
rather than long and thin, values can be very quickly retrieved from the tree using a
binary search algorithm that is similar in spirit to the binary search algorithm presented
in Display 13.5 . The topic of searching and maintaining a binary storage tree to realize
this efficiency is a large topic that goes beyond what we have room for here.

 Binary Search Tree Storage Rule
1. All the values in the left subtree are less than the value in the root node.
2. All the values in the right subtree are greater than or equal to the value in the root node.
3. This rule applies recursively to each of the two subtrees.

(The base case for the recursion is an empty tree, which is always considered to satisfy
the rule.)

Binary
Search Tree

Storage Rule

 EXAMPLE: A Tree Template Class

 Display 17.36 contains the definition of a template class for a binary search tree. In
this example, we have made the SearchTree class a friend class of the TreeNode
class. This allows us to access the node member variables by name in the definitions
of the tree class member variables. The implementation of this SearchTree class is
given in Display 17.37 , and a demonstration program is given in Display 17.38 .

 This template class is designed to give you the flavor of tree processing, but it
is not really a complete example. A real class would have more member functions.
In particular, a real tree class would have a copy constructor and an overloaded
assignment operator. We have omitted these to conserve space.

 There are some things to observe about the function definitions in the class
SearchTree . The functions insert and inTree are overloaded. The single-argument
versions are the ones we need. However, the clearest algorithms are recursive, and
the recursive algorithms require one additional parameter for the root of a subtree.
Therefore, we defined private helping functions with two arguments for each of these
functions and implemented the recursive algorithms in the two-parameter function.
The single-parameter function then simply makes a call to the two-parameter version
with the subtree root parameter set equal to the root of the entire tree. A similar
situation holds for the overloaded member function name inorderShow . The
function deleteSubtree serves a similar purpose for the destructor function.

(continued on page 808)

Trees 803

804 CHAPTER 17 Linked Data Structures

 Display 17.36 Interface File for a Tree Template Class

 1 //Header file tree.h. The only way to insert data in a tree is with the
 2 //insert function. So, the tree satisfies the Binary Search Tree Storage
 3 //Rule. The function inTree depends on this. < must be defined and
 4 //give a well-behaved ordering to the type T .
 5 #ifndef TREE_H
 6 #define TREE_H
 7 namespace TreeSavitch
 8 {
 9 template<class T>
10 class SearchTree;//forward declaration

11 template<class T>
12 class TreeNode
13 {
14 public:
15 TreeNode() : root(NULL){}
16 TreeNode(T theData, TreeNode<T>* left, TreeNode<T>* right)
17 : data(theData), leftLink(left), rightLink(right){}
18 friend class SearchTree<T>;
19 private:
20 T data;
21 TreeNode<T> *leftLink;
22 TreeNode<T> *rightLink;
23 };

24 template<class T>
25 class SearchTree
26 {
27 public:
28 SearchTree() : root(NULL){}
29 virtual ~SearchTree();
30 void insert(T item);//Adds item to the tree.
31 bool inTree(T item) const;
32 void inorderShow() const;
33 private:
34 void insert(T item, TreeNode<T>*& subTreeRoot);
35 bool inTree(T item, TreeNode<T>* subTreeRoot) const;
36 void deleteSubtree(TreeNode<T>*& subTreeRoot);
37 void inorderShow(TreeNode<T>* subTreeRoot) const;
38 TreeNode<T> *root;
39 };

40 } //TreeSavitch

41 #endif

The SearchTree template class should have a copy
constructor, an overloading of the assignment operator,
and other member functions. However, we have omitted
these functions to keep this example short. A real template
class would contain more member functions and overloaded
operators.

www.itpub.net

 Display 17.37 Implementation File for a Tree Template Class (part 1 of 2)

 1 //This is the implementation file tree.cpp. This is the implementation
 2 //for the template class SearchTree. The interface is in the file tree.h .
 3 namespace TreeSavitch
 4 {
 5 template<class T>
 6 void SearchTree<T>::insert(T item, TreeNode<T>*& subTreeRoot)
 7 {
 8 if (subTreeRoot == NULL)
 9 subTreeRoot = new TreeNode<T>(item, NULL, NULL);
10 else if (item < subTreeRoot->data)
11 insert(item, subTreeRoot->leftLink);
12 else//item >= subTreeRoot->data
13 insert(item, subTreeRoot->rightLink);
14 }

15 template<class T>
16 void SearchTree<T>::insert(T item)
17 {
18 insert(item, root);
19 }

20 template<class T>
21 bool SearchTree<T>::inTree(T item, TreeNode<T>* subTreeRoot) const
22 {
23 if (subTreeRoot == NULL)
24 return false;
25 else if (subTreeRoot->data == item)
26 return true;
27 else if (item < subTreeRoot->data)
28 return inTree(item, subTreeRoot->leftLink);
29 else//item >= link->data
30 return inTree(item, subTreeRoot->rightLink);
31 }

32 template<class T>
33 bool SearchTree<T>::inTree(T item) const
34 {
35 return inTree(item, root);

(continued)

If all data is entered using the
function insert, the tree will
satisfy the Binary Search Tree
Storage Rule.

The function in Tree
uses a binary search
algorithm that is a
variant of the one given
in Display 13.5.

Trees 805

806 CHAPTER 17 Linked Data Structures

36 }
37 template<class T> //uses iostream:
38 void SearchTree<T>::inorderShow(TreeNode<T>* subTreeRoot) const
39 {
40 if (subTreeRoot != NULL)
41 {
42 inorderShow(subTreeRoot->leftLink);
43 cout << subTreeRoot->data << " ";
44 inorderShow(subTreeRoot->rightLink);
45 }
46 }

47 template<class T> //uses iostream:
48 void SearchTree<T>::inorderShow() const
49 {
50 inorderShow(root);
51 }

52 template<class T>
53 void SearchTree<T>::deleteSubtree(TreeNode<T>*& subTreeRoot)
54 {
55 if (subTreeRoot != NULL)
56 {
57 deleteSubtree(subTreeRoot->leftLink);

58 deleteSubtree(subTreeRoot->rightLink);

59 //subTreeRoot now points to a one node tree .
60 delete subTreeRoot;
61 subTreeRoot = NULL;
62 }
63 }

64 template<class T>
65 SearchTree<T>::~SearchTree()
66 {
67 deleteSubtree(root);
68 }
69 } //TreeSavitch

Display 17.37 Implementation File for a Tree Template Class (part 2 of 2)

Uses in-order traversal
of the tree.

Uses postorder
traversal of the tree.

www.itpub.net

 Display 17.38 Demonstration Program for the Tree Template Class

 1 //Demonstration program for the Tree template class .
 2 #include <iostream>
 3 #include "tree.h"
 4 #include "tree.cpp"
 5 using std::cout;
 6 using std::cin;
 7 using std::endl;
 8 using TreeSavitch::SearchTree;

 9 int main()
10 {
11 SearchTree< int> t;

12 cout << "Enter a list of nonnegative integers.\n"
13 << "Place a negative integer at the end.\n";
14 int next;
15 cin >> next;
16 while (next >= 0)
17 {
18 t.insert(next);
19 cin >> next;
20 }

21 cout << "In sorted order: \n";
22 t.inorderShow();
23 cout << endl;

24 return 0;
25 }

 Sample Dialogue

Enter a list of nonnegative integers.
Place a negative integer at the end.
40 30 20 10 11 22 33 44 -1
In sorted order:
10 11 20 22 30 33 40 44

Trees 807

808 CHAPTER 17 Linked Data Structures

 Finally, it is important to note that the insert function builds a tree that satisfies
the Binary Search Tree Storage Rule. Since insert is the only function available to
build trees for this template class, objects of this tree template class will always satisfy
the Binary Search Tree Storage Rule. The function inTree uses the fact that the tree
satisfies the Binary Search Tree Storage Rule in its algorithms. This makes searching
the tree very efficient. Of course this means that the < operator must be defined for
the type T of data stored in the tree. To make things work correctly, the operation <
should satisfy the following rules when applied to values of type T :

 ■ Transitivity: a < b and b < c implies a < c.

■ Antisymmetry: If a and b are not equal, then either a < b or b < a, but not both.

■ Irreflexive: You never have a < a.

 Most natural orders satisfy these rules. 2

EXAMPLE: (continued)

 Self-Test Exercise

25 . Defi ne the following member functions, which could be added to the class
SearchTree in Display 17.36 . These functions display the data encountered in
a pre- and postorder traversal of the tree, respectively. Defi ne a private helping
function for each function, as we did for SearchTree<T>::inorderShow .

void SearchTree<T>::preorderShow() const
void SearchTree<T>::postorderShow() const

 Chapter Summary

• A node is a struct or class object that has one or more member variables that
are pointer variables. These nodes can be connected by their member pointer
variables to produce data structures that can grow and shrink in size while your
 program is running.

• A linked list is a list of nodes in which each node contains a pointer to the next node
in the list.

• The end of a linked list (or other linked data structure) is indicated by setting the
pointer member variable equal to NULL .

2 Note that you normally have both a “less-than-or-equal” relation and a “less-than” relation. These
rules apply only to the “less-than” relation. You can actually make do with an even weaker notion of
ordering known as a strict weak ordering , which is defined in Chapter 19 , but that is more detail than
you need for normally encountered orderings.

www.itpub.net

• Nodes in a doubly linked list have two links—one to the previous node in the list and
one to the next node. This makes operations such as insertion and deletion slightly
easier.

• A stack is a first-in/last-out data structure. A queue is a first-in/first-out data structure.
Both can be implemented using a linked list.

• A hash table is a data structure that is used to store objects and retrieve them effi-
ciently. A hash function is used to map an object to a value that can then be used to
index the object.

• Linked lists can be used to implement sets, including common operations such as
union , intersection , and set membership.

• An iterator is a construct (typically an object of some iterator class) that allows you to
cycle through data items stored in a data structure.

• A tree is a data structure whose nodes have two (or more) member variables for
pointers to other nodes. If a tree satisfies the Binary Search Tree Storage Rule, then a
function can be designed to rapidly find data in the tree.

 Answers to Self-Test Exercises

 1. Sally
 Sally

 18

 18

 Note that (*head).name and head->name mean the same thing. Similarly,
(*head).number and head->number mean the same thing.

 2. The best answer is

 head->next = NULL;

 However, the following is also correct:

 (*head).next = NULL;

 3. head->item = "Wilbur's brother Orville";

 4. class NodeType
 {

 public:

 NodeType(){}

 NodeType(char theData, NodeType* theLink)

 : data(theData), link(theLink){}

 NodeType* getLink() const { return link; }

Answers to Self-Test Exercises 809

810 CHAPTER 2 Console Input and Output810 CHAPTER 17 Linked Data Structures

 char getData() const { return data; }

 void setData(char theData) { data = theData; }

 void setLink(NodeType* pointer) { link = pointer; }

 private :
 char data;

 NodeType *link;

 };

 typedef NodeType* PointerType;

 5. The value NULL is used to indicate an empty list.

 6. p1 = p1-> next;

 7. Pointer discard;
 discard = p2->next; //discard points to the node to be deleted .

 p2->next = discard->next;

 This is sufficient to delete the node from the linked list. However, if you are not
using this node for something else, you should destroy the node with a call to
delete as follows:

 delete discard;

 8. p1 = p1->getLink();

 9. Pointer discard;
 discard = p2->getLink(); //points to node to be deleted .

 p2->setLink(discard->getLink());

 This is sufficient to delete the node from the linked list. However, if you are not
using this node for something else, you should destroy the node with a call to
delete as follows:

 delete discard;

 10. a. Inserting a new item at a known location into a large linked list is more efficient
than inserting into a large array. If you are inserting into a list, you have about five
operations, most of which are pointer assignments, regardless of the list size. If you
insert into an array, on the average you have to move about half the array entries
to insert a data item.

 For small lists, the answer is c, about the same.

 11. void insert(DoublyLinkedIntNodePtr afterMe, int theData)
 {

 DoublyLinkedIntNode* newNode = new

 DoublyLinkedIntNode(theData, afterMe,

afterMe->getNextLink());

 afterMe->setNextLink(newNode);

 if (newNode->getNextLink() != NULL)

www.itpub.net

 {

 newNode->getNextLink()->setPreviousLink(newNode);

 }

 }

 12. Insertion and deletion are slightly easier with the doubly linked list because we no
longer need a separate variable to keep track of the previous node. Instead, we can
access this node through the previous link. However, all operations require updat-
ing more links (e.g., both the next and previous instead of just the previous).

 13. Note that this function is essentially the same as headInsert in Display 17.15 .

 template<class T>

 void Stack<T>::push(T stackFrame)

 {

 top = new Node<T>(stackFrame, top);

 }

 14. //Uses cstddef:
 template<class T>

 Stack<T>::Stack(const Stack<T>& aStack)

 {

 if (aStack.isEmpty())

 top = NULL;

 else

 {

 Node<T> *temp = aStack.top;//temp moves through

//the nodes from top to bottom of aStack .

 Node<T> *end;//Points to end of the new stack .

 end = new Node<T>(temp->getData(), NULL);

 top = end;

//First node created and filled with data .

//New nodes are now added AFTER this first node .

 temp = temp->getLink();//move temp to second node

 //or NULL if there is no second node .

 while (temp != NULL)

 {

 end->setLink(

 new Node<T>(temp->getData(), NULL));

 temp = temp->getLink();

 end = end->getLink();

 }

 //end->link == NULL;

 }

 }

Answers to Self-Test Exercises 811

812 CHAPTER 17 Linked Data Structures

 15. template<class T>
 Stack<T>& Stack<T>::operator =(const Stack<T>& rightSide)

 {

 if (top == rightSide.top) //if two stacks are the same

 return *this ;
 else //send left side back to freestore

 {

 T next;

 while (! isEmpty())

 next = pop(); //remove calls delete .

 }

 if (rightSide.isEmpty())

 {

 top = NULL;

 return *this ;
 }

 else

 {

 Node<T> *temp = rightSide.top; //temp moves through

 //the nodes from front top to bottom of rightSide .

 Node<T> *end; //Points to end of the left-side stack .

 end = new Node<T>(temp->getData(), NULL);

 top = end;;

 //First node created and filled with data .

 //New nodes are now added AFTER this first node .

 temp = temp->getLink();//Move temp to second node

 //or set to NULL if there is no second node .

 while (temp != NULL)

 {

 end->setLink(

 new Node<T>(temp->getData(), NULL));

 temp = temp->getLink();

 end = end->getLink();

 }

 //end->link == NULL;

 return *this ;
 }

 }

 16. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template<class T>

 Queue<T>::Queue() : front(NULL), back(NULL)

www.itpub.net

 {

 //Intentionally empty .

 }

 //Uses cstddef:

 template<class T>

 bool Queue<T>::isEmpty() const

 {

 return (back == NULL);//front == NULL would also work

 }

 17. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template<class T>

 void Queue<T>::add(T item)

 {
 if (isEmpty())

 front = back = new Node<T>(item, NULL);//Sets both

 //front and back to point to the only node

 else

 {

 back->setLink(new Node<T>(item, NULL));

 back = back->getLink();

 }
 }

 //Uses cstdlib and iostream:

 template<class T>
 T Queue<T>::remove()

 {

 if (isEmpty())
 {
 cout << “Error: Removing an item from an empty queue.\n”;
 exit(1);
 }

 T result = front->getData();

 Node<T> *discard;
 discard = front;
 front = front->getLink();

 if (front == NULL)//if you removed the last node

 back = NULL;

 delete discard;

 return result;

 }

Answers to Self-Test Exercises 813

814 CHAPTER 17 Linked Data Structures

 18. The following should be placed in the namespace QueueSavitch :

 template<class T>

 Queue<T>::~Queue()

 {

 T next;

 while (! isEmpty())

 next = remove();//remove calls delete .

 }

 19. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template<class T>

 Queue<T>::Queue(const Queue<T>& aQueue)

 {

 if (aQueue.isEmpty())

 front = back = NULL;

 else

 {

 Node<T> *temp = aQueue.front; //temp moves

 //through the nodes from front to back of aQueue.

 back = new Node<T>(temp->getData(), NULL);

 front = back;

 //First node created and filled with data .

 //New nodes are now added AFTER this first node .

 temp = temp->getLink();//temp now points to second

 //node or NULL if there is no second node .

 while (temp != NULL)

 {

 back->setLink(new Node<T>(temp->getData(), NULL));

 back = back->getLink();

 temp = temp->getLink();

 }

//back->link == NULL

 }

 }

 20. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template<class T>
 Queue<T>& Queue<T>:: operator =(const Queue<T>& rightSide)

www.itpub.net

 {

 if (front == rightSide.front)//if the queues are the same

 return *this ;
 else//send left side back to freestore

 {

 T next;

 while (! isEmpty())

 next = remove();//remove calls delete .

 }

 if (rightSide.isEmpty())

 {
 front = back = NULL;

 return *this;

 }

 else

 {

 Node<T> *temp = rightSide.front;//temp moves

 //through the nodes from front to back of rightSide .

 back = new Node<T>(temp->getData(), NULL);

 front = back;

 //First node created and filled with data .

 //New nodes are now added AFTER this first node .

 temp = temp->getLink();//temp now points to second

 //node or NULL if there is no second node .

 while (temp != NULL)

 {

 back->setLink(

 new Node<T>(temp->getData(), NULL));

 back = back->getLink();

 temp = temp->getLink();

 }

 //back->link == NULL;

 return *this ;
 }

 }

 21. The simplest hash function is to map the ID number to the range of the hash table
using the modulus operator:

 hash = ID % N; //N is the hash table size .

Answers to Self-Test Exercises 815

816 CHAPTER 2 Console Input and Output816 CHAPTER 17 Linked Data Structures

 22. void HashTable::outputHashTable()
 {

 for (int i=0; i<SIZE; i++)

 {

 Node<string> *next = hashArray[i];

 cout << "In slot " << i << endl;

 cout << " ";

 while (next != NULL)

 {

 cout << next->getData() << " ";

 next = next->getLink();

 }

 }

 cout << endl;

 }

 23. This code is similar to intersection, but adds elements if they are not in
otherSet:

 template<class T>

 Set<T>* Set<T>::setDifference(const Set<T>& otherSet)

 {

 Set<T> *diffSet = new Set<T>();

 Node<T>* iterator = head;

 while (iterator != NULL)

 {

 if (!otherSet.contains(iterator->getData()))

 {

 diffSet->add(iterator->getData());

 }

 iterator = iterator->getLink();

 }

 return diffSet;

 }

 24. using namespace ListNodeSavitch;
 using namespace QueueSavitch;

 template<class T>

 bool inQ(Queue<T> q, T target)

 {

 Queue<T>::Iterator i;

 i = q.begin();

 while ((i != q.end()) && (*i != target))

 i++;

 return (i != q.end());

 }

www.itpub.net

 Note that the following return statement does not work, since it can cause a
dereferencing of NULL , which is illegal. The error would be a run-time error, not a
compiler error.

 return (*i == target);

 25. The template class SearchTree needs function declarations added. These are just
the definitions.

 template<class T>//uses iostream:

 void SearchTree<T>::preorderShow() const

 {

 preorderShow(root);

 }

 template<class T>//uses iostream:

 void SearchTree<T>::preorderShow(

 TreeNode<T>* subTreeRoot) const

 {

 if (subTreeRoot != NULL)

 {

 cout << subTreeRoot->data << " ";

 preorderShow(subTreeRoot->leftLink);

 preorderShow(subTreeRoot->rightLink);

 }

 }

 template<class T>//uses iostream:

 void SearchTree<T>::postorderShow() const

 {

 postorderShow(root);

 }

 template<class T>//uses iostream:

 void SearchTree<T>::postorderShow(

 TreeNode<T>* subTreeRoot) const

 {

 if (subTreeRoot != NULL)

 {

 postorderShow(subTreeRoot->leftLink);

 postorderShow(subTreeRoot->rightLink);

 cout << subTreeRoot->data << " ";

 }

 }

Answers to Self-Test Exercises 817

818 CHAPTER 17 Linked Data Structures

 Programming Projects

Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a void function that takes a linked list of integers and reverses the order of its
nodes. The function will have one call-by-reference parameter that is a pointer to
the head of the list. After the function is called, this pointer will point to the head
of a linked list that has the same nodes as the original list but in the reverse of the
order they had in the original list. Note that your function will neither create nor
destroy any nodes. It will simply rearrange nodes. Place your function in a suitable
test program.

 2. Write a function called mergeLists that takes two call-by-reference arguments
that are pointer variables that point to the heads of linked lists of values of type
int . The two linked lists are assumed to be sorted so that the number at the head is
the smallest number, the number in the next node is the next smallest, and so forth.
The function returns a pointer to the head of a new linked list that contains all the
nodes in the original two lists. The nodes in this longer list are also sorted from
smallest to largest values. Note that your function will neither create nor destroy
any nodes. When the function call ends, the two pointer variable arguments should
have the value NULL .

 3. Design and implement a class that is a class for polynomials. The polynomial

 an x n + a n-1 x n-1 +...+a0

 will be implemented as a linked list. Each node will contain an int value for the
power of x and an int value for the corresponding coefficient. The class operations
should include addition, subtraction, multiplication, and evaluation of a polyno-
mial. Overload the operators + , -, and * for addition, subtraction, and multiplica-
tion. Evaluation of a polynomial is implemented as a member function with one
argument of type int . The evaluation member function returns the value obtained
by plugging in its argument for x and performing the indicated operations.

 Include four constructors: a default constructor, a copy constructor, a constructor
with a single argument of type int that produces the polynomial that has only one
constant term that is equal to the constructor argument, and a constructor with two
arguments of type int that produces the one-term polynomial whose coefficient
and exponent are given by the two arguments. (In the previous notation, the poly-
nomial produced by the one-argument constructor is of the simple form consisting
of only a0. The polynomial produced by the two-argument constructor is of the
slightly more complicated form anx

n.) Include a suitable destructor. Include member
functions to input and output polynomials.

 When the user inputs a polynomial, the user types in the following:

 a nx^n + a n-1x^n-1+...+a0

www.itpub.net

www.myprogramminglab.com

 However, if a coefficient ai is 0, the user may omit the term aix^ i. For example,
the polynomial

 3x4 + 7x2 + 5

 can be input as

 3x ̂4 + 7x ̂2 + 5

 It could also be input as

 3x ̂4 + 0x ̂3 + 7x ̂2 + 0x ̂1 + 5

 If a coefficient is negative, a minus sign is used in place of a plus sign, as in the
following examples:

 3x ̂5 - 7x ̂3 + 2x ̂1 - 8

 -7x ̂4 + 5x ̂2 + 9

 A minus sign at the front of the polynomial, as in the second of the previous
two examples, applies only to the first coefficient; it does not negate the entire
polynomial. Polynomials are output in the same format. In the case of output,
the terms with 0 coefficients are not output. To simplify input, you can assume
that polynomials are always entered one per line and that there will always be a
constant term a0. If there is no constant term, the user enters 0 for the constant
term, as in the following:

 12x ̂8 + 3x ̂2 + 0

 4. a. The annotation in Display 17.36 says that a real SearchTree template class should
have a copy constructor, an overloaded assignment operator, other overloaded
operators, and other member functions. Obtain the code for Display 17.36
and add declarations for the following functions and overloaded operators:
the default constructor, copy constructor, delete , overloaded operator, =,
makeEmpty , height, size , preOrderTraversal , inOrderTraversal ,
and postOrderTraversal . The functions preOrderTraversal , inOrder-
Traversal , and postOrderTraversal each call a global function process to
process the nodes as they are encountered. The function process is a friend
of the SearchTree class. For this exercise, it is only a stub.

 Supply preconditions and postconditions for these functions describing what
each function should do.

 The function height has no parameters and returns the height of the tree. The
height of the tree is the maximum of the heights of all the nodes. The height
of a node is the number of links between it and the root node.

 The function size has no parameters and returns the number of nodes in
the tree.

 The function makeEmpty removes all the nodes from the tree and returns the
memory used by the nodes for reuse. The makeEmpty function leaves the root
pointer with the value NULL .

Programming Projects 819

820 CHAPTER 17 Linked Data Structures

 b. Implement the member and friend functions and overloaded operators. Note
that some of the functions listed here are already implemented in the text.
You should make full use of the text’s code. You should test your package
 thoroughly.

 c. Design and implement an iterator class for the tree class. You will need to
 decide what a begin and end element means for your searchTree , and what
will be the next element the ++ operator will point to.

 Hint 1: You might maintain a private size variable that is increased by insertion
and decreased by deletion, and whose value is returned by the size function.
An alternative (use this if you know calls to size will be quite infrequent) is
to calculate the size when you need it by traversing the tree. Similar tech-
niques, though with more sophisticated details, can be used to implement the
height function.

 Hint 2: Do these a few members at a time. Compile and test after doing each
group of a few members. You will be glad you did it this way.

 Hint 3: Before you write the operator, =, and copy constructor, note that their
jobs have a common task—duplicating another tree. Write a copyTree function
that abstracts out the common task of the copy constructor and operator, =.
Then write these two important functions using the common code.

 Hint 4: The function makeEmpty and the destructor have a common tree
 destruction task.

 5. In an ancient land, the beautiful princess Eve had many suitors. She decided on
the following procedure to determine which suitor she would marry. First, all of
the suitors would be lined up one after the other and assigned numbers. The first
suitor would be number 1, the second number 2, and so on up to the last suitor,
number n. Starting at the first suitor, she would then count three suitors down
the line (because of the three letters in her name) and the third suitor would be
eliminated from winning her hand and removed from the line. Eve would then
continue, counting three more suitors, and eliminating every third suitor. When
she reached the end of the line, she would continue counting from the beginning.

 For example, if there were six suitors, then the elimination process would proceed
as follows:

 123456 Initial list of suitors, start counting from 1

 12456 Suitor 3 eliminated, continue counting from 4

 1245 Suitor 6 eliminated, continue counting from 1

 125 Suitor 4 eliminated, continue counting from 5

 15 Suitor 2 eliminated, continue counting from 5

 1 Suitor 5 eliminated, 1 is the lucky winner

Solution to
Programming
Project 17.5

VideoNote

www.itpub.net

 Write a program that creates a circular linked list of nodes to determine which
 position you should stand in to marry the princess if there are n suitors. Your
program should simulate the elimination process by deleting the node that corre-
sponds to the suitor that is eliminated for each step in the process. Be careful that
you do not leave any memory leaks.

 6. Modify the Queue Template class given in Section 17.2 so that it implements
a priority queue . A priority queue is similar to a regular queue except that each
item added to the queue also has an associated priority. For this problem, make the
priority an integer where 0 is the highest priority and larger values are increasingly
lower in priority.

 The remove function should return and remove the item that has the highest
 priority. For example,

 q.add('X', 10);

 q.add('Y', 1);

 q.add('Z', 3);

 cout << q.remove(); //Returns Y

 cout << q.remove(); //Returns Z

 cout << q.remove(); //Returns X

 Test your queue on data with priorities in various orders (e.g., ascending, descend-
ing, mixed). You can implement the priority queue by performing a linear search
in the remove() function. In future courses, you may study a data structure called
a heap that affords a more efficient way to implement a priority queue.

 7. Add a remove function, a cardinality function, and an iterator for the Set class
given in Displays 17.28 and 17.29 . Write a suitable test program.

 8. The hash table from Displays 17.24 and 17.25 hashed a string to an integer and
stored the same string in the hash table. Modify the program so that instead of stor-
ing strings it stores Employee objects. Define the Employee class so that it contains
private string member variables for the combined first and last name, job title, and
phone number. Include functions to get and set these member variables. Use the
employee name as the input to the hash function. The modification will require
changes to the linked list, since the LinkedList2 class created only linked lists of
strings. For the most generality, modify the hash table so that it uses generic types.
You will also need to add a get function to the HashTable class that returns the
Employee object stored in the hash table that corresponds to the input name. The
Employee class may require defining the == and ! = operators. Test your program
by adding and retrieving several names, including names that hash to the same slot
in the hash table.

 9. Displays 17.24 through 17.26 provide the beginnings of a spell-checker. Refine the
program to make it more useful. The modified program should read in a text file,
parse each word, and determine whether each word is in the hash table and if not

Programming Projects 821

822 CHAPTER 2 Console Input and Output822 CHAPTER 17 Linked Data Structures

output the line number and word of the potentially misspelled word. Discard any
punctuation in the original text file. Use the words.txt file, which can be found
 on the website accompanying the textbook and on the book’s Web site, as the
basis for the hash table dictionary. The file contains 45,407 common words and
names in the English language. Note that some words are capitalized. Test your
spell-checker on a short text document.

 10. Change the Set<T> class of Displays 17.28 and 17.29 so that internally it uses
a hash table to store its data instead of a linked list. The headers of the public
functions should remain the same so that a program such as the demonstration in
 Display 17.30 will work without any changes. Add a constructor that allows the
user of the new Set<T> class to specify the size of the hash table array.

 The class for type T must override the << operator. To convert the return value of
<< to a string, do the following:

 # include <sstream>

 ...

 stringstream temp;

 temp << instance of Class;

 string s = temp.str();

 For an additional challenge, implement the set using both a hash table and a
linked list. Items added to the set should be stored using both data structures. Any
 operation requiring lookup of an item should use the hash table, and any operation
requiring iteration through the items should use the linked list.

 11. The following figure is called a graph. The circles are called nodes and the lines are
called edges. An edge connects two nodes. You can interpret the graph as a maze of
rooms and passages. The nodes can be thought of as rooms and an edge connects one
room to another. Note that each node has at most four edges in the following graph.

Start
North

Finish

D

F G H

I J K L

CBA

E

Solution to
Programming
Project 17.11

VideoNote

www.itpub.net

 Write a program that implements the previous maze using references to instances
of a Node class. Each node in the graph will correspond to an instance of Node . The
edges correspond to links that connect one node to another and can be represented
in Node as instance variables that reference another Node class. Start the user in
node A. The user’s goal is to reach the finish in node L. The program should out-
put possible moves in the north, south, east, or west direction. Sample execution
is shown next.

 You are in room A of a maze of twisty little passages, all alike.

 You can go east or south.

 E

 You are in room B of a maze of twisty little passages, all alike.

 You can go west or south.

 S

 You are in room F of a maze of twisty little passages, all alike.

You can go north or east.

 E

 12. First, complete Programming Project 17.11 . Then, write a recursive algorithm that
finds a path from node A to node L. Your algorithm should work with any pair of
start and finish nodes, not just nodes A and L. Your algorithm should also work if
there are loops such as a connection between nodes E and F.

Programming Projects 823

This page intentionally left blank

www.itpub.net

 18.2 PROGRAMMING TECHNIQUES
FOR EXCEPTION HANDLING 846

 When to Throw an Exception 847
 Pitfall: Uncaught Exceptions 848
 Pitfall: Nested try-catch Blocks 849
 Pitfall: Overuse of Exceptions 849
 Exception Class Hierarchies 850
 Testing for Available Memory 850
 Rethrowing an Exception 851

 18.1 EXCEPTION HANDLING BASICS 827
 A Toy Example of Exception Handling 827
 Defining Your Own Exception Classes 836
 Multiple Throws and Catches 836
 Pitfall: Catch the More Specific Exception First 840
 Tip: Exception Classes Can Be Trivial 841
 Throwing an Exception in a Function 841
 Exception Specification 843
 Pitfall: Exception Specification in Derived

Classes 845

 18 Exception Handling

Chapter Summary 851 Answers to Self-Test Exercises 851 Programming Projects 853

 It's the exception that proves the rule.

 Common maxim

 Introduction
 One way to write a program is to first assume that nothing unusual or incorrect will
happen. For example, if the program takes an entry off a list, you might assume that
the list is not empty. Once you have the program working for the core situation where
things always go as planned, you can then add code to take care of the exceptional cases.
C++ has a way to reflect this approach in your code. Basically, you write your code as if
nothing very unusual happens. After that, you use the C++ exception handling facilities
to add code for those unusual cases.

 Exception handling is commonly used to handle error situations, but perhaps a
better way to view exceptions is as a way to handle exceptional situations. After all, if
your code correctly handles an “error,” then it no longer is an error.

 Perhaps the most important use of exceptions is to deal with functions that have
some special case that is handled differently depending on how the function is used.
Perhaps the function will be used in many programs, some of which will handle the
special case in one way, while others will handle it in some other way. For example, if
there is a division by zero in the function, then it may turn out that for some invocations
of the function the program should end, but for other invocations something else
should happen. You will see that such a function can be defined to throw an exception
if the special case occurs; that exception will allow the special case to be handled outside
the function. Thus, the special case can be handled differently for different invocations
of the function.

 In C++, exception handling proceeds as follows: Either some library software, or
your code, provides a mechanism that signals when something unusual happens. This
is called throwing an exception . You place the code that deals with the exceptional case
at another place in your program. This is called handling the exception . This method of
programming makes for cleaner code. Of course, we still need to explain the details of
how you do this in C++.

 Most of this chapter uses only material from Chapters 1 through 9 . However,
the sections “Exception Specification in Derived Classes” and “Exception Class
Hierarchies” use material from Chapter 14 . The section “Testing for Available
Memory” uses material from Chapter 17 . Any or all of these listed sections may
be omitted without hurting the continuity of the chapter. The section “Exception
Specification” has one paragraph that refers to derived classes (Chapter 14) , but that
paragraph may be omitted.

18 Exception Handling

www.itpub.net

Exception Handling Basics 827

 18.1 Exception Handling Basics

 Well, the program works for most cases. I didn’t know it had to work for
that case.

 Computer Science Student, Appealing a grade

 Exception handling is meant to be used sparingly and in situations that are more
involved than what is reasonable to include in a simple introductory example. So, we
will teach you the exception handling details of C++ by means of simple examples that
would not normally use exception handling. This makes a lot of sense for learning about
the exception handling details of C++, but do not forget that these first examples are toy
examples; in practice, you would not use exception handling for anything that simple.

 A Toy Example of Exception Handling

 For this example, suppose that milk is such an important food in our culture that
people almost never run out of it, but still we would like our programs to accommodate
the very unlikely situation of this happening. The basic code, which assumes we do not
run out of milk, might be as follows:

cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
dpg = donuts / static_cast<double>(milk);
cout << donuts << " donuts.\n"
 << milk << " glasses of milk.\n"
 << "You have " << dpg
 << " donuts for each glass of milk.\n";

 If there is no milk, then this code will include a division by zero, which is an error.
To take care of this special situation where we run out of milk, we can add a test. The
complete program with this added test for the special situation is shown in Display 18.1 .
The program in Display 18.1 does not use exception handling. Now, let us see how this
program can be rewritten using the C++ exception handling facilities.

 In Display 18.2 , we have rewritten the program from Display 18.1 using an
exception. This is only a toy example, and you would probably not use an exception
in this case. However, it does give us a simple example to work with. Although the
program as a whole is not simpler, at least the part between the words try and catch is
cleaner, which hints at the advantage of using exceptions. Look at the code between the
words try and catch . It is basically the same as the code in Display 18.1 , except that

828 CHAPTER 18 Exception Handling

Display 18.1 Handling a Special Case without Exception Handling

 1 #include <iostream>
 2 using std::cin;
 3 using std::cout;

 4 int main()
 5 {
 6 int donuts, milk;
 7 double dpg;
 8 cout << "Enter number of donuts:\n";
 9 cin >> donuts;
10 cout << "Enter number of glasses of milk:\n";
11 cin >> milk;

12 if (milk <= 0)
13 {
14 cout << donuts << " donuts, and No Milk!\n"
15 << "Go buy some milk.\n";
16 }
17 else
18 {
19 dpg = donuts / static_cast<double>(milk);
20 cout << donuts << " donuts.\n"
21 << milk << " glasses of milk.\n"
22 << "You have " << dpg

23 << " donuts for each glass of milk.\n";
24 }

25 cout << "End of program.\n";
26 return 0;
27 }

Sample Dialogue

Enter number of donuts:

12

Enter number of glasses of milk:

0

12 donuts, and No Milk!

Go buy some milk.

End of program.

www.itpub.net

Exception Handling Basics 829

 Display 18.2 Same Thing Using Exception Handling (part 1 of 2)

1
2 #include <iostream>
3 using std::cin;
4 using std::cout;

5 int main()
6 {
7 int donuts, milk;
8 double dpg;

9 try
10 {
11 cout << "Enter number of donuts:\n";
12 cin >> donuts;
13 cout << "Enter number of glasses of milk:\n";
14 cin >> milk;
15
16 if (milk <= 0)
17 throw donuts;

18 dpg = donuts / static_cast<double>(milk);
19 cout << donuts << " donuts.\n"
20 << milk << " glasses of milk.\n"
21 << "You have " << dpg
22 << " donuts for each glass of milk.\n";
23 }
24 catch(int e)
25 {
26 cout << e << " donuts, and No Milk!\n"
27 << "Go buy some milk.\n";
28 }

29 cout << "End of program.\n";
30 return 0;
31 }

This is just a toy example to learn C++
syntax. Do not take it as an example of good
typical use of exception handling.

(continued)

830 CHAPTER 18 Exception Handling

rather than the big if-else statement (highlighted in Display 18.1), this new program
has the following smaller if statement (plus some simple nonbranching statements):

if (milk <= 0)
throw donuts;

 This if statement says that if there is no milk, then do something exceptional.
That something exceptional is given after the word catch . The idea is that the normal
situation is handled by the code following the word try , and that exceptional situations
are handled by the code following the word catch . Thus, we have separated the normal
case from the exceptional case. In this toy example, that does not really buy us too much,
but in other situations it will prove to be very helpful. Let us look at the details.

 The basic way of handling exceptions in C++ consists of the try-throw-catch
threesome. A try block has the following syntax:

try
{

Some_Code
}

 This try block contains the code for the basic algorithm that tells what to do when
everything goes smoothly. It is called a try block because you are not 100% sure that
all will go without a hitch, but you want to “give it a try.”

 Sample Dialogue 1

Enter number of donuts:

12

Enter number of glasses of milk:

6

12 donuts.

6 glasses of milk.

You have 2 donuts for each glass of milk.

End of program.

 Sample Dialogue 2

Enter number of donuts:

12

Enter number of glasses of milk:

0

12 donuts, and No Milk!

Go buy some milk.

End of program.

Display 18.2 Same Thing Using Exception Handling (part 2 of 2)

try block

www.itpub.net

Exception Handling Basics 831

 If something unusual does happen, the way to indicate this is to throw an exception.
So the basic outline, when we add a throw , is as follows:

try
{
 Code_To_Try
 Possibly_Throw_An_Exception
 More_Code
}

 The following is an example of a try block with a throw statement included
(copied from Display 18.2):

try
{
 cout << "Enter number of donuts:\n";
 cin >> donuts;
 cout << "Enter number of glasses of milk:\n";
 cin >> milk;

if (milk <= 0)
throw donuts;

 dpg = donuts / static_cast<double>(milk);
 cout << donuts << " donuts.\n"
 << milk << " glasses of milk.\n"
 << "You have " << dpg
 << " donuts for each glass of milk.\n";
}

 The following statement throws the int value donuts :

throw donuts;

 The value thrown (in this case, donuts) is sometimes called an exception ; the execution
of a throw statement is called throwing an exception . You can throw a value of any
type. In this case, an int value is thrown.

throw
statement

exception

throwing an
exception

 throw Statement
 SYNTAX

throw Expression_for_Value_to_Be_Thrown;

When the throw statement is executed, the execution of the enclosing try block is
stopped. If the try block is followed by a suitable catch block, then flow of control is
transferred to the catch block. A throw statement is almost always embedded in a
branching statement, such as an if statement. The value thrown can be of any type.

 EXAMPLE

if (milk <= 0)
throw donuts;

832 CHAPTER 18 Exception Handling

 When something is “thrown,” something goes from one place to another place. In
C++, what goes from one place to another is the flow of control (as well as the value
thrown). When an exception is thrown, the code in the surrounding try block stops
executing and another portion of code, known as a catch block , begins execution.
Executing the catch block is called catching the exception or handling the exception .
When an exception is thrown, it should ultimately be handled by (caught by) some
catch block. In Display 18.2 , the appropriate catch block immediately follows the try
block. We repeat the catch block in what follows:

catch (int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

 This catch block looks very much like a function definition that has a parameter
of type int . It is not a function definition, but in some ways a catch block is like a
function. It is a separate piece of code that is executed when your program encounters
(and executes) the following (within the preceding try block):

throw Some_int;

 So, this throw statement is similar to a function call, but instead of calling a
function, it calls the catch block and says to execute the code in the catch block.
 A catch block is often referred to as an exception handler , which is a term that
suggests that a catch block has a function-like nature.

 What is that identifier e in the following line from a catch block?

catch(int e)

 That identifier e looks like a parameter and acts very much like a parameter. In fact, the
identifier, such as e , in the catch- block heading is called the catch-block parameter .
Each catch block can have at most one catch- block parameter. The catch- block
parameter does two things:

 1. The catch- block parameter is preceded by a type name that specifi es what kind of
thrown value the catch block can catch.

 2. The catch -block parameter gives you a name for the thrown value that is caught,
so you can write code in the catch block that does things with that value.

 We will discuss these two functions of the catch- block parameter in reverse order.
This subsection discusses using the catch- block parameter as a name for the value that
was thrown and is caught. The subsection entitled “Multiple Throws and Catches,”
later in this chapter, discusses which catch block (which exception handler) will
process a value that is thrown. Our current example has only one catch block.
 A common name for a catch -block parameter is e , but you can use any legal identifier
in place of e .

 Let us see how the catch block in Display 18.2 works. When a value is thrown,
execution of the code in the try block ends and control passes to the catch block (or

catch block

handling the
exception

exception
handler

catch-block
parameter

www.itpub.net

Exception Handling Basics 833

blocks) that is placed right after the try block. The catch block from Display 18.2 is
reproduced here:

catch(int e)
{

cout << e << " donuts, and No Milk!\n"
<< "Go buy some milk.\n";

}

 When a value is thrown, the thrown value must be of type int in order for this particular
catch block to apply. In Display 18.2 , the value thrown is given by the variable donuts ;
because donuts is of type int , this catch block can catch the value thrown.

 Suppose the value of donuts is 12 and the value of milk is 0 , as in the second
sample dialogue in Display 18.2 . Since the value of milk is not positive, the throw
statement within the if statement is executed. In that case, the value of the variable
donuts is thrown. When the catch block in Display 18.2 catches the value of donuts ,
the value of donuts is plugged in for the catch- block parameter e and the code in the
catch block is executed, producing the following output:

12 donuts, and No Milk!
Go buy some milk.

 If the value of donuts is positive, the throw statement is not executed. In this case,
the entire try block is executed. After the last statement in the try block is executed,
the statement after the catch block is executed. Note that if no exception is thrown, the
catch block is ignored.

 This discussion makes it sound like a try-throw-catch setup is equivalent to an
if-else statement. It almost is equivalent, except for the value thrown. A try-throw-
catch setup is like an if-else statement with the added ability to send a message to one
of the branches . This does not sound much different from an if-else statement, but it
turns out to be a big difference in practice.

 To summarize in a more formal tone, a try block contains some code that we are
assuming includes a throw statement. The throw statement is normally executed
only in exceptional circumstances, but when it is executed, it throws a value of
some type. When an exception (a value such as donuts in Display 18.2) is thrown,
the try block ends. All the rest of the code in the try block is ignored and control
passes to a suitable catch block. A catch block applies only to an immediately
preceding try block. If the exception is thrown, then that exception object is
plugged in for the catch- block parameter, and the statements in the catch block
are executed. For example, if you look at the dialogues in Display 18.2 , you will see
that as soon as the user enters a nonpositive number, the try block stops and the
catch block is executed. For now, we will assume that every try block is followed
by an appropriate catch block. We will later discuss what happens when there is no
appropriate catch block.

834 CHAPTER 18 Exception Handling

 If no exception (no value) is thrown in the try block, then after the try block is
completed, program execution continues with the code after the catch block. In other
words, if no exception is thrown, the catch block is ignored. Most of the time when
the program is executed, the throw statement will not be executed, and so in most
cases the code in the try block will run to completion and the code in the catch block
will be ignored completely.

 catch -Block Parameter

The catch-block parameter is an identifier in the heading of a catch block that serves
as a placeholder for an exception (a value) that might be thrown. When a suitable value is
thrown in the preceding try block, that value is plugged in for the catch-block parameter.
(In order for the catch block to be executed, the value thrown must be of the type given
for its catch-block parameter.) You can use any legal (nonreserved word) identifier for a
catch-block parameter.

 EXAMPLE

catch(int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

e is the catch-block parameter.

try-throw-catch

The basic mechanism for throwing and catching exceptions is a try-throw-catch
sequence. The throw statement throws the exception (a value). The catch block catches
the exception (the value). When an exception is thrown, the try block ends and then the
code in the catch block is executed. After the catch block is completed, the code after the
catch block or blocks is executed (provided the catch block has not ended the program or
performed some other special action).

(The type of the thrown exception must match the type listed for the catch-block
parameter or else the exception will not be caught by that catch block. This point is
discussed further in the subsection “Multiple Throws and Catches.”)

If no exception is thrown in the try block, then after the try block is completed, program
execution continues with the code after the catch block or blocks. (In other words, if no
exception is thrown, the catch block or blocks are ignored.)

www.itpub.net

Exception Handling Basics 835

 SYNTAX

try
{

Some_Statements
<Either some code with a throw statement or

a function invocation that might throw an exception>
Some_More_Statements

}
catch(Type e)
{

<Code to be performed if a value of the
catch-block parameter type is thrown in the try block>

}

 EXAMPLE

See Display 18.2 for an example.

 Self-Test Exercises

 1. What output is produced by the following code?

int waitTime = 46;

try
{
 cout << "Try block entered.\n";

if (waitTime > 30)
throw waitTime;

 cout << "Leaving try block.\n";
}

catch(int thrownValue)
{
 cout << "Exception thrown with\n"
 << "waitTime equal to " << thrownValue << endl;
}
cout << "After catch block" << endl;

 2. What would be the output produced by the code in Self-Test Exercise 1 if we
made the following change? Change the line

int waitTime = 46;

 to

int waitTime = 12;

(continued)

836 CHAPTER 18 Exception Handling

Self-Test Exercises (continued)

 3. In the code given in Self-Test Exercise 1 , what is the throw statement?

 4. What happens when a throw statement is executed? (Tell what happens in
general, not simply what happens in the code in Self-Test Exercise 1 or some
other sample code.)

 5. In the code given in Self-Test Exercise 1 , what is the try block?

 6. In the code given in Self-Test Exercise 1 , what is the catch block?

 7. In the code given in Self-Test Exercise 1 , what is the catch- block parameter?

 Defining Your Own Exception Classes

 A throw statement can throw a value of any type. It is common to define a class whose
objects can carry the precise kinds of information you want thrown to the catch block.
An even more important reason for defining a specialized exception class is so that you
can have a different type to identify each possible kind of exceptional situation.

 An exception class is just a class. What makes it an exception class is how it is used.
Still, it pays to take some care in choosing an exception class’s name and other details.

 Display 18.3 contains an example of a program with a programmer-defined
exception class. This is just a toy program to illustrate some C++ details about
exception handling. It uses much too much machinery for such a simple task, but it is
an otherwise uncluttered example of some C++ details.

 Notice the throw statement, reproduced in what follows:

throw NoMilk(donuts);

 The part NoMilk(donuts) is an invocation of a constructor for the class NoMilk . The
constructor takes one int argument (in this case, donuts) and creates an object of the
class NoMilk . That object is then thrown.

 Multiple Throws and Catches

 A try block can potentially throw any number of exception values, which can be of
differing types. In any one execution of the try block, at most one exception will be
thrown (since a throw statement ends the execution of the try block), but different
types of exception values can be thrown on different occasions when the try block
is executed. Each catch block can only catch values of one type, but you can catch
exception values of differing types by placing more than one catch block after a
try block. For example, the program in Display 18.4 has two catch blocks after its
try block.

www.itpub.net

Exception Handling Basics 837

 Display 18.3 Defi ning Your Own Exception Class

1 #include <iostream>
2 using std::cin;
3 using std::cout;

4 class NoMilk
5 {
6 public:
7 NoMilk() {}
8 NoMilk(int howMany) : count(howMany) {}
9 int getCount() const { return count; }
10 private:
11 int count;
12 };

13 int main()
14 {
15 int donuts, milk;
16 double dpg;
17 try
18 {
19 cout << "Enter number of donuts:\n";
20 cin >> donuts;
21 cout << "Enter number of glasses of milk:\n";
22 cin >> milk;

23 if (milk <= 0)
24 throw NoMilk(donuts);

25 dpg = donuts / static_cast<double>(milk);
26 cout << donuts << " donuts.\n"
27 << milk << " glasses of milk.\n"
28 << "You have " << dpg
29 << " donuts for each glass of milk.\n";
30 }
31 catch(NoMilk e)
32 {
33 cout << e.getCount() << " donuts, and No Milk!\n"
34 << "Go buy some milk.\n";
35 }
36 cout << "End of program.\n";
37 return 0;
38 }

This is just a toy example to learn
C++ syntax. Do not take it as an
example of good typical use of
exception handling.

The sample dialogues are
the same as in Display 18.2.

838 CHAPTER 18 Exception Handling

 Display 18.4 Catching Multiple Exceptions (part 1 of 2)

1 #include <iostream>
2 #include <string>
3 using std::cin;
4 using std::cout;
5 using std::endl;
6 using std::string;

7 class NegativeNumber
8 {
9 public:
10 NegativeNumber(){}
11 NegativeNumber(string theMessage): message(theMessage) {}
12 string getMessage() const { return message; }
13 private:
14 string message;
15 };

16 class DivideByZero
17 {};

18 int main()
19 {
20 int pencils, erasers;
21 double ppe; //pencils per eraser

22 try
23 {
24 cout << "How many pencils do you have?\n";
25 cin >> pencils;
26 if (pencils < 0)
27 throw NegativeNumber("pencils");
28 cout << "How many erasers do you have?\n";
29 cin >> erasers;
30 if (erasers < 0)
31 throw NegativeNumber("erasers");

32 if (erasers != 0)
33 ppe = pencils / static_cast<double>(erasers);
34 else
35 throw DivideByZero();
36 cout << "Each eraser must last through "
37 << ppe << " pencils.\n";
38 }

Exception classes can have their own interface and
implementation files and can be put in a namespace.
This is another toy example.

www.itpub.net

Exception Handling Basics 839

39 catch(NegativeNumber e)
40 {
41 cout << "Cannot have a negative number of "
42 << e.getMessage() << endl;
43 }
44 catch(DivideByZero)
45 {
46 cout << "Do not make any mistakes.\n";
47 }

48 cout << "End of program.\n";
49 return 0;
50 }

 Sample Dialogue 1

How many pencils do you have?

5

How many erasers do you have?

2

Each eraser must last through 2.5 pencils

End of program.

 Sample Dialogue 2

How many pencils do you have?

-2

Cannot have a negative number of pencils

End of program.

 Sample Dialogue 3

How many pencils do you have?

5

How many erasers do you have?

0

Do not make any mistakes.

End of program.

Display 18.4 Catching Multiple Exceptions (part 2 of 2)

If the catch-block
parameter is not used,
you need not give it in the
heading.

 Note that there is no parameter in the catch block for DivideByZero . If you do not
need a parameter, you can simply list the type with no parameter. This is discussed a
bit more in the Programming Tip section entitled “Exception Classes Can Be Trivial.”

840 CHAPTER 18 Exception Handling

 PITFALL: Catch the More Specific Exception First

 When catching multiple exceptions, the order of the catch blocks can be important.
When an exception value is thrown in a try block, the catch blocks that follow it are
tried in order, and the first one that matches the type of the exception thrown is the
one that is executed.

 For example, the following is a special kind of catch block that will catch a thrown
value of any type:

catch (...)
{
 <Place whatever you want in here.>
}

 The three dots do not stand for something omitted. You actually type in those three
dots in your program. This makes a good default catch block to place after all other
catch blocks. For example, we could add it to the catch blocks in Display 18.4 as
follows:

catch(NegativeNumber e)
{
 cout << "Cannot have a negative number of "
 << e.getMessage() << endl;
}
catch(DivideByZero)
{
 cout << "Do not make any mistakes.\n";
}
catch (...)
{
 cout << "Unexplained exception.\n";
}

 However, it only makes sense to place this default catch block at the end of a list of
catch blocks. For example, suppose we instead used

catch(NegativeNumber e)
{
 cout << "Cannot have a negative number of "
 << e.getMessage() << endl;
}
catch (...)
{
 cout << "Unexplained exception.\n";
}
catch(DivideByZero)
{
 cout << "Do not make any mistakes.\n";
}

catch (...)

www.itpub.net

Exception Handling Basics 841

PITFALL: (continued)

 With this second ordering, an exception (a thrown value) of type NegativeNumber
will be caught by the NegativeNumber catch block as it should be. However, if
a value of type DivideByZero were thrown, it would be caught by the block that
starts catch(...) . So, the DivideByZero catch block could never be reached.
Fortunately, most compilers will tell you if you make this sort of mistake. ■

 TIP: Exception Classes Can Be Trivial

 In the following, we have reproduced the definition of the exception class DivideByZero
from Display 18.4 :

class DivideByZero
{};

 This exception class has no member variables and no member functions (other than
the default constructor). It has nothing but its name, but that is useful enough.
Throwing an object of the class DivideByZero can activate the appropriate catch
block, as it does in Display 18.4 .

 When using a trivial exception class, you normally do not have anything you
can do with the exception (the thrown value) once control gets to the catch block.
The exception is just being used to get you to the catch block. Thus, you can omit
the catch- block parameter. In fact, you can omit the catch- block parameter any time
you do not need it, whether the exception type is trivial or not. ■

 Throwing an Exception in a Function

 Sometimes it makes sense to delay handling an exception. For example, you might
have a function with code that throws an exception if there is an attempt to divide
by zero, but you may not want to catch the exception in that function. Perhaps some
programs that use that function should simply end if the exception is thrown, and
other programs that use the function should do something else. Thus, you would not
know what to do with the exception if you caught it inside the function. In these cases,
it makes sense to not catch the exception in the function definition, but instead to have
any program (or other code) that uses the function to place the function invocation in
a try block and catch the exception in a catch block that follows that try block.

 Look at the program in Display 18.5 . It has a try block, but there is no throw
statement visible in the try block. The statement that does the throwing in that
program is

if (bottom == 0)
Throw DivideByZero();

842 CHAPTER 18 Exception Handling

 Display 18.5 Throwing an Exception Inside a Function (part 1 of 2)

1 #include <iostream>
2 #include <cstdlib>
3 using std::cin;
4 using std::cout;
5 using std::endl;

6 class DivideByZero
7 {};

8 double safeDivide(int top, int bottom) throw (DivideByZero);

9 int main()
10 {
11 int numerator;
12 int denominator;
13 double quotient;
14 cout << "Enter numerator:\n";
15 cin >> numerator;
16 cout << "Enter denominator:\n";
17 cin >> denominator;

18 try
19 {
20 quotient = safeDivide(numerator, denominator);
21 }
22 catch(DivideByZero)
23 {
24 cout << "Error: Division by zero!\n"
25 << "Program aborting.\n";
26 exit(0);
27 }

28 cout << numerator << "/" << denominator
29 << " = " << quotient << endl;

30 cout << "End of program.\n";
31 return 0;
32 }
33
34 double safeDivide(int top, int bottom) throw (DivideByZero)
35 {
36 if (bottom == 0)
37 throw DivideByZero();

38 return top / static_cast<double>(bottom);
39 }

www.itpub.net

Exception Handling Basics 843

 This statement is not visible in the try block. However, it is in the try block in terms
of program execution, because it is in the definition of the function safeDivide and
there is an invocation of safeDivide in the try block.

 The meaning of throw (DivideByZero) in the declaration of safeDivide is
discussed in the next subsection.

 Exception Specification

 If a function does not catch an exception, it should at least warn programmers that any
invocation of the function might possibly throw an exception. If there are exceptions
that might be thrown but not caught in the function definition, those exception types
should be listed in an exception specification , which is illustrated by the following
function declaration from Display 18.5 :

double safeDivide(int top, int bottom) throw (DivideByZero);

 As illustrated in Display 18.5 , the exception specification should appear in both the
function declaration and the function definition. If a function has more than one
function declaration, then all the function declarations must have identical exception
specifications. The exception specification for a function is also sometimes called the
throw list .

 If more than one possible exception can be thrown in the function definition, the
exception types are listed separated by commas, as illustrated in what follows:

void someFunction() throw (DivideByZero, SomeOtherException);

 Sample Dialogue 1

Enter numerator:

5

Enter denominator:

10

5/10 = 0.5

End of Program.

 Sample Dialogue 2

Enter numerator:

5

Enter denominator:

0

Error: Division by zero!

Program aborting.

Display 18.5 Throwing an Exception Inside a Function (part 2 of 2)

exception
specification

throw list

844 CHAPTER 18 Exception Handling

 All exception types listed in the exception specification are treated normally. When
we say the exception is treated normally, we mean it is treated as we have described
before this subsection. In particular, you can place the function invocation in a try

block followed by a catch block to catch that type of exception, and if the function
throws the exception (and does not catch it inside the function), then the catch block
following the try block will catch the exception.

 If there is no exception specification (no throw list) at all (not even an empty one),
then the code behaves the same as if all possible exception types were listed in the
exception specification; that is, any exception that is thrown is treated normally.

 What happens when an exception is thrown in a function but is not listed in the
exception specification (and not caught inside the function)? This is neither a compile-
time error nor a run-time error. In such cases, the function unexpected() is called.
You can change the behavior of the function unexpected , but the default behavior is
to call the function terminate() , which ends the program. In particular, notice that
if an exception is thrown in a function but is not listed in the exception specification
(and not caught inside the function), then it will not be caught by any catch block in
your program but will instead result in an invocation of unexpected() whose default
behavior is to end your program.

 Keep in mind that the exception specification is for exceptions that “get outside”
the function. If they do not get outside the function, they do not belong in the
exception specification. If they get outside the function, they belong in the exception
specification no matter where they originate. If an exception is thrown in a try block
that is inside a function definition and is caught in a catch block inside the function
definition, then its type need not be listed in the exception specification. If a function
definition includes an invocation of another function and that other function can
throw an exception that is not caught, then the type of the exception should be placed
in the exception specification.

 You might think that the possibility of throwing an exception that is not caught
and is not on the throw list should be checked by the compiler and produce a compiler
error. However, because of the details of exceptions in C++, it is not possible for the
compiler to perform the check. The check must be done at run time. 1

 To say that a function should not throw any exceptions that are not caught inside
the function, use an empty exception specification like so:

void someFunction() throw ();

 By way of summary,

void someFunction() throw (DivideByZero, SomeOtherException);
//Exceptions of type DivideByZero or SomeOtherException are
//treated normally. All other exceptions invoke unexpected().

1 This is not true in all programming languages. It depends on the details of how the exception
specification details are defined for the language.

www.itpub.net

Exception Handling Basics 845

void someFunction() throw ();
//Empty exception list, so all exceptions invoke unexpected().

void someFunction();
//All exceptions of all types are treated normally.

 The default action of unexpected() is to end the program. You need not use any
special include or using directives to gain the default behavior of unexpected() .
You normally have no need to redefine the behavior of unexpected() ; however, the
behavior of unexpected() can be changed with the function set_unexpected . If you
need to use set_unexpected , you should consult a more advanced book for the details.

 Keep in mind that an object of a derived class is also an object of its base class. So,
if D is a derived class of class B and B is in the exception specification, then a thrown
object of class D will be treated normally, since it is an object of class B . However, no
automatic type conversions are done. If double is in the exception specification, this
does not account for throwing an int value. You would need to include both int and
double in the exception specification.

 One final warning: Not all compilers treat the exception specification as they are
supposed to. Some compilers essentially treat the exception specification as a comment;
with those compilers, the exception specification has no effect on your code. This
is another reason to place all exceptions that might be thrown by your functions in
the throw specification. This way all compilers will treat your exceptions in the same
manner. Of course, you could get the same compiler consistency by not having any
throw specification at all, but then your program would not be as well documented
and you would not get the extra error checking provided by compilers that do use the
throw specification. With a compiler that does process the throw specification, your
program will terminate as soon as it throws an exception that you did not anticipate.
(Note that this is a run-time behavior—but which run-time behavior you get depends
on your compiler.)

Warning!

 PITFALL: Exception Specification in Derived Classes

 When you redefine or override a function definition in a derived class, it should
have the same exception specification as it had in the base class, or it should have
an exception specification whose exceptions are a subset of those in the base class
exception specification. Put another way, when you redefine or override a function
definition, you cannot add any exceptions to the exception specification (but you can
delete some exceptions if you want). This makes sense, since an object of the derived
class can be used anyplace an object of the base class can be used, and so a redefined
or overwritten function must fit any code written for an object of the base class. ■

846 CHAPTER 18 Exception Handling

 Self-Test Exercises

 8. What is the output produced by the following program?

#include <iostream>
using std::cout;

void sampleFunction(double test) throw (int);

int main()
{

try
 {
 cout << "Trying.\n";
 sampleFunction(98.6);
 cout << "Trying after call.\n";
 }

catch(int)
 {
 cout << "Catching.\n";
 }

 cout << "End program.\n";
return 0;

}
void sampleFunction(double test) throw (int)
{
 cout << "Starting sampleFunction.\n";

if (test < 100)
throw 42;

}

 9. What is the output produced by the program in Self-Test Exercise 8 when the
following change is made to the program? Change

sampleFunction(98.6);

in the try block to

sampleFunction(212);

 18.2 Programming Techniques for
Exception Handling

 Only use this in exceptional circumstances.

 WARREN PEACE, The Lieutenant’s Tool

 So far we have shown lots of code that explains how exception handling works
in C++, but we have not shown an example of a program that makes good and

www.itpub.net

Programming Techniques for Exception Handling 847

realistic use of exception handling. However, now that you know the mechanics of
exception handling, this section can go on to explain exception handling techniques.

 When to Throw an Exception

 We have given some very simple code to illustrate the basic concepts of exception
handling. However, our examples were unrealistically simple. A more complicated but
better guideline is to separate throwing an exception and catching the exception into
separate functions. In most cases, you should include any throw statement within a
function definition, list the exception in an exception specification for that function,
and place the catch clause in a different function. Thus, the preferred use of the
try-throw-catch triad is as illustrated here:

void functionA() throw (MyException)
{
 .
 .
 .

throw MyException(<Maybe an argument>);
 .
 .
 .
}

 Then, in some other function (perhaps even some other function in some other file),
you have the following:

void functionB()
{
 .
 .
 .

try
 {
 .
 .
 .
 functionA();
 .
 .
 .
 }

catch(MyException e)
 {

<Handle exception>
 }
 .
 .
 .
}

848 CHAPTER 18 Exception Handling

 Even this kind of use of a throw statement should be reserved for cases where it is
unavoidable. If you can easily handle a problem in some other way, do not throw an
exception. Reserve throw statements for situations in which the way the exceptional
condition is handled depends on how and where the function is used. If the way that the
exceptional condition is handled depends on how and where the function is invoked,
then the best thing to do is let the programmer who invokes the function handle the
exception. In all other situations, it is preferable to avoid throwing exceptions. Let us
outline a sample scenario of this kind of situation.

 Suppose you are writing a library of functions to deal with patient monitoring
systems for hospitals. One function might compute the patient's average daily
temperature by accessing the patient's record in some file and dividing the sum of the
temperatures by the number of times the temperature was taken. Now suppose these
functions are used for creating different systems to be used in different situations. What
should happen if the patient's temperature was never taken and so the averaging would
involve a division by zero? In an intensive care unit, this would indicate something
is very wrong, such as the patient is lost. (It has been known to happen.) So for that
system, when this potential division by zero would occur, an emergency message
should be sent out. However, for a system to be used in a less urgent setting, such as
outpatient care or even in some noncritical wards, it might have no significance and so
a simple note in the patient's records would suffice. In this scenario, the function for
doing the averaging of the temperatures should throw an exception when this division
by zero occurs, list the exception in the exception specifications, and let each system
handle the exception case in the way that is appropriate to that system.

 When to Throw an Exception

For the most part, throw statements should be used within functions and listed in an
exception specification for the function. Moreover, they should be reserved for situations in
which the way the exceptional condition is handled depends on how and where the func-
tion is used. If the way that the exceptional condition is handled depends on how and where
the function is invoked, then the best thing to do is let the programmer who invokes the
function handle the exception. In other situations, it is almost always preferable to avoid
throwing an exception.

 PITFALL: Uncaught Exceptions

 Every exception that is thrown by your code should be caught someplace in your
code. If an exception is thrown but not caught anywhere, the program will end.

 Technically speaking, if an exception is thrown but not caught, then the function
terminate() is called. The default meaning for terminate() is to end your
 program. You can change the meaning from the default, but that is seldom needed and
we will not go into the details here.

terminate()

www.itpub.net

Programming Techniques for Exception Handling 849

PITFALL: (continued)

 An exception that is thrown in a function but is not caught either inside or outside
the function has two possible cases. If the exception is not listed in the exception
specification, then the function unexpected() is called. If the exception is not listed
in the exception specification, the function terminate() is called. But unless you
change the default behavior of unexpected() , unexpected() calls terminate() .
So, the result is the same in both cases. If an exception is thrown in a function but not
caught either inside or outside the function, then your program ends. ■

unexpected()

 PITFALL: Nested try-catch Blocks

 You can place a try block and following catch blocks inside a larger try block or
inside a larger catch block. In rare cases, this may be useful, but if you are tempted
to do this, you should suspect that there is a nicer way to organize your program. It is
almost always better to place the inner try-catch blocks inside a function definition
and place an invocation of the function in the outer try or catch block (or maybe
just eliminate one or more try blocks completely).

 If you place a try block and following catch blocks inside a larger try block, and
an exception is thrown in the inner try block but not caught in any of the inner catch
blocks, then the exception is thrown to the outer try block for processing and might
be caught by a catch block following the outer try block. ■

 PITFALL: Overuse of Exceptions

 Exceptions allow you to write programs whose flow of control is so involved that it
is almost impossible to understand the program. Moreover, this is not hard to do.
Throwing an exception allows you to transfer flow of control from anyplace in your
program to almost anyplace else in your program. In the early days of programming,
this sort of unrestricted flow of control was allowed via a construct known as a
goto. Programming experts now agree that such unrestricted flow of control is very
poor programming style. Exceptions allow you to revert to these bad old days of
unrestricted flow of control. Exceptions should be used sparingly and in certain ways
only. A good rule is the following: If you are tempted to include a throw statement,
then think about how you might write your program or class definition without this
throw statement. If you can think of an alternative that produces reasonable code,
then you probably do not want to include the throw statement. ■

850 CHAPTER 18 Exception Handling

 Exception Class Hierarchies

 It can be very useful to define a hierarchy of exception classes. For example, you
might have an ArithmeticError exception class and then define an exception
class DivideByZeroError that is a derived class of ArithmeticError. Since a
DivideByZeroError is an ArithmeticError, every catch block for an
ArithmeticError will catch a DivideByZeroError. If you list ArithmeticError in
the exception specification, then you have, in effect, also added DivideByZeroError
to the exception specification, whether or not you list DivideByZeroError by name
in the exception specification.

 Testing for Available Memory

 In Chapter 17 we created new dynamic variables with code similar to the following :

struct Node
{

int data;
 Node *link;
};
typedef Node* NodePtr;

 ...
NodePtr pointer = new Node;

 This works fine as long as there is sufficient memory available to create the new node.
But what happens if there is not? If there is insufficient memory to create the node,
then a bad_alloc exception is thrown.

 Since new will throw a bad_alloc exception when there is not enough memory to
create the node, you can check for running out of memory as follows:

try
{
 NodePtr pointer = new Node;
}
catch (bad_alloc)
{
 cout << "Ran out of memory!";
}

 Of course, you can do other things besides simply giving a warning message, but the
details of what you do will depend on your particular programming task.

 The definition of bad_alloc is in the library with the header file <new> and is
placed in the std namespace. So, when using bad_alloc , your program should
contain the following (or something similar):

#include <new>
using std::bad_alloc;

bad_alloc

www.itpub.net

Answers to Self-Test Exercises 851

 Rethrowing an Exception

 It is legal to throw an exception within a catch block. In rare cases, you may want to
catch an exception and then, depending on the details, decide to throw the same or a
different exception for handling farther up the chain of exception handling blocks.

 Self-Test Exercises

 10. What happens when an exception is never caught?

 11. Can you nest a try block inside another try block?

 Chapter Summary

• Exception handling allows you to design and code the normal case for your program
separately from the code that handles exceptional situations.

• An exception can be thrown in a try block . Alternatively, an exception can be thrown
in a function definition that does not include a try block (or does not include a
catch block to catch that type of exception). In this case, an invocation of the func-
tion can be placed in a try block.

• An exception is caught in a catch block .

• A try block may be followed by more than one catch block. In this case, always list
the catch block for a more specific exception class before the catch block for a more
general exception class.

• The best use of exceptions is to throw an exception in a function (but not catch it in
the function) whenever the way the exception is handled will vary from one invoca-
tion of the function to another. There is seldom any other situation that can profit-
ably benefit from throwing an exception.

• If an exception is thrown in a function but not caught in that function, then the
exception type should be listed in an exception specification for that function.

• If an exception is thrown but never caught, then the default behavior is to end
your program.

• Do not overuse exceptions.

 Answers to Self-Test Exercises

 1. Try block entered.
Exception thrown with
waitTime equal to 46
After catch block.

 2. Try block entered.
 Leaving try block.

 After catch block.

 3. throw waitTime;

 Note that the following is an if statement, not a throw statement, even though it
contains a throw statement:

if (waitTime > 30)

throw waitTime;

 4. When a throw statement is executed, that is the end of the enclosing try block. No
other statements in the try block are executed, and control passes to the following
catch block or blocks. When we say control passes to the following catch block,
we mean that the value thrown is plugged in for the catch -block parameter (if any)
and the code in the catch block is executed.

 5. try
{
 cout << "Try block entered.";

if (waitTime > 30)
throw waitTime);

 cout << "Leaving try block.";
}

 6. catch(int thrownValue)
{
 cout << "Exception thrown with\n"
 << "waitTime equal to" << thrownValue << endl;
}

 7. thrownValue is the catch- block parameter.

 8. Trying.
Starting sampleFunction.
Catching.
End of program.

 9. Trying.
Starting sampleFunction.
Trying after call.
End of program.

 10. If an exception is not caught anywhere, then your program ends. Technically
speaking, if an exception is thrown but not caught, then the function terminate()

is called. The default meaning for terminate() is to end your program.

 11. Yes, you can have a try block and corresponding catch blocks inside another larger
try block. However, it would probably be better to place the inner try and catch
blocks in a function definition and place an invocation of the function in the larger
try block.

852 CHAPTER 18 Exception Handling

www.itpub.net

Programming Projects 853

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Obtain the source code for the PFArray class from Chapter 10 shown in
 Display 10.11 . Modify the definition of the overloaded operator, [] , so it throws an
OutOfRange exception if an index that is out of range is used or if an attempt is
made to add an element beyond the capacity of the implementation. OutOfRange
is an exception class that you define. The exception class should have a private int
member and a private string member, and a public constructor that has int and
string arguments. The offending index value along with a message should be
stored in the exception object. You choose the message to describe the situation.
Write a suitable test program to test the modified class PFArray.

 2. (Based on a problem in Stroustrup, The C++ Programming Language , 3 rd edition)
Write a program consisting of functions calling one another to a calling depth of
10. Give each function an argument that specifies the level at which it is to throw
an exception. The main function prompts for and receives input that specifies the
calling depth (level) at which an exception will be thrown. The main function then
calls the first function. The main function catches the exception and displays the
level at which the exception was thrown. Do not forget the case in which the depth
is 0, where main must both throw and catch the exception.

 Hints : You could use ten different functions or ten copies of the same function that
call one another, but do not do this. Rather, for compact code, use a main func-
tion that calls another function that calls itself recursively. Suppose you do this; is
the restriction on the calling depth necessary? This can be done without giving the
function any additional arguments, but if you cannot do it that way, try adding an
additional argument to the function.

 3. Modify the source code for the Stack class from Chapter 17 , shown in Displays 17.17
through 17.19 . Currently, if the user of the class attempts to pop from an empty
stack the program prints out an error message and exits. Modify the program so
that it instead throws an exception named PopEmptyStackException.

 Write a main function that tests the new Stack class, attempts to pop from an
empty stack, and catches the PopEmptyStackException exception.

 4. The following code uses two arrays, one to store products and another to store
product IDs (a better organization would be to use a single array of a class or
struct, but that is not the subject of this Programming Project). The function
getProductID takes as input the two arrays, the length of the arrays, and a target
product to search for. It then loops through the product name array; if a match is
found, it returns the corresponding product ID:

int getProductID(int ids[], string names[],
int numProducts, string target)

{
for (int i=0; i < numProducts; i++)

www.myprogramminglab.com

 {
if (names[i] == target)

return ids[i];
 }
return -1; // Not found

}

int main() // Sample code to test the getProductID function
{
int productIds[] = {4, 5, 8, 10, 13};
 string products[] = {"computer","flash drive",
 "mouse","printer","camera"};

 cout << getProductID(productIds, products, 5, "mouse") << endl;
 cout << getProductID(productIds, products, 5, "camera")
 << endl;
cout << getProductID(productIds, products, 5, "laptop")
 << endl;
return 0;
}

 One problem with the implementation of the getProductID function is that it
returns the special error code of -1 if the target name is not found. The caller
might ignore the -1, or later we might actually want to have -1 as a valid product
ID number. Rewrite the program so that it throws an appropriate exception when
a product is not found instead of returning -1.

 5. A function that returns a special error code is usually better accomplished throwing
an exception instead. The following class maintains an account balance.

class Account
{
private:

double balance;
public:
 Account()
 {
 balance = 0;
 }
 Account(double initialDeposit)
 {
 balance = initialDeposit;
 }

double getBalance()
 {

return balance;
 }

// returns new balance or -1 if error
double deposit(double amount)

 {
if (amount > 0)

 balance += amount;

854 CHAPTER 18 Exception Handling

Solution to
Programming
Project 18.5

VideoNote

www.itpub.net

Programming Projects 855

else
return -1; // Code indicating error

return balance;
 }
 // returns new balance or -1 if invalid amount

double withdraw(double amount)
 {

if ((amount > balance) || (amount < 0))
return -1;

else
 balance -= amount;

return balance;
 }
};

 Rewrite the class so that it throws appropriate exceptions instead of returning -1
as an error code. Write test code that attempts to withdraw and deposit invalid
amounts and catches the exceptions that are thrown.

This page intentionally left blank

www.itpub.net

 The Container Adapters stack and queue 878
 Pitfall: Underlying Containers 879
 The Associative Containers set and map 882
 Efficiency 887

 19.3 GENERIC ALGORITHMS 889
 Running Times and Big- O Notation 890
 Container Access Running Times 894
 Nonmodifying Sequence Algorithms 895
 Modifying Sequence Algorithms 899
 Set Algorithms 900
 Sorting Algorithms 902

 19.1 ITERATORS 859
 Iterator Basics 859
 Pitfall: Compiler Problems 864
 Kinds of Iterators 865
 Constant and Mutable Iterators 868
 Reverse Iterators 870
 Other Kinds of Iterators 871

 19.2 CONTAINERS 872
 Sequential Containers 872
 Pitfall: Iterators and Removing Elements 877
 Tip: Type Definitions in Containers 878

 19 Standard Template
Library

Chapter Summary 902 Answers to Self-Test Exercises 903 Programming Projects 905

 Libraries are not made; they grow.

 AUGUSTINE BIRRELL

 Introduction
 In Chapter 17 we constructed our own versions of the stack and queue data structures. A
large collection of standard structures for holding data exists. Because they are so standard,
it makes sense to have standard portable implementations of these data structures. The
Standard Template Library (STL) includes libraries for such data structures. Included
in the STL are implementations of the stack, queue, and many other standard data
structures. When discussed in the context of the STL, these data structures are usually
called container classes because they are used to hold collections of data. Chapter 7
presented a preview of the STL by describing the vector template class, which is one
of the container classes in the STL. This chapter presents an overview of some of the basic
classes included in the STL. Because the STL is very large, we will not be able to give a
comprehensive treatment of it here, but we will present enough to get you started using
some basic STL container classes as well as some of the other items in the STL.

 The STL was developed by Alexander Stepanov and Meng Lee at Hewlett-Packard
and was based on research by Stepanov, Lee, and David Musser. It is a collection of
libraries written in the C ++ language. Although the STL is not part of the core C ++
language, it is part of the C ++ standard, and so any implementation of C ++ that
conforms to the standard includes the STL. As a practical matter, you can consider the
STL to be part of the C ++ language.

 As its name suggests, the classes in the STL are template classes. A typical container class
in the STL has a type parameter for the type of data to be stored in the container class.

 The STL container classes make extensive use of iterators, which are objects that facilitate
cycling through the data in a container. An introduction to the general concept of an
iterator was given in Section 17.3 of Chapter 17 . Although this chapter does not presuppose
that you have read that section, most readers will find it helpful to read that section
before reading this chapter. As defined in the STL, iterators are very general and can
be used for more than just cycling through the few container classes we will cover.
Our discussion of iterators will be specialized to simple uses with the container classes
discussed in this chapter. This should make the concept come alive in a concrete
setting and should give you enough understanding to feel comfortable reading more
advanced texts on the STL (there are numerous books dedicated to the STL).

 The STL also includes implementations of many important generic algorithms, such
as searching and sorting. The algorithms are implemented as template functions. After
discussing the container classes, we will describe some of these algorithm implementations.

 The STL differs from other C ++ libraries—such as <iostream> , for example—in
that the classes and algorithms are generic , which is another way of saying that they are
template classes and template functions.

19 Standard Template Library

STL

www.itpub.net

Iterators 859

 If you have not already done so, you should read Section 7.3 of Chapter 7 , which
covers the vector template class of the STL. Although the current chapter does not
use any of the material in Chapter 17 , most readers will find that reading Chapter 17
before reading this one will aid his or her comprehension of this chapter by giving
sample concrete implementations of some of the abstract ideas intrinsic to the STL.
 This chapter does not use any of the material in Chapters 12 to 15 .

 19.1 Iterators

 To iterate is human, and programmers are human.

 ANONYMOUS

 If you have not yet done so, you should read Chapter 10 on pointers and arrays
and also read Section 7.3 of Chapter 7 , which covers vectors. Vectors are one of the
container template classes in the STL. Iterators are a generalization of pointers. This
section shows how to use iterators with vectors. Other container template classes
that we introduce in Section 19.2 use iterators in the same way. So, all that you learn
about iterators in this section will apply across a wide range of containers rather than
applying solely to vectors. This reflects one of the basic tenets of the STL philosophy:
The semantics, naming, and syntax for iterator usage should be (and is) uniform across
different container types.

 Iterator Basics

 An iterator is a generalization of a pointer, and in fact is typically even implemented
using a pointer, but the abstraction of an iterator is designed to spare you the
details of the implementation and give you a uniform interface to iterators that is
the same across different container classes. Each container class has its own iterator
types, just like each data type has its own pointer type. But just as all pointer types
behave essentially the same for dynamic variables of their particular data type, so too
does each iterator type behave the same, but each iterator is used only with its own
container type.

 An iterator is not a pointer, but you will not go far wrong if you think of it and use
it as if it were. Like a pointer variable, an iterator variable is located at (meaning, it
points to) one data entry in the container. You manipulate iterators using the following
overloaded operators that apply to iterator objects:

■ Prefix and postfix increment operators (++) for advancing the iterator to the next
data item.

■ Prefix and postfix decrement operators (--) for moving the iterator to the
previous data item.

■ Equal and unequal operators (== and !=) to test whether two iterators point to
the same data location.

iterator

860 CHAPTER 19 Standard Template Library

■ A dereferencing operator (*) so that if p is an iterator variable, then *p gives access
to the data located at (pointed to by) p . This access may be read only or write
only, or it may allow both reading and changing of the data, depending on the
particular container class.

 Not all iterators have all of these operators. However, the vector template class is
an example of a container whose iterators have all these operators and more.

 A container class has member functions that get the iterator process started. After
all, a new iterator variable is not located at (pointing to) any data in the container.
Many container classes, including the vector template class, have the following
member functions that return iterator objects (iterator values) that point to special data
elements in the data structure:

■ c.begin() returns an iterator for the container c that points to the “first” data
item in the container c .

■ c.end() returns something that can be used to test when an iterator has passed
beyond the last data item in a container c . The iterator c.end() is completely
analogous to NULL when used to test whether a pointer has passed the last node in
a linked list of the kind discussed in Chapter 17 . The iterator c.end() is thus an
iterator that is not located at a data item but that is a kind of end marker or sentinel.

 For many container classes, these tools allow you to write for loops that cycle
through all the elements in a container object c , as follows:

//p is an iterator variable of the type for the container object c.
for (p = c.begin(); p != c.end(); p++)
 process *p //*p is the current data item.

 That is the big picture. Now let us look at the details in the concrete setting of the
vector template container class.

 Display 19.1 illustrates the use of iterators with the vector template class. Keep in
mind that each container type in the STL has its own iterator types, although they are
all used in the same basic ways. The iterators we want for a vector of int s are of type

std::vector<int>::iterator

 Another container class is the list template class. Iterators for list s of int s are of type

std::list<int>::iterator

 In the program in Display 19.1 , we specialize the type name iterator so it applies
to iterators for vectors of int s. The type name iterator that we want in Display 19.1
is defined in the template class vector . Thus, if we specialize the template class vector
to int s and want the iterator type for vector<int> , we want the type

vector<int>::iterator;

www.itpub.net

Iterators 861

 Display 19.1 Iterators Used with a Vector

1 //Program to demonstrate STL iterators.
2 #include <iostream>
3 #include <vector>
4 using std::cout;
5 using std::endl;
6 using std::vector;

7 int main()
8 {
9 vector< int> container;

10 for (int i = 1; i <= 4; i++)
11 container.push_back(i);

12 cout << "Here is what is in the container:\n";
13 vector< int>::iterator p;
14 for (p = container.begin(); p != container.end(); p++)
15 cout << *p << " ";
16 cout << endl;

17 cout << "Setting entries to 0:\n";
18 for (p = container.begin(); p != container.end(); p++)
19 *p = 0;

20 cout << "Container now contains:\n";
21 for (p = container.begin(); p != container.end(); p++)
22 cout << *p << " ";
23 cout << endl;

24 return 0;
25 }

 Sample Dialogue

Here is what is in the container:

1 2 3 4

Setting entries to 0:

Container now contains:

0 0 0 0

862 CHAPTER 19 Standard Template Library

 The basic use of iterators with vector (or any container class) is illustrated by the
following lines from Display 19.1 :

vector<int>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 cout << *p << " ";

 Recall that container is of type vector<int> , and that the type iterator really
means std::vector<int>::iterator .

 A vector v can be thought of as a linear arrangement of its data elements. There is a
first data element v[0] , a second data element v[1] , and so forth. An iterator p is an
object that can be located at one of these elements (or points to one of these elements).
An iterator can move its location from one element to another element. If p is located
at, say, v[7] , then p++ moves p so it is located at v[8] . This allows an iterator to move
through the vector from the first element to the last element, but it needs to find the
first element and needs to know when it has seen the last element.

 You can tell if an iterator is at the same location as another iterator by using
the operator, ==. Thus, if you have an iterator pointing to the first, last, or other
element, you could test another iterator to see if it is located at the first, last, or
other element.

 If p1 and p2 are two iterators, then the comparison

p1 == p2

 is true when and only when p1 and p2 are located at the same element. (This is
analogous to pointers. If p1 and p2 were pointers, this comparison would be true if
they pointed to the same thing.) As usual, != is just the negation of == , and so

p1 != p2

 is true when p1 and p2 are not located at the same element.
 The member function begin() is used to position an iterator at the first element

in a container. For vectors, and many other container classes, the member function
begin() returns an iterator located at the first element. (For a vector v the first
element is v[0] .) Thus,

vector<int>::iterator p = v.begin();

 initializes the iterator variable p to an iterator located at the first element. The basic for
loop for visiting all elements of the vector v is therefore

vector<int>::iterator p;
for (p = v.begin(); Boolean_Expression; p++)

Action_At_Location p;

 The desired stopping condition is

p = v.end()

begin()

www.itpub.net

Iterators 863

 The member function end() returns a sentinel value that can be checked to see if an
iterator has passed the last element. If p is located at the last element, then after p++ , the
test p = v.end() changes from false to true . So the correct Boolean_Expression
is the negation of this stopping condition:

vector<int>::iterator p;
for (p = v.begin(); p != v.end(); p++)

Action_At_Location p;

 Note that p != v.end() does not change from true to false until after p ’s location
has advanced past the last element. So, v.end() is not located at any element. The value
v.end() is a special value that serves as a sentinel. It is not an iterator, but you can
compare v.end() to an iterator using == and != . The value v.end() is analogous
to the value NULL that is used to mark the end of a linked list of the kind discussed
in Chapter 17 .

 The following for loop from Display 19.1 uses this same technique with the vector
named container :

vector<int>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 cout << *p << " ";

 The action taken at the location of the iterator p is

cout << *p << " ";

 The dereferencing operator, * , is overloaded for STL container iterators so that *p
produces the element at location p . In particular, for a vector container, *p produces
the element located at the iterator p . The preceding cout statement thus outputs the
element located at the iterator p , and so the entire for loop outputs all the elements in
the vector container.

 The dereferencing operator *p always produces the element located at the iterator
p . In some situations *p produces read-only access, which does not allow you to
change the element. In other situations it gives you access to the element and will let
you change it. For vectors, *p will allow you to change the element located at p , as
illustrated by the following for loop from Display 19.1 :

for (p = container.begin(); p != container.end(); p++)
 *p = 0;

 This for loop cycles through all the elements in the vector container and changes all
the elements to 0 .

end()

864 CHAPTER 19 Standard Template Library

 PITFALL: Compiler Problems

 Some compilers have problems with iterator declarations. You can declare an iterator
in different ways. For example, we have been using the following:

using std::vector;
 . . .
vector<char>::iterator p;

 Alternatively, you could use the following:

using std::vector< char>::iterator;
 . . .
iterator p;

 You could also use the following, which is not quite as nice:

using namespace std;
 . . .
vector<char>::iterator p;

 There are other, similar variations.
 Your compiler should accept any of these alternatives. However, we have found that

some compilers will accept only certain of these alternatives. If one form does not work
with your compiler, try another. ■

 Iterator
An iterator is an object that can be used with a container to gain access to elements in the
container. An iterator is a generalization of the notion of a pointer. The operators ==, !=, ++,
and –– behave the same for iterators as they do for pointers. The basic outline of how an
iterator can cycle through all the elements in a container is as follows:

STL_container<datatype>::iterator p;
for (p = container.begin(); p != container.end(); p++)

Process_Element_At_Location p;

STL_container is the name of the container class (e.g., vector) and datatype is the
data type of items to be stored in the container. The member function begin() returns
an iterator located at the first element. The member function end() returns a value that
serves as a sentinel value one location past the last element in the container.

Dereferencing
The dereferencing operator, *p, when applied to an iterator p, produces the element located
at the iterator p. In some situations *p produces read-only access, which does not allow you
to change the element. In other situations it gives you access to the element and will let you
change the element.

www.itpub.net

Iterators 865

 Kinds of Iterators

 Different containers have different kinds of iterators. Iterators are classified according
to the kinds of operations that work on them. Vector iterators are of the most general
form; that is, all the operations work with vector iterators. Thus, we will again use
the vector container to illustrate iterators. In this case we use a vector to illustrate
the iterator operations of decrement and random access . Display 19.2 shows another
program using a vector object named container and an iterator p .

 The decrement operator is used on line 29 of Display 19.2 . As you would expect, p--
moves the iterator p to the previous location. The decrement operator, –– , is similar to
the increment operator, ++ , but it moves the iterator in the opposite direction.

 The increment and decrement operators can be used in either prefix (++p) or
postfix (p++) notation. In addition to changing p , they also return a value. The details
of the value returned are completely analogous to what happens with the increment
and decrement operators on int variables. In prefix notation, first the variable is
changed and then the changed value is returned. In postfix notation, the value is
returned before the variable is changed. We prefer not to use the increment and
decrement operators as expressions that return a value; we use them only to change
the variable value.

 The following lines from Display 19.2 illustrate the fact that with vector iterators
you have random access to the elements of a vector, such as container :

vector<char>::iterator p = container.begin();
cout << "The third entry is " << container[2] << endl;
cout << "The third entry is " << p[2] << endl;
cout << "The third entry is " << *(p + 2) << endl;

Random access means that you can go directly to any particular element in one step.
We have already used container[2] as a form of random access to a vector. This
is simply the square bracket operator that is standard with arrays and vectors. What
is new is that you can use this same square bracket notation with an iterator. The
expression p[2] is a way to obtain access to the element indexed by 2.

 The expressions p[2] and *(p + 2) are completely equivalent. By analogy to pointer
arithmetic (see Chapter 10) , (p + 2) names the location two places beyond p . Since p is at
the first (index 0) location in the previous code, (p + 2) is at the third (index 2) location.
The expression (p + 2) returns an iterator. The expression *(p + 2) dereferences that
iterator. Of course, you can replace 2 with a different nonnegative integer to obtain a
pointer to a different element.

 Self-Test Exercises

 1. If v is a vector, what does v.begin() return? What does v.end() return?

 2. If p is an iterator for a vector object v , what is *p ?

 3. Suppose v is a vector of int s. Write a for loop that will output all the elements
of p except for the fi rst element.

random
access

866 CHAPTER 19 Standard Template Library

 Display 19.2 Bidirectional and Random-Access Iterator Use (part 1 of 2)

1 //Program to demonstrate bidirectional and random-access iterators.
2 #include <iostream>
3 #include <vector>
4 using std::cout;
5 using std::endl;
6 using std::vector;

7 int main()
8 {
9 vector< char> container;

10 container.push_back('A');
11 container.push_back('B');
12 container.push_back('C');
13 container.push_back('D');

14 for (int i = 0; i < 4; i++)
15 cout << "container[" << i << "] == "
16 << container[i] << endl;

17 vector< char>::iterator p = container.begin();
18 cout << "The third entry is " << container[2] << endl;
19 cout << "The third entry is " << p[2] << endl;
20 cout << "The third entry is " << *(p + 2) << endl;

21 cout << "Back to container[0].\n";
22 p = container.begin();
23 cout << "which has value " << *p << endl;

24 cout << "Two steps forward and one step back:\n";
25 p++;
26 cout << *p << endl;

27 p++;
28 cout << *p << endl;
29 p--;
30 cout << *p << endl;

31 return 0;
32 }

Three different
notations for the
same thing.

This notation
is specialized
to vectors and
arrays.

These two work
for any random-
access iterator.

This works for any
bidirectional iterator.

www.itpub.net

Iterators 867

 Be sure to note that neither p[2] nor (p + 2) changes the value of the iterator
in the iterator variable p . The expression (p + 2) returns another iterator at another
location, but it leaves p where it was. Something similar happens with p[2] behind the
scenes. Also note that the meaning of p[2] and (p + 2) depends on the location of
the iterator in p . For example, (p + 2) means two locations beyond the location of p ,
wherever that may be.

 For example, suppose the previously discussed code from Display 19.2 were replaced
with the following (note the added p++):

vector<char>::iterator p = container.begin();
p++;
cout << "The third entry is " << container[2] << endl;
cout << "The third entry is " << p[2] << endl;
cout << "The third entry is " << *(p + 2) << endl;

 The output of these three couts would no longer be

The third entry is C
The third entry is C
The third entry is C

 but would instead be

The third entry is C
The third entry is D
The third entry is D

 The p++ moves p from location 0 to location 1 , and so (p+2) is now an iterator at
location 3 , not location 2 . So, *(p+2) and p[2] are equivalent to container[3] , not
container[2].

 Sample Dialogue

container[0] == A

container[1] == B

container[2] == C

container[3] == D

The third entry is C

The third entry is C

The third entry is C

Back to container[0].

which has value A

Two steps forward and one step back:

B

C

B

Display 19.2 Bidirectional and Random-Access Iterator Use (part 2 of 2)

868 CHAPTER 19 Standard Template Library

 We now know enough about how to operate on iterators to make sense of how
iterators are classified. The main kinds of iterators are as follows.

Forward iterators : ++ works on the iterator.
Bidirectional iterators : Both ++ and –– work on the iterator.
Random-access iterators : ++ , –– , and random access all work with the iterator.

 Note that these are increasingly strong categories: Every random-access iterator is also a
bidirectional iterator, and every bidirectional iterator is also a forward iterator.

 As we will see, different template container classes have different kinds of iterators.
The iterators for the vector template class are random-access iterators.

 Note that the names forward iterator , bidirectional iterator , and random-access iterator
refer to kinds of iterators, not type names. An actual type name would be something
like std::vector<int>::iterator , which in this case happens to be a random-
access iterator.

 Kinds of Iterators
Different containers have different kinds of iterators. The following are the main kinds of
iterators.

Forward iterators: ++ works on the iterator.

Bidirectional iterators: Both ++ and –– work on the iterator.

Random-access iterators: ++, ––, and random access all work with the iterator.

 Self-Test Exercise

 4. Suppose the vector v contains the letters 'A' , 'B' , 'C' , and 'D' in that order.
What is the output of the following code?

vector<char>::iterator i = v.begin();
i++;
cout << *(i + 2) << " ";
i--;
cout << i[2] << " ";
cout << *(i + 2) << " ";

 Constant and Mutable Iterators

 The categories of forward iterator, bidirectional iterator, and random-access iterator
each subdivide into two categories— constant and mutable — depending on how
the dereferencing operator behaves with the iterator. With a constant iterator the
dereferencing operator produces a read-only version of the element. With a constant
iterator p , you can use *p to assign it to a variable or output it to the screen, for
example, but you cannot change the element in the container by, for example, assigning

constant
iterator

www.itpub.net

Iterators 869

to *p . With a mutable iterator p , *p can be assigned a value, which will change the
corresponding element in the container. Phrased another way, with a mutable iterator
p , *p returns an lvalue. The vector iterators are mutable, as shown by the following
lines from Display 19.1 :

cout << "Setting entries to 0:\n";
for (p = container.begin(); p != container.end(); p++)
 *p = 0;

 If a container has only constant iterators, you cannot obtain a mutable iterator for
the container. However, if a container has mutable iterators and you want a constant
iterator for the container, you can have it. You might want a constant iterator as a kind
of error-checking device if you intend that your code should not change the elements
in the container. For example, the following will produce a constant iterator for a
vector container named container :

std::vector<char>::const_iterator p = container.begin();

 or equivalently

using std::vector< char>::const_iterator;
const_iterator p = container.begin();

 With p declared in this way, the following would produce an error message:

*p = 'Z';

 For example, Display 19.2 would behave exactly the same if you replaced

vector<char>::iterator p;

 with

vector<char>::const_iterator p;

 However, a similar change would not work in Display 19.1 because of the following
line from the program in Display 19.1 :

*p = 0;

 Note that const_iterator is a type name, whereas constant iterator is the name of
a kind of iterator. However, every iterator of a type named const_iterator will be a
constant iterator.

mutable
iterator

 Constant Iterator
A constant iterator is an iterator that does not allow you to change the element at its location.

870 CHAPTER 19 Standard Template Library

 Reverse Iterators

 Sometimes you want to cycle through the elements in a container in reverse order.
If you have a container with bidirectional iterators, you might be tempted to try the
following:

vector<int>::iterator p;
for (p = container.end(); p != container.begin(); p--)
 cout << *p << " ";

 This code will compile, and you may be able to get something like this to work on some
systems, but there is something fundamentally wrong with it: container.end() is not
a regular iterator but only a sentinel, and container.begin() is not a sentinel.

 Fortunately, there is an easy way to do what you want. For a container with
bidirectional iterators, there is a way to reverse everything using a kind of iterator
known as a reverse iterator . The following will work fine:

vector<int>::reverse_iterator rp;
for (rp = container.rbegin(); rp != container.rend(); rp++)
 cout << *rp << " ";

 The member function rbegin() returns an iterator located at the last element. The
member function rend() returns a sentinel that marks the “end” of the elements in
the reverse order. Note that for an iterator of type reverse_iterator , the increment
operator, ++ , moves backward through the elements. In other words, the meanings of
–– and ++ are interchanged. The program in Display 19.3 demonstrates a reverse iterator.

reverse_iterator type also has a constant version, which is named const_
reverse_iterator.

reverse
iterator

rbegin()

rend()

 Reverse Iterators
A reverse iterator can be used to cycle through all elements of a container with bidirectional
iterators. The elements are visited in reverse order. The general scheme is as follows:

STL_container<datatype>::reverse_iterator rp;
for (rp = c.rbegin(); rp != c.rend(); rp++)

Process_At_Location p;

The object c is a container class with bidirectional iterators.

When using reverse_iterator, you need to have some sort of using declaration or
something equivalent. For example, if c is a vector<int>, the following will suffice:

vector<int>::reverse_iterator rp;

www.itpub.net

Iterators 871

 Display 19.3 Reverse Iterator

1 //Program to demonstrate a reverse iterator.
2 #include <iostream>
3 #include <vector>
4 using std::cout;
5 using std::endl;
6 using std::vector;

7 int main()
8 {
9 vector< char> container;

10 container.push_back('A');
11 container.push_back('B');
12 container.push_back('C');

13 cout << "Forward:\n";
14 vector< char>::iterator p;
15 for (p = container.begin(); p != container.end(); p++)
16 cout << *p << " ";
17 cout << endl;

18 cout << "Reverse:\n";
19 vector< char>::reverse_iterator rp;
20 for (rp = container.rbegin(); rp != container.rend(); rp++)
21 cout << *rp << " ";
22 cout << endl;

23 return 0;
24 }

 Sample Dialogue

Forward:

A B C

Reverse:

C B A

 Other Kinds of Iterators

 There are other kinds of iterators, which we will not cover in this book . We will briefly
mention two kinds of iterators whose names you may encounter. An input iterator is
essentially a forward iterator that can be used with input streams. An output iterator
is essentially a forward iterator that can be used with output streams. For more details
you will need to consult a more advanced reference.

input iterator

output
iterator

872 CHAPTER 19 Standard Template Library

 19.2 Containers

 You can put all your eggs in one basket, but be sure it’s a good basket.

 WALTER SAVITCH, Absolute C++

 The container classes of the STL are different kinds of structures for holding data,
such as lists, queues, and stacks. Each is a template class with a parameter for the
particular type of data to be stored. So, for example, you can specify a list to be a list
of int s or doubles or string s, or any class or struct type you wish. Each container
template class may have its own specialized accessor and mutator functions for adding
data and removing data from the container. Different container classes may have
different kinds of iterators. For example, one container class may have bidirectional
iterators, whereas another container class may have only forward iterators. However,
whenever they are defined, the iterator operators and the member functions begin()
and end() have the same meaning for all STL container classes.

 Sequential Containers

 A sequential container arranges its data items into a list such that there is a first element,
a next element, and so forth, up to a last element. The linked lists we discussed in
 Chapter 17 are examples of a kind of sequential container; these kinds of lists are
sometimes called singly linked lists because there is only one link from one location to
another. The STL has no container corresponding to such a singly linked list, although
some implementations do offer an implementation of a singly linked list, typically under

 Self-Test Exercises

 5. Suppose the vector v contains the letters 'A' , 'B' , 'C' , and 'D' in that order.
What is the output of the following code?

vector<char>::reverse_iterator i = v.rbegin();
i++;
i++;
cout << *i << " ";
i--;
cout << *i << " ";

 6. Suppose you want to run the following code, where v is a vector of ints :

for (p = v.begin(); p != v.end(); p++)
 cout << *p << " ";

 Which of the following are possible ways to declare p ?

std::vector<int>::iterator p;
std::vector<int>::const_iterator p;

container
class

singly linked
list

www.itpub.net

Containers 873

the name slist. 1 The simplest list that is part of the STL is the doubly linked list ,
which is the template class named list . The difference between these two kinds of lists
is illustrated in Display 19.4 and is described in more detail in Section 17.1 .

 The lists in Display 19.4 contain the three integer values 1 , 2 , and 3 in that order.
The types for the two lists are slist<int> and list<int> . The display also indicates
the location of the iterators begin() and end() . We have not yet told you how you
can enter the integers into the lists.

 In Display 19.4 we have drawn our singly and doubly linked lists as nodes and
pointers of the form discussed in Chapter 17 . The STL class list and the nonstandard
class slist might (or might not) be implemented in this way. However, when using
the STL template classes, you are shielded from these implementation details. So, you
simply think in terms of locations for the data (which may or may not be nodes) and of
iterators (not pointers). You can think of the arrows in Display 19.4 as indicating the
directions for ++ (which is down) and –– (which is up).

 We presented the template class slist to help give a context for the sequential
containers. It corresponds to what we discussed in Chapter 17 and is the first thing

 Display 19.4 Two Kinds of Lists

1

2

3

slist : A singly linked list
++ defined; -- not defined

list: A doubly linked list
Both ++ and -- defined

1

2

3

begin()

end()

begin()

end()

slist is not part of the
STL and may not always
be implemented. list is
part of the STL.

1 The Silicon Graphics version of the STL includes slist and is distributed with the g++ com-
piler. SGI provides a very useful reference document for its STL version that is applicable to almost
 every one’s STL.

doubly
linked list

slist and
list

874 CHAPTER 19 Standard Template Library

that comes to the mind of most programmers when you mention linked lists . However,
since the template class slist is not standard, we will not discuss it further. If your
implementation offers the template class slist and you want to use it, the details
are similar to those we will describe for list , except that the decrement operators ––
(prefix and postfix) are not defined for slist .

 A simple program using the STL template class list is given in Display 19.5. The
function push_back adds an element to the end of the list. Notice that for the list
template class, the dereferencing operator gives you access for reading and for changing
the data. Also notice that with the list template class and all the template classes and
iterators of the STL, all definitions are placed in the std namespace.

 Note that Display 19.5 would compile and run exactly the same if we replaced list
and list<int> with vector and vector<int> , respectively. This uniformity of usage
is a key part of the STL syntax.

 There are, however, differences between a vector and a list container. One of the
main differences is that a vector container has random-access iterators, whereas a list
has only bidirectional iterators. For example, if you start with Display 19.2 , which uses
random access, and replace all occurrences of vector and vector<char> with list
and list<char> , respectively, and then compile the program, you will get a compiler
error. (You will get an error message even if you delete the statements containing
container[i] or container[2] .)

 The basic sequential container template classes of the STL are listed in
Display 19.6. Other containers, such as stacks and queues, can be obtained from these
using techniques discussed in the subsection entitled “The Container Adapters stack
and queue .” A sample of some member functions of the sequential container classes is
given in Display 19.7 . All these sequence template classes have a destructor that returns
storage for recycling.

Deque is pronounced “d-queue” or “deck” and stands for “doubly ended queue.”
A deque is a kind of super queue. With a queue, you add data at one end of the data
sequence and remove data from the other end. With a deque, you can add data at
either end and remove data from either end. The template class deque is a template
class for a deque with a parameter for the type of data stored.

push_back

memory
management

deque

 Sequential Containers
A sequential container arranges its data items into a list so that there is a first element, a
next element, and so forth, up to a last element. The sequential container template classes
that we have discussed are slist, list, vector, and deque.

www.itpub.net

Containers 875

Display 19.5 Using the list Template Class

1 //Program to demonstrate the STL template class list.
2 #include <iostream>
3 #include <list>
4 using std::cout;
5 using std::endl;
6 using std::list;

7 int main()
8 {
9 list<int> listObject;

10 for (int i = 1; i <= 3; i++)
11 listObject.push_back(i);

12 cout << "List contains:\n"
13 list<int>::iterator iter;
14 for (iter = listObject.begin(); iter != listObject.end();

 iter++)
15 cout << *iter << " ";
16 cout << endl;

17 cout << "Setting all entries to 0:\n"
18 for (iter = listObject.begin(); iter != listObject.end();

 iter++)
19 *iter = 0;

20 cout << "List now contains:\n"
21 for (iter = listObject.begin(); iter != listObject.end();

 iter++)
22 cout << *iter << " ";
23 cout << endl;

24 return 0;
25 }

Sample Dialogue

List contains:

1 2 3

Setting all entries to 0:

List now contains:

0 0 0

876 CHAPTER 19 Standard Template Library

Display 19.6 STL Basic Sequential Containers

TEMPLATE
CLASS NAME ITERATOR TYPE NAMES KIND OF ITERATORS

LIBRARY
HEADER FILE

slist
(Warning:
slist is
not part
of the STL.)

slist<T>::iterator
slist<T>::const_iterator

Mutable forward
Constant forward

<slist>
Depends
on implemen-
tation and
may not be
available.)

list list<T>::iterator
list<T>::const_iterator
list<T>::reverse_iterator
list<T>::const_reverse_
iterator

Mutable bidirectional
Constant bidirectional
Mutable bidirectional
Constant bidirectional

<list>

vector vector<T>::iterator
vector<T>::const_iterator
vector<T>::reverse_
iterator
vector<T>::const_reverse_
iterator

Mutable random access
Constant random access
Mutable random access
Constant random access

<vector>

deque deque<T>::iterator
deque<T>::const_iterator
deque<T>::reverse_
iterator
deque<T>::const_reverse_
iterator

Mutable random access
Constant random access
Mutable random access
Constant random access

<deque>

 Display 19.7 Some Sequential Container Member Functions (part 1 of 2)

 MEMBER FUNCTION (c IS A
CONTAINER OBJECT) MEANING

c.size() Returns the number of elements in the container.

c.begin() Returns an iterator located at the first element in the
container.

c.end() Returns an iterator located one beyond the last element
in the container.

c.rbegin() Returns an iterator located at the last element in the
container. Used with reverse_iterator. Not a
member of slist.

www.itpub.net

Containers 877

c.rend() Returns an iterator located one beyond the first element
in the container. Used with reverse_iterator. Not
a member of slist.

c.push_back(Element) Inserts the Element at the end of the sequence. Not a
member of slist.

c.push_front(Element) Inserts the Element at the front of the sequence. Not a
member of vector.

c.insert(Iterator,Element) Inserts a copy of Element before the location of Iterator.

c.erase(Iterator) Removes the element at location Iterator. Returns an
iterator at the location immediately following. Returns
c.end() if the last element is removed.

c.clear() A void function that removes all the elements in the
container.

c.front() Returns a reference to the element in the front of the
sequence. Equivalent to *(c.begin()).

c1 == c2 True if c1.size() == c2.size() and each element
of c1 is equal to the corresponding element of c2.

c1 != c2 !(c1 == c2)

All the sequence containers discussed in this section also have a default constructor, a copy
constructor, and various other constructors for initializing the container to default or specified
elements. Each also has a destructor that returns all storage for recycling, and a well-behaved
assignment operator.

Display 19.7 Some Sequential Container Member Functions (part 2 of 2)

 PITFALL: Iterators and Removing Elements

 Adding or removing an element to or from a container can affect other iterators. In
general, there is no guarantee that the iterators will be located at the same element
after an addition or deletion. Some containers do, however, guarantee that the
iterators will not be moved by additions or deletions, except of course if the iterator is
located at an element that is removed.

 Of the template classes we have seen so far, list and slist guarantee that their
iterators will not be moved by additions or deletions, except of course if the iterator is
located at an element that is removed. The template classes vector and deque make
no such guarantee. ■

878 CHAPTER 19 Standard Template Library

 TIP: Type Definitions in Containers

 The STL container classes contain type definitions that can be handy when
programming with these classes. We have already seen that STL container classes
may contain the type names iterator , const_iterator , reverse_iterator , and
const_reverse_iterator (and hence must contain their type definitions behind
the scene). There are typically other type definitions as well.

 The type value_type is the type of the elements stored in the container, and
size_type is an unsigned integer type that is the return type for the member func-
tion size . For example, list<int>::value_type is another name for int . All the
template classes we have discussed so far have the defi ned types value_type and
size_type . ■

Self-Test Exercises

 7. What is a major difference between vector and list?

 8. Which of the template classes slist, list, vector, and deque have the
member function push_back?

 9. Which of the template classes slist, list, vector, and deque have random-
access iterators?

10. Which of the template classes slist, list, vector, and deque can have
mutable iterators?

 The Container Adapters stack and queue

 Container adapters are template classes that are implemented on top of other classes.
For example, the stack template class is by default implemented on top of the deque
template class, which means that buried in the implementation of the stack is a deque
where all the data resides. However, you are shielded from this implementation detail
and see a stack as a simple last-in/first-out data structure.

 Other container adapter classes are the queue and priority_queue template
classes. Stacks and queues were discussed in Chapter 17 . A priority queue is a queue
with the additional property that each entry is given a priority when it is added to the
queue. If all entries have the same priority, then entries are removed from a priority
queue in the same manner as they are removed from a queue. If items have different
priorities, the higher-priority items are removed before lower-priority items. We will
not discuss priority queues in any detail, but mention it for those who may be familiar
with the concept.

priority queue

www.itpub.net

Containers 879

 Although an adapter template class has a default container class on top of which it
is built, you may choose to specify a different underlying container, for efficiency or
other reasons, depending on your application. For example, any sequence container
may serve as the underlying container for the stack template class, and any sequence
container other than vector may serve as the underlying container for the queue
template class. The default underlying data structure is the deque for both the stack
and the queue . For a priority_queue , the default underlying container is a vector .
If you are happy with the default underlying container type, then a container adapter
looks like any other template container class to you. For example, the type name for
the stack template class using the default underlying container is stack<int> for a
stack of int s. If you wish to specify that the underlying container is instead the vector
template class, you would use stack<int, vector<int>> as the type name. Make
sure to always insert a space between the two > symbols. We will always use the default
underlying container.

 The member functions and other details about the stack template class are given
in Display 19.8 . The details for the queue template class are given in Display 19.9 .
A simple example of using the stack template class is given in Display 19.10 .

Warning!

 PITFALL: Underlying Containers

 If you specify an underlying container, be warned that you should not place two >
symbols in the type expression without a space in between them, or the compiler can
be confused. Use stack<int, vector<int> > , with a space between the last two > s.
Do not use stack<int, vector<int>> . ■

Self-Test Exercises

11. What kind of iterators (forward, bidirectional, or random access) does the
stack template adapter class have?

12. What kind of iterators (forward, bidirectional, or random access) does the
queue template adapter class have?

13. If s is a stack<char>, what is the type of the returned value of s.pop()?

880 CHAPTER 19 Standard Template Library

 Display 19.8 The stack Template Class

stack ADAPTER TEMPLATE CLASS DETAILS

Type name : stack<T> or stack<T, Sequence_Type> for a stack of elements of type T.
Library header: <stack>, which places the definition in the std namespace.
Defined types: value_type, size_type.
There are no iterators.

SAMPLE MEMBER FUNCTIONS

 MEMBER FUNCTION
(s IS A STACK OBJECT) MEANING

s.size() Returns the number of elements in the stack.

s.empty() Returns true if the stack is empty; otherwise, returns false.

s.top() Returns a mutable reference to the top member of the stack.

s.push(Element) Inserts a copy of Element at the top of the stack.

s.pop() Removes the top element of the stack. Note that pop is a void
function. It does not return the element removed.

s1 == s2 True if s1.size() == s2.size() and each element of s1
is equal to the corresponding element of s2; otherwise, returns
false.

The stack template class also has a default constructor, a copy constructor, and a constructor
that takes an object of any sequence class and initializes the stack to the elements in the
sequence. It also has a destructor that returns all storage for recycling, and a well-behaved
assignment operator.

 Display 19.9 The queue Template Class (part 1 of 2)

queue ADAPTER TEMPLATE CLASS DETAILS

Type name: queue<T> or queue<Sequence_Type, T> for a queue of elements of type T. For
efficiency reasons, the Sequence_Type cannot be a vector type.
Library header: <queue>, which places the definition in the std namespace.
Defined types: value_type, size_type.
There are no iterators.

www.itpub.net

Containers 881

SAMPLE MEMBER FUNCTIONS

 MEMBER FUNCTION
(q IS A QUEUE OBJECT) MEANING

q.size() Returns the number of elements in the queue.

q.empty() Returns true if the queue is empty; otherwise, returns false.

q.front() Returns a mutable reference to the front member of the queue.

q.back() Returns a mutable reference to the last member of the queue.

q.push(Element) Adds Element to the back of the queue.

q.pop() Removes the front element of the queue. Note that pop is a void
function. It does not return the element removed.

q1 == q2 True if q1.size() == q2.size() and each element of q1 is
equal to the corresponding element of q2; otherwise, returns false.

The queue template class also has a default constructor, a copy constructor, and a constructor that
takes an object of any sequence class and initializes the stack to the elements in the sequence. It
also has a destructor that returns all storage for recycling, and a well-behaved assignment operator.

Display 19.9 The queue Template Class (part 2 of 2)

 Display 19.10 Program Using the stack Template Class (part 1 of 2)

1 //Program to demonstrate use of the stack template class from the STL.
2 #include <iostream>
3 #include <stack>
4 using std::cin;
5 using std::cout;
6 using std::endl;
7 using std::stack;

8 int main()
9 {

10 stack< char> s;
11 cout << "Enter a line of text:\n";
12 char next;
13 cin.get(next);

(continued)

882 CHAPTER 19 Standard Template Library

14 while (next != '\n')
15 {
16 s.push(next);
17 cin.get(next);
18 }

19 cout << "Written backward that is:\n";
20 while (! s.empty())
21 {
22 cout << s.top();
23 s.pop();
24 }
25 cout << endl;

26 return 0;
27 }

 Sample Dialogue

Enter a line of text:
straw
Written backward that is:
warts

 The member function pop removes
one element, but does not return that
element. pop is a void function.
Therefore, we needed to use top to
read the element we removed.

Display 19.10 Program Using the stack Template Class (part 2 of 2)

 The Associative Containers set and map

Associative containers are basically very simple databases. They store data, such as
struct s or any other type of data. Each data item has an associated value known as
its key . For example, if the data is a struct with an employee’s record, the key might
be the employee’s Social Security number. Items are retrieved on the basis of the key.
The key type and the type for data to be stored need not have any relationship to one
another, although they often are related. A very simple case is when each data item is its
own key. For example, in a set , every element is its own key.

 The set template class is, in some sense, the simplest container you can imagine.
It stores elements without repetition. The first insertion places an element in the set.
Additional insertions after the first have no effect, so that no element appears more
than once. Each element is its own key. Basically, you just add or delete elements and
ask if an element is in the set or not. Like all STL classes, the set template class was
written with efficiency as a goal. To work efficiently, a set object stores its values in
sorted order. You can specify the order used for storing elements as follows:

set<T, Ordering> s;

key

set

www.itpub.net

Containers 883

Ordering should be a well-behaved ordering relation that takes two arguments of type
T and returns a bool value. 2 T is the type of elements stored. If no ordering is specified,
then the ordering is assumed to use the < relational operator. Some basic details about
the set template class are given in Display 19.11 . A simple example that shows how to
use some of the member functions of the template class set is given in Display 19.12 .

 A map is essentially a function given as a set of ordered pairs. For each value
first that appears in a pair, there is at most one value second such that the pair
(first,second) is in the map. The template class map implements map objects in the
STL. For example, if you want to assign a unique number to each string name, you
could declare a map object as follows:

map<string, int> numberMap;

 For string values known as keys , the numberMap object can associate a unique int value.
 An alternate way to think of a map is as an associative array . A traditional array

maps from a numerical index to a value. For example, a[10]=5 would store the
number 5 at index 10. An associative array allows you to define your own indices using
the data type of your choice. For example, numberMap["c++"]=5 would associate the
integer 5 with the string "c++" . For convenience, the [] square bracket operator is
defined to allow you to use an array-like notation to access a map, although you can
also use the insert or find methods if you want.

 Like a set object, a map object stores its elements sorted by its key values. You can
specify the ordering on keys as a third entry in the angular brackets, < >. If you do not
specify an ordering, a default ordering is used. The restrictions on orderings you can
use are the same as those on the orderings allowed for the set template class. Note that
the ordering is on key values only. The second type can be any type and need not have
anything to do with any ordering. As with the set object, the sorting of the stored
entries in a map object is done for reasons of efficiency.

 The easiest way to add and retrieve data from a map is to use the [] operator. Given
a map object m , the expression m[key] will return a reference to the data element
associated with key . If no entry exists in the map for key then a new entry will be created
with the default value for the data element. This can be used to add a new item to the
map or to replace an existing entry. For example, the statement m[key] = newData;
will create a new association between key and newData . Note that care must be taken
to ensure that map entries are not created by mistake. For example, if you execute the
statement val = m[key]; with the intention of retrieving the value associated with key
but mistakenly enter a value for key that is not already in the map, then a new entry will
be made for key with the default value and assigned into val .

2 The ordering must be a strict weak ordering . Most typical ordering used to implement the < operator
is strict weak ordering. For those who want the details, a strict weak ordering must be one of the
 following: (irreflexive) Ordering(x, x) is always false ; (antisymmetric) Ordering(x, y) implies
!Ordering(y, x); (transitive) Ordering(x, y) and Ordering(y, z) implies Ordering(x, z); and (transitivity of
equivalence) if x is equivalent to y and y is equivalent to z , then x is equivalent to z . Two elements x and
y are equivalent if Ordering(x, y) and Ordering(y, x) are both false .

map

associative
array

884 CHAPTER 19 Standard Template Library

 Display 19.11 The set Template Class

set TEMPLATE CLASS DETAILS

Type name : set<T> or set<T, Ordering> for a set of elements of type T. The Ordering is used to
sort elements for storage. If no Ordering is given, the ordering used is the binary operator, <.
Library header : <set>, which places the defi nition in the std namespace .
Defined types include value_type, size_type.
Iterators: iterator, const_iterator, reverse_iterator, and const_reverse_iterator.
All iterators are bidirectional and those not including const_ are mutable. begin(), end(),
rbegin(), and rend() have the expected behavior. Adding or deleting elements does not affect
iterators, except for an iterator located at the element removed.

SAMPLE MEMBER FUNCTIONS

 MEMBER FUNCTION
(s IS A SET OBJECT) MEANING

s.insert(Element) Inserts a copy of Element in the set. If Element is already in the set,
this has no effect.

s.erase(Element) Removes Element from the set. If Element is not in the set, this has
no effect.

s.find(Element) Returns an iterator located at the copy of Element in the set. If
Element is not in the set, s.end() is returned. Whether the iterator
is mutable or not is implementation dependent.

s.erase(Iterator) Erases the element at the location of the Iterator.

s.size() Returns the number of elements in the set.

s.empty() Returns true if the set is empty; otherwise, returns false.

s1 == s2 Returns true if the sets contain the same elements; otherwise,
returns false.

The set template class also has a default constructor, a copy constructor, and other specialized
constructors not mentioned here. It has a destructor as well that returns all storage for recycling,
and a well-behaved assignment operator.

 Display 19.12 Program Using the set Template Class (part 1 of 2)

1 //Program to demonstrate use of the set template class.
2 #include <iostream>
3 #include <set>
4 using std::cout;
5 using std::endl;
6 using std::set;

www.itpub.net

Containers 885

7 int main()
8 {
9 set<char> s;

10 s.insert('A');
11 s.insert('D');
12 s.insert('D');
13 s.insert('C');
14 s.insert('C');
15 s.insert('B');

16 cout << "The set contains:\n";
17 set< char>::const_iterator p;
18 for (p = s.begin(); p != s.end(); p++)
19 cout << *p << " ";
20 cout << endl;

21 cout << "Set contains 'C': ";
22 if (s.find('C')==s.end())
23 cout << " no " << endl;
24 else
25 cout << " yes " << endl;

26 cout << "Removing C.\n";
27 s.erase('C');
28 for (p = s.begin(); p != s.end(); p++)
29 cout << *p << " ";
30 cout << endl;

31 cout << "Set contains 'C': ";
32 if (s.find('C')==s.end())
33 cout << " no " << endl;
34 else
35 cout << " yes " << endl;

36 return 0;
37 }

 Sample Dialogue

The set contains:
A B C D
Set contains 'C': yes
Removing C.
A B D
Set contains 'C': no

Display 19.12 Program Using the set Template Class (part 2 of 2)

 No matter how many times you add
an element to a set, the set
contains only one copy of that
element.

886 CHAPTER 19 Standard Template Library

 Some basic details about the map template class are given in Display 19.13 . In order to
understand these details, you need to first know something about the pair template class.

 Display 19.13 The map Template Class

map TEMPLATE CLASS DETAILS

Type name : map<KeyType, T> or map<KeyType, T, Ordering> for a map that associates (“maps”)
elements of type KeyType to elements of type T. The Ordering is used to sort elements by key value for
efficient storage. If no Ordering is given, the ordering used is the binary operator, <.

Library header : <map>, which places the definition in the std namespace.

Defined types : include key_type for the type of the key values, mapped_type for the type of the
values mapped to, and size_type. (So, the defined type key_type is simply what we called
KeyType above.)

Iterators: iterator, const_iterator, reverse_iterator , and const_reverse_iterator.
All iterators are bidirectional. Those iterators not including const_ are neither constant nor mutable but
something in between. For example, if p is of type iterator, then you can change the key value but
not the value of type T. Perhaps it is best, at least at first, to treat all iterators as if they were constant.
begin(), end(), rbegin(), and rend() have the expected behavior. Adding or deleting
elements does not affect iterators, except for an iterator located at the element removed.

SAMPLE MEMBER FUNCTIONS

 MEMBER FUNCTION
(m IS A MAP OBJECT) MEANING

m.insert(Element) Inserts Element in the map. Element is of type pair<KeyType,
T>. Returns a value of type pair<iterator, bool>. If the
insertion is successful, the second part of the returned pair is
true and the iterator is located at the inserted element.

m.erase(Target_Key) Removes the element with the key Target_Key.

m.find(Target_Key) Returns an iterator located at the element with key value
Target_Key. Returns m.end() if there is no such element.

m[Target_Key] Returns a reference to the object associated with the
Target_Key. If the map does not already contain such an
object, then a default object of type T is inserted.

m.size() Returns the number of pairs in the map.

m.empty() Returns true if the map is empty; otherwise, returns false.

m1 == m2 Returns true if the maps contain the same pairs; otherwise,
returns false.

The map template class also has a default constructor, a copy constructor, and other specialized
constructors not mentioned here. It has a destructor as well that returns all storage for recycling,
and a well-behaved assignment operator.

pair

www.itpub.net

Containers 887

 The STL template class pair<T1, T2> has objects that are pairs of values such
that the first element is of type T1 and the second is of type T2 . If aPair is an object
of type pair<T1, T2> , then aPair.first is the first element, which is of type T1 ,
and aPair.second is the second element, which is of type T2 . The member variables
first and second are public member variables, so no accessor or mutator functions
are needed.

 The header file for the pair template is <utility> . So, to use the pair template
 class, you need the following (or something like it) in your file:

#include <utility>
using std::pair;

 The map template class uses the pair template class to store the association between
the key and a data item. For example, given the definition

map<string, int> numberMap;

 if we add to the map

numberMap["c++"] = 10;

 then when we access this pair using an iterator, iterator->first will refer to the key
"c++" while iterator->second will refer to the data value 10 .

 A simple example that shows how to use some of the member functions of the
template class map is given in Display 19.14 .

 We will mention four other associative containers, although we will not give any
details about them. The template classes multiset and multimap are essentially the
same as set and map , respectively, except that multiset allows repetition of elements
and multimap allows multiple values to be associated with each key value. Some
implementations of STL also include the hash_set and hash_map classes. These
template classes are essentially the same as set and map , except they are implemented
using a hash table. Hash tables are described in Chapter 17 . Instead of hash tables,
most implementations of the set and map classes use balanced binary trees. In a
balanced binary tree, the number of nodes to the left of the root is approximately equal
to the number of nodes to the right of the root. Binary search trees are also described in
 Chapter 17 , although we do not discuss details of balancing them.

 Efficiency

 The STL implementations strive to be optimally efficient. For example, the set and
map elements are stored in sorted order so that algorithms that search for the elements
can be more efficient.

 Each of the member functions for each of the template classes has a guaranteed
maximum running time. These maximum running times are expressed using what
is called big- O notation , which we discuss in Section 19.3 . (Section 19.3 also gives
some guaranteed running times for some of the container member functions we
have already discussed. These are given in the subsection entitled “Container Access
Running Times.”) You will be told the guaranteed maximum running times for certain
functions described in the rest of this chapter.

888 CHAPTER 19 Standard Template Library

 Display 19.14 Program Using the map Template Class (part 1 of 2)

1 //Program to demonstrate use of the map template class.
2 #include <iostream>
3 #include <map>
4 #include <string>
5 using std::cout;
6 using std::endl;
7 using std::map;
8 using std::string;

9 int main()
10 {
11 map<string, string> planets;

12 planets["Mercury"] = "Hot planet";
13 planets["Venus"] = "Atmosphere of sulfuric acid";
14 planets["Earth"] = "Home";
15 planets["Mars"] = "The Red Planet";
16 planets["Jupiter"] = "Largest planet in our solar system";
17 planets["Saturn"] = "Has rings";
18 planets["Uranus"] = "Tilts on its side";
19 planets["Neptune"] = "1500 mile-per-hour winds";
20 planets["Pluto"] = "Dwarf planet";

21 cout << "Entry for Mercury - " << planets["Mercury"]
22 << endl << endl;

23 if (planets.find("Mercury") != planets.end())
24 cout << "Mercury is in the map." << endl;
25 if (planets.find("Ceres") == planets.end())
26 cout << "Ceres is not in the map." << endl << endl;

27 cout << "Iterating through all planets: " << endl;
28 map<string, string>::const_iterator iter;
29 for (iter = planets.begin(); iter != planets.end(); iter++)
30 {
31 cout << iter->first << " - " << iter->second << endl;
32 }
33 return 0;
34 }

 Sample Dialogue

Entry for Mercury - Hot planet

Mercury is in the map.
Ceres is not in the map.

 The iterator will
output the map in
order sorted by
the key. In this
case, the output
will be listed
alphabetically by
planet.

www.itpub.net

Generic Algorithms 889

 19.3 Generic Algorithms

 “And if you take one from three hundred and sixty-five, what remains?”
“Three hundred and sixty-four, of course.”
 Humpty Dumpty looked doubtful. “I'd rather see that done on paper,” he said.

 LEWIS CARROLL, Through the Looking-Glass

 This section covers some basic function templates in the STL. We cannot give you a
comprehensive description of them all here, but we will present a large enough sample
to give you a good feel for what is contained in the STL and to give you sufficient
detail to start using these template functions.

 These template functions are sometimes called generic algorithms . The term
algorithm is used for a reason. Recall that an algorithm is just a set of instructions
for performing a task. An algorithm can be presented in any language, including a
programming language like C++. But, when using the word algorithm , programmers
typically have in mind a less formal presentation given in English or pseudocode.
As such, it is often thought of as an abstraction of the code defining a function. It

Iterating through all planets:
Earth - Home
Jupiter - Largest planet in our solar system
Mars - The Red Planet
Mercury - Hot planet
Neptune - 1500 mile-per-hour winds
Pluto - Dwarf planet
Saturn - Has rings
Uranus - Tilts on its side
Venus - Atmosphere of sulfuric acid

Display 19.14 Program Using the map Template Class (part 2 of 2)

 Self-Test Exercises

 14. Why are the elements in the set template class stored in sorted order?

 15. Can a set have elements of a class type?

 16. Suppose s is of the type set<char> . What value is returned by s.find('A') if
'A' is in s ? What value is returned if 'A' is not in s ?

 17. How many elements will be in the map mymap after the following code executes?

map<int, string> mymap;
mymap[5] = "c++";
cout << mymap[4] << endl;

generic
algorithm

890 CHAPTER 19 Standard Template Library

gives the important details but not the fine details of the coding. The STL specifies
certain details about the algorithms underlying the STL template functions, which is
why they are sometimes called generic algorithms . These STL function templates do
more than just deliver a value in any way that the implementers wish. The function
templates in the STL come with minimum requirements that must be satisfied by
their implementations if they are to satisfy the standard. In most cases, they must be
implemented with a guaranteed running time. This adds an entirely new dimension to
the idea of a function interface. In the STL, the interface not only tells a programmer
what the function does and how to use the functions, but also how rapidly the task
will be done. In some cases, the standard even specifies the particular algorithm that
is used, although not the exact details of the coding. Moreover, when it does specify
the particular algorithm, it does so because of the known efficiency of the algorithm.
The key new point is the specification of an efficiency guarantee for the code. In this
chapter, we will use the terms generic algorithm , generic function , and STL function
template to all mean the same thing.

 In order to have some terminology to discuss the efficiency of these template
functions or generic algorithms, we first present some background on how the
efficiency of algorithms is usually measured.

 Running Times and Big- O Notation

 If you ask a programmer how fast his or her program is, you might expect an answer
like “two seconds.” However, the speed of a program cannot be given by a single
number. A program will typically take a longer amount of time on larger inputs than
it will on smaller inputs. You would expect that a program for sorting numbers would
take less time to sort 10 numbers than it would to sort 1000 numbers. Perhaps it takes
2 seconds to sort 10 numbers, but 10 seconds to sort 1000 numbers. How then should
the programmer answer the question “How fast is your program?” The programmer
would have to give a table of values showing how long the program takes for different
sizes of input. For example, the table might be as shown in Display 19.15 . This table
does not give a single time, but instead gives different times for a variety of different
input sizes.

 The table is a description of what is called a function in mathematics. Just as a (non-
void) C ++ function takes an argument and returns a value, so too does this function
take an argument, which is an input size, and returns a number, which is the time the
program takes on an input of that size. If we call this function T , then T (10) is 2 seconds,
T (100) is 2.1 seconds, T (1000) is 10 seconds, and T (10,000) is 2.5 minutes. The
table is just a sample of some of the values of this function T . The program will take
some amount of time on inputs of every size. So although they are not shown in the
table, there are also values for T (1), T (2), . . ., T (101), T (102), and so forth. For
any positive integer N , T (N) is the amount of time it takes for the program to sort
N numbers. The function T is called the running time of the program.

 So far we have been assuming that this sorting program will take the same amount
of time on any list of N numbers. That need not be true. Perhaps it takes much less
time if the list is already sorted or almost sorted. In that case, T (N) is defined to be the
time taken by the “hardest” list—that is, the time taken on that list of N numbers that

mathematical
function

running time

www.itpub.net

Generic Algorithms 891

makes the program run the longest. This is called the worst-case running time . In this
chapter, we will always mean worst-case running time when we give a running time for
an algorithm or for some code.

 The time taken by a program or algorithm is often given by a formula, such as
4N + 3, 5 N + 4, or N 2 . If the running time T(N) is 5 N + 5, then on inputs of size N
the program will run for 5 N + 5 time units.

 The following is some code to search an array a with N elements to determine
whether a particular value target is in the array:

int i = 0;
bool found = false;
while ((i < N) && !(found))

if (a[i] == target)
 found = true;

else
 i++;

worst-case
running

time

 Display 19.15 Some Values of a Running Time Function

 INPUT SIZE RUNNING TIME

10 numbers 2 seconds

100 numbers 2.1 seconds

1000 numbers 10 seconds

10,000 numbers 2.5 minutes

 We want to compute some estimate of how long it will take a computer to execute this
code. We would like an estimate that does not depend on which computer we use,
either because we do not know which computer we will use or because we might use
several different computers to run the program at different times.

 One possibility is to count the number of “steps,” but it is not easy to decide what a
step is. In this situation the normal thing to do is count the number of operations . The
term operations is almost as vague as the term step , but there is at least some agreement
in practice about what qualifies as an operation. Let us say that, for this C++ code, each
application of any of the following will count as an operation: = , < , && , ! , [] , == , and
++ . The computer must do other things besides carry out these operations, but these
seem to be the main things that it is doing, and we will assume that they account for
the bulk of the time needed to run this code. In fact, our analysis of time will assume
that everything else takes no time at all and that the total time for our program to run
is equal to the time needed to perform these operations. Although this is an idealization
that clearly is not completely true, it turns out that this simplifying assumption works
well in practice, and so it is often made when analyzing a program or algorithm.

 Even with our simplifying assumption, we still must consider two cases: Either the
value target is in the array or it is not. Let us first consider the case when target is
not in the array. The number of operations performed will depend on the number of
array elements searched. The operation = is performed two times before the loop is

operations

892 CHAPTER 19 Standard Template Library

executed. Since we are assuming that target is not in the array, the loop will be executed
N times, one for each element of the array. Each time the loop is executed, the following
operations are performed: < , && , ! , [] , == , and ++ . This adds five operations for each
of N loop iterations. Finally, after N iterations, the Boolean expression is again checked
and found to be false . This adds a final three operations (< , && , !). 3 If we tally all these
operations, we get a total of 6 N + 5 operations when the target is not in the array. We
will leave it as an exercise for the reader to confirm that if the target is in the array, then
the number of operations will be 6 N + 5 or fewer . Thus, the worst-case running time is
T (N) = 6 N + 5 operations for any array of N elements and any value of target .

 We just determined that the worst-case running time for our search code is 6 N + 5
operations. But an operation is not a traditional unit of time, like a nanosecond,
second, or minute. If we want to know how long the algorithm will take on some
particular computer, we must know how long it takes that computer to perform
one operation. If an operation can be performed in one nanosecond, then the time
will be 6 N + 5 nanoseconds. If an operation can be performed in one second, the
time will be 6 N + 5 seconds. If we use a slow computer that takes ten seconds to
perform an operation, the time will be 60 N + 50 seconds. In general, if it takes the
computer c nanoseconds to perform one operation, then the actual running time will be
approximately c (6 N + 5) nanoseconds. (We said approximately because we are making
some simplifying assumptions, and therefore the result may not be the absolutely exact
running time.) This means that our running time of 6 N + 5 is a very crude estimate.
To get the running time expressed in nanoseconds, you must multiply by some constant
that depends on the particular computer you are using. Our estimate of 6 N + 5 is only
accurate to within a constant multiple.

 Estimates on running time, such as the one we just went through, are normally
expressed in something called big-O notation . (The O is the letter “Oh,” not the digit
zero.) Suppose we estimate the running time to be, say, 6 N + 5 operations, and suppose
we know that no matter what the exact running time of each different operation may
turn out to be, there will always be some constant factor c such that the real running
time is less than or equal to

c 16N + 52

 Under these circumstances, we say that the code (or program or algorithm) runs in
time O (6 N + 5). This is usually read as “big- O of 6 N + 5.” We need not know what
the constant c will be. In fact, it will undoubtedly be different for different computers,
but we must know that there is one such c for any reasonable computer system. If the
computer is very fast, the c might be less than 1—say, 0.001. If the computer is very
slow, the c might be very large—say, 1000. Moreover, since changing the units (say
from nanosecond to second) involves only a constant multiple, there is no need to give
any units of time.

 Be sure to notice that a big- O estimate is an upper-bound estimate. We always
approximate by taking numbers on the high side rather than the low side of the true

3 Because of short-circuit evaluation, !(found) is not evaluated, so we actually get two, not three,
operations. However, the important thing is to obtain a good upper bound. If we add in one extra
operation, that is not significant.

big-O
notation

www.itpub.net

Generic Algorithms 893

count. Also notice that when performing a big- O estimate, we need not determine an
exact count of the number of operations performed. We need only an estimate that is
correct up to a constant multiple. If our estimate is twice as large as the true number,
that is good enough.

 An order-of-magnitude estimate, such as the previous 6 N + 5, contains a parameter
for the size of the task solved by the algorithm (or program or piece of code). In our
sample case, this parameter N was the number of array elements to be searched. Not
surprisingly, it takes longer to search a larger number of array elements than it does to
search a smaller number of array elements. Big- O running-time estimates are always
expressed as a function of the size of the problem. In this chapter, all our algorithms
will involve a range of values in some container. In all cases, N will be the number of
elements in that range.

 The following is an alternative, pragmatic way to think about big- O estimates:

 Look only at the term with the highest exponent and do not pay attention to constant
multiples.

 For example, all of the following are O (N 2):

N2 + 2N + 1, 3N2 + 7, 100N2 + N

 All of the following are O (N 3):

N3 + 5N2 + N + 1, 8N3 + 7, 100N3 + 4N + 1

 These big- O running-time estimates are admittedly crude, but they do contain
some information. They will not distinguish between a running time of 5 N + 5 and a
running time of 100 N , but they do let us distinguish between some running times and so
determine that some algorithms are faster than others. Look at the graphs in Display 19.16
and notice that all the graphs for functions that are O (N) eventually fall below the graph
for the function 0.5 N 2 . The result is inevitable: An O (N) algorithm will always run faster
than any O (N 2) algorithm, provided we use large enough values of N . Although an O (N 2)
algorithm could be faster than an O (N) algorithm for the problem size you are handling,
programmers have found that, in practice, O (N) algorithms perform better than O (N)
algorithms for most practical applications that are intuitively “large.” Similar remarks
apply to any other two different big- O running times.

 Some terminology will help with our descriptions of generic algorithm running
times. Linear running time means a running time of T (N) = aN + b . A linear running
time is always an O (N) running time. Quadratic running time means a running time
with a highest term of N 2 . A quadratic running time is always an O (N 2) running time.
We will also occasionally have logarithms in running-time formulas. Those normally
are given without any base, since changing the base is just a constant multiple. If you
see log N , think log base 2 of N , but it would not be wrong to think log base 10 of N .
Logarithms are very slow-growing functions. So, an O (log N) running time is very fast.

 In many cases, our running-time estimates will be better than big- O estimates. In
particular, when we specify a linear running time, that is a tight upper bound; you
can think of the running time as being exactly T (N) = cN , although the c is still
not specified.

size of task

linear
running time

quadratic
running time

894 CHAPTER 19 Standard Template Library

 Container Access Running Times

 Now that we know about big- O notation, we can express the efficiency of some of the
accessing functions for container classes that we discussed in Section 19.2 . Insertions
at the back of a vector (push_back), the front or back of a deque (push_back and
push_front), and anywhere in a list (insert) are all O (1) (that is, a constant upper
bound on the running time that is independent of the size of the container). Insertion
or deletion of an arbitrary element for a vector or deque is O (N) where N is the
number of elements in the container. For a set or map finding, (find) is O (log N)
where N is the number of elements in the container.

 Display 19.16 Comparison of Running Times

T(N
) =

 0.
5N

2

T(N
) =

 N
 +

2

T
(N

)
(r

un
ni

ng
 ti

m
e)

N (problem size)

T(N
) =

 N
T(N

) =
 2N

 Self-Test Exercises

 18. Show that a running time T(N) = aN + b is an O(N) running time. (Hint : The
only issue is the plus b . Assume N is always at least 1.)

 19. Show that for any two bases a and b for logarithms, if a and b are both greater than
1, then there is a constant c such that log a N … c (log b N). Thus, there is no need to
specify a base in O (log N). That is, O (log a N) and O (log b N) mean the same thing.

www.itpub.net

Generic Algorithms 895

 Nonmodifying Sequence Algorithms

 This section describes template functions that operate on containers but do not modify
the contents of the container in any way. A good simple and typical example is the
generic find function.

 The generic find function is similar to the find member function of the set
template class but is a different find function. The generic find function can be
used with any of the STL sequence container classes. Display 19.17 shows a sample
use of the generic find function used with the class vector<char> . The function
in Display 19.17 would behave exactly the same if we replaced vector<char> by
list<char> throughout, or if we replaced vector<char> by any other sequence
container class. That is one of the reasons why the functions are called generic : One
definition of the find function works for a wide selection of containers.

 Display 19.17 The Generic find Function (part 1 of 2)

1 //Program to demonstrate use of the generic find function.
2 #include <iostream>
3 #include <vector>
4 #include <algorithm>
5 using std::cin;
6 using std::cout;
7 using std::endl;
8 using std::vector;
9 using std::find;

10 int main()
11 {
12 vector< char> line;

13 cout << "Enter a line of text:\n";
14 char next;
15 cin.get(next);
16 while (next != '\n';
17 {
18 line.push_back(next);
19 cin.get(next);
20 }

21 vector< char>::const_iterator where;
22 where = find(line.begin(), line.end(), 'e');
23 //where is located at the first occurrence of 'e' in v.

24 vector< char>::const_iterator p;
25 cout << "You entered the following before you"

 << "entered your first line:\n";
26 for (p = line.begin(); p != where; p++)
27 cout << *p;
28 cout << endl;

(continued)

If find does not find what it is looking
for, it returns its second argument.

896 CHAPTER 19 Standard Template Library

29 cout << "You entered the following after that:\n";
30 for (p = where; p != line.end(); p++)
31 cout << *p;
32 cout << endl;

33 cout << "End of demonstration.\n";
34 return 0;
35 }

 Sample Dialogue 1

Enter a line of text

A line of text.

You entered the following before you entered your first e:

A lin

You entered the following after that:

e of text.

End of demonstration.

 Sample Dialogue 2

Enter a line of text

I will not!

You entered the following before you entered your first e:

I will not!

You entered the following after that:

End of demonstration.

Display 19.17 The Generic find Function (part 2 of 2)

 If find does not find what it
is looking for, it returns
 line.end() .

 If the find function does not find the element it is looking for, it returns its second
iterator argument, which need not be equal to some end() as it is in Display 19.17 .
Sample Dialogue 2 in that display shows the situation when find does not find what
it is looking for.

 Does find work with absolutely any container? No, not quite. To start with, it takes
iterators as arguments, and some containers, such as stack , do not have iterators. To
use the find function, the container must have iterators, the elements must be stored
in a linear sequence so that the ++ operator moves iterators through the container, and
the elements must be comparable using == . In other words, the container must have
forward iterators (or some stronger kind of iterators, such as bidirectional iterators).

 When presenting generic function templates, we will describe the iterator type
parameter by using the name of the required kind of iterator as the type parameter
name. So, ForwardIterator should be replaced by a type that is a type for some kind
of forward iterator, such as the iterator type in a list , vector , or other container
template class. Remember, a bidirectional iterator is also a forward iterator, and a random-
access iterator is also a bidirectional iterator. Thus, the type name ForwardIterator can

www.itpub.net

Generic Algorithms 897

be used with any iterator type that is a bidirectional or random-access iterator type as well
as a plain-old forward iterator type. In some cases, when we specify ForwardIterator ,
you can use an even simpler iterator kind—namely, an input iterator or output iterator.
Because we have not discussed input and output iterators, however, we do not mention
them in our function template declarations.

 Remember that the names forward iterator , bidirectional iterator , and random-access
iterator refer to kinds of iterators, not type names. The actual type names will be
something like std::vector<int>::iterator , which in this case happens to be a
random-access iterator.

 Display 19.18 gives a sample of some nonmodifying generic functions in the STL.
 Display 19.18 uses a notation that is common when discussing container iterators.
The iterator locations encountered in moving from an iterator first to—but not
including—an iterator last are called the range . For example, the following for loop
outputs all the elements in the range [first,last) :

for (iterator p = first; p != last; p++)
cout << *p << endl;

 Note that when two ranges are given, they need not be in the same container or
even the same type of container. For example, for the search function, the ranges
[first1,last1) and [first2,last2) may be in the same or different containers.

 Notice that there are three search functions in Display 19.18 : find , search , and
binary_search . The function search searches for a subsequence, while the find and
binary_search functions search for a single value. How do you decide whether to use find
or binary_search when searching for a single element? One function returns an iterator
whereas the other returns just a Boolean value, but that is not the biggest difference. The
binary_search function requires that the range being searched be sorted (into ascending
order using <) and run in time O (log N), whereas the find function does not require that
the range be sorted, but guarantees only linear time. If you have or can have the elements in
sorted order, you can search for them much more quickly by using binary_search .

range
[first,

last)

 Range [first, last)
The movement from some iterator first, often container.begin(), up to but not
including some location last, often container.end(), is so common it has come to have
a special name, range [first, last). For example, the following code outputs all elements
in the range [c.begin(), c.end()), where c is some container object, such as a vector:

for (iterator p = c.begin(); p != c.end(); p++)
cout << *p << endl;

 Note that with the binary_search function, you are guaranteed that the
implementation will use the binary search algorithm , which was discussed in Chapter 13 .
The importance of using the binary search algorithm is that it guarantees a very fast
running time, O (log N). If you have not read Chapter 13 and have not otherwise heard
of a binary search, just think of it as a very efficient search algorithm that requires that the
elements be sorted. Those are the only two points about binary searches that are relevant
to the material in this chapter.

898 CHAPTER 19 Standard Template Library

 Display 19.18 Some Nonmodifying Generic Functions

template < class ForwardIterator, class T>
ForwardIterator find(ForwardIterator first, ForwardIterator last,

const T& target);
//Traverses the range [first, last) and returns an iterator located at
//the first occurrence of target. Returns second if target is not found.
//Time complexity: linear in the size of the range [first, last).

template < class ForwardIterator, class T>

int4 count(ForwardIterator first, ForwardIterator last, const T& target);
//Traverse the range [first, last) and returns the number
//of elements equal to target.
//Time complexity: linear in the size of the range [first, last).

template < class ForwardIterator1, class ForwardIterator2>
bool equal(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
//Returns true if [first1, last1) contains the same elements in the same
//order as the first last1-first1 elements starting at first2.
//Otherwise, returns false.
//Time complexity: linear in the size of the range [first, last).

template < class ForwardIterator1, class ForwardIterator2>

ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

//Checks to see if [first2, last2) is a subrange of [first1, last1).
//If so, it returns an iterator located in [first1, last1) at the start
//of the first match. Returns last1 if a match is not found.
//Time complexity: quadratic in the size of the range [first1, last1).

template < class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& target);
//Precondition: The range [first, last) is sorted into ascending order
//using <.
//Uses the binary search algorithm to determine if target is in the
//range [first, last).
//Time complexity: For random-access iterators O(log N). For nonrandom-
//access iterators linear in N, where N is the size of the range [first,
//last).

 These functions all work for forward iterators, which means they also work for bidirectional
and random-access iterators. (In some cases, they even work for other kinds of iterators
that we have not covered in any detail.)

4 The actual return type is an integer type that we have not discussed, but the returned value should be
assignable to a variable of type int.

www.itpub.net

Generic Algorithms 899

 Modifying Sequence Algorithms

 Display 19.19 contains descriptions of some of the generic functions in the STL that
change the contents of a container in some way.

 Remember that adding or removing an element to or from a container can affect any
of the other iterators. There is no guarantee that the iterators will be located at the same
element after an addition or deletion unless the container template class makes such a
guarantee. Of the template classes we have seen, list and slist guarantee that their
iterators will not be moved by additions or deletions, except of course if the iterator is
located at an element that is removed. The template classes vector and deque make
no such guarantee. Some of the function templates in Display 19.19 guarantee the
values of some specific iterators; you can, of course, count on those guarantees no
matter what the container is.

 Self-Test Exercises

 20. Replace all occurrences of the identifi er vector with the identifi er list in
 Display 19.17 . Compile and run the program.

 21. Suppose v is an object of the class vector<int> . Use the search generic
function (Display 19.18) to write some code to determine whether or not v
contains the number 42 immediately followed by 43 . You need not give a
complete program, but do give all necessary include and using directives.
(Hint : It may help to use a second vector.)

 Display 19.19 Some Modifying Generic Functions (part 1 of 2)

template < class T>
void swap(T& variable1, T& variable2);
//Interchanges the values of variable1 and variable2.

template < class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 copy(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
//last2 is such that the ranges [first1, last1) and [first2, last2) are
//the same size.
//Action: Copies the elements at locations [first1, last1) to
//locations [first2, last2). Returns last2.
//Time complexity: linear in the size of the range [first1, last1).
template < class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& target);

 The name of the iterator type parameter tells the kind of iterator for which the function works.
Remember that these are minimum iterator requirements. For example, ForwardIterator works
for forward iterators, bidirectional iterators, and random-access iterators.

(continued)

900 CHAPTER 19 Standard Template Library

//Removes those elements equal to target from the range [first, last).
//The size of the container is not changed. The removed values equal to
//target are moved to the end of the range [first, last). There is then
//an iterator i in this range such that all the values not equal to
//target are in [first, i). This i is returned. Time complexity: linear
//in the size of the range [first, last).

template < class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);
//Reverses the order of the elements in the range [first, last).
//Time complexity: linear in the size of the range [first, last).

template < class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,
 RandomAccessIterator last);
//Uses a pseudorandom number generator to randomly reorder the elements
//in the range [first, last).
//Time complexity: linear in the size of the range [first, last).

 Self-Test Exercises

 22. Can you use the random_shuffle template function with a list container?

 23. Can you use the copy template function with vector containers, even though
copy requires forward iterators and vector has random-access iterators?

 Set Algorithms

 Display 19.20 shows a sample of the generic set operation functions defined in the
STL. Note that generic algorithms assume that the containers store their elements
in sorted order. The containers set , map , multiset , and multimap do store their
elements in sorted order; therefore, all the functions in Display 19.20 apply to these
four template class containers. Other containers, such as vector , do not store their
elements in sorted order; these functions should not be used with such containers.
The reason for requiring that the elements be sorted is so that the algorithms can be
more efficient.

Display 19.19 Some Modifying Generic Functions (part 2 of 2)

www.itpub.net

Generic Algorithms 901

 Display 19.20 Set Operations

template < class ForwardIterator1, class ForwardIterator2>
bool includes(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
//Returns true if every element in the range [first2, last2) also occurs
//in the range [first1, last1). Otherwise, returns false.
//Time complexity: linear in the size of [first1, last1) plus [first2,
//last2).

template < class ForwardIterator1, class ForwardIterator2,
class ForwardIterator3>

void5 set_union(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,

ForwardIterator3 result);
//Creates a sorted union of the two ranges [first1, last1) and [first2,
//last2). The union is stored starting at result.
//Time complexity: linear in the size of [first1, last1) plus [first2,
//last2).

template <class ForwardIterator1, class ForwardIterator2,
class ForwardIterator3>

void5 set_intersection(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,

ForwardIterator3 result);
//Creates a sorted intersection of the two ranges [first1, last1) and
//[first2, last2). The intersection is stored starting at result.
//Time complexity: linear in the size of [first1, last1) plus [first2,
//last2).

template < class ForwardIterator1, class ForwardIterator2,
class ForwardIterator3>

void5 set_difference(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,

ForwardIterator3 result);
//Creates a sorted set difference of the two ranges [first1, last1) and
//[first2, last2). The difference consists of the elements in the first
//range that are not in the second. The result is stored starting at
//result. Time complexity: linear in the size of [first1, last1) plus
//[first2, last2).

 These functions work for sets, maps, multisets , and multimaps (and other containers)
but do not work for all containers. For example, they do not work for vectors, lists ,
or deques unless their contents are sorted. For these to work, the elements in the container
must be stored in sorted order. These all work for forward iterators, which means
they also work for bidirectional and random-access iterators. (In some cases, they
even work for other kinds of iterators that we have not covered in any detail.)

5 Returns an iterator of type ForwardIterator3 but can be used as a void function.

902 CHAPTER 19 Standard Template Library

 Self-Test Exercise

 24. The mathematics course version of a set does not keep its elements in sorted
order, and it has a union operator. Why does the set_union template function
require that the containers keep their elements in sorted order?

 Sorting Algorithms

 Display 19.21 gives the declarations and documentation for two template functions:
one to sort a range of elements and one to merge two sorted ranges of elements. Note
that the sorting function sort guarantees a running time of O (N log N). Although
it is beyond the scope of this book , it can be shown that you cannot write a sorting
algorithm that is faster than O (N log N). So, this function guarantees that the sorting
algorithm is as fast as possible, up to a constant multiple.

 Display 19.21 Some Generic Sorting Algorithms

template < class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);
//Sorts the elements in the range [first, last) into ascending order.
//Time complexity: O(N log N), where N is the size of the range [first,
//last).

template < class ForwardIterator1, class ForwardIterator2,
class ForwardIterator3>

void merge(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator3 result);

//Precondition: The ranges [first1, last1) and [first2, last2) are
//sorted.
//Action: Merges the two ranges into a sorted range [result, last3)
//where last3 = result + (last1 - first1) + (last2 - first2).
//Time complexity: linear in the size of the range [first1, last1)
//plus the size of [first2, last2).

 Sorting uses the < operator, and so the < operator must be defined.
There are other versions, not given here, that allow you to provide the ordering relation.
“Sorted” means sorted into ascending order.

 Chapter Summary

• An iterator is a generalization of a pointer. Iterators are used to move through the
elements in some range of a container. The operations ++ , -- , and dereferencing *
are usually defined for an iterator.

www.itpub.net

Answers to Self-Test Exercises 903

• Container classes with iterators have member functions end() and begin() that return
iterator values such that you can process all the data in the container as follows:

for (p = c.begin(); p != c.end(); p++)

 process *p //*p is the current data item.

• The main kinds of iterators are as follows.
 Forward iterators: ++ works on the iterator.
 Bidirectional iterators: Both ++ and -- work on the iterator.
 Random-access iterators: ++ , -- , and random access all work with the iterator.

• With a constant iterator p , the dereferencing operator *p produces a read-only version
of the element. With a mutable iterator p , *p can be assigned a value.

• A bidirectional container has reverse iterators that allow your code to cycle through
the elements in the container in reverse order.

• The main container template classes in the STL are list , which has mutable
 bidirectional iterators; and the template classes vector and deque , both of which
have mutable random-access iterators.

• stack and queue are container adapter classes, which means they are built on top of
other container classes. A stack is a last-in/first-out container. A queue is a first-in/
first-out container.

• The set , map , multiset , and multimap container template classes store their elements
in sorted order for efficiency of search algorithms. A set is a simple collection of
 elements. A map allows storing and retrieving by key values. The multiset class allows
repetitions of entries. The multimap class allows a single key to be associated with
multiple data items.

• The STL includes template functions to implement generic algorithms with
 guarantees on their maximum running time.

 Answers to Self-Test Exercises

 1. v.begin() returns an iterator located at the first element of v . v.end() returns
a value that serves as a sentinel value at the end of all the elements of v .

 2. *p is the dereferencing operator applied to p . *p is a reference to the element at
location p .

 3. using std::vector<int>::iterator;
...

 iterator p;
 for (p = v.begin(), p++; p != v.end(); p++)

 cout << *p << " ";

 4. D C C

 5. B C

 6. Either would work.

904 CHAPTER 19 Standard Template Library

 7. A major difference is that a vector container has random-access iterators, whereas
list has only bidirectional iterators.

 8. All except slist .

 9. vector and deque .

 10. They all can have mutable iterators.

 11. The stack template adapter class has no iterators.

 12. The queue template adapter class has no iterators.

 13. No value is returned; pop is a void function.

 14. To facilitate an efficient search for elements.

 15. Yes, they can be of any type, although there is only one type for each object. The
type parameter in the template class is the type of element stored.

 16. If 'A' is in s , then s.find('A') returns an iterator located at the element 'A' . If
'A' is not in s , then s.find('A') returns s.end() .

 17. mymap will contain two entries. One is a map from 5 to "c++" and the other is a
map from 4 to the default string, which is blank.

 18. Just note that aN + b … (a + b) N , as long as 1 … N .

 19. This is mathematics, not C++. So, = will mean equals , not assignment .

 First note that log a N = (log a b)(log b N).

 To see this first identity, just note that if you raise a to the power log a N , you get N
and if you raise a to the power (log a b)(log b N), you also get N .

 If you set c = (log a b) you get log a N = c (log b N).

 20. The programs should run exactly the same.

 21. #include <iostream>
#include <vector>
#include <algorithm>
using std::cout;
using std::vector;
using std::search;
...
vector<int> target;
target.push_back(42);
target.push_back(43);
vector<int>::const_iterator result = search(v.begin(), v.end(),
 target.begin(), target.end());
if (result != v.end())
 cout << "Found 42, 43.\n";
else
 cout << "42, 43 not there.\n";

 22. No, you must have random-access iterators, and the list template class only has
bidirectional iterators.

 23. Yes, a random-access iterator is also a forward iterator.

www.itpub.net

Programming Projects 905

 24. The set_union template function requires that the containers keep their elements in
sorted order to allow the function template to be implemented in a more efficient way.

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. The point of this exercise is to demonstrate that an object that behaves like an iterator
is an iterator. More precisely, if an object accesses some container and behaves like an
iterator of a particular strength, then that object can be used as an iterator to manipu-
late the container with any of the generic functions that require an iterator having
that strength. However, while the generic algorithms can be used with this container,
the member functions, such as begin and end , will (of course) not be present (for
example, in an array) unless they have been explicitly coded for that container. We
will restrict this exercise to arrays of double , but the same message would hold true
for any base type.

 a. Argue from the properties of random-access iterators that a pointer that points
to an element of an array behaves exactly as a random-access iterator.

 b. Argue further that

 i) the name of the array is a pointer to double that points to the first element
and so the array name can serve as a “begin” iterator and

 ii) (the array’s name) + (the size of the array) can serve as an “end” pointer. (Of
course, this points one past the end, as it should.)

 c. Write a short program in which you declare an array of double of size 10, and
populate this array with 10 double s. Then call the sort generic algorithm with
these pointer values as arguments and display the results.

 2. This problem intends to illustrate removal of several instances of a particular item
from a container with the remove generic function. A side effect is to examine
the behavior of the generic function remove that comes with your compiler. (We
have observed some variation in the behavior of remove from one compiler to
another.) Before you start, look up the behavior of the remove generic algorithm
as described by your favorite STL document or Web site. (For example, point
your browser at http://www.sgi.com/tech/stl/remove.html . This worked
as of the publication date.)

 a. Modify the array declaration in Programming Project 19.1 to include several
 elements with the same value (say, 4.0, but you can use any value for this
 exercise). Make sure that some of these are not all together. Use the modifying
generic function remove (see Display 19.19) to remove all elements 4.0 (that
is, the value you duplicated in building the array). Test.

 b. Use the array of double from part a to build a list and a vector that have the
same contents as the array. Do this using the container constructor that takes
two iterators as arguments. The vector and list classes each have a construc-
tor that takes two iterators as arguments and initializes the vector or list to

www.myprogramminglab.com
http://www.sgi.com/tech/stl/remove.html

906 CHAPTER 19 Standard Template Library

the items in the iterator interval. The iterators can be located in any container,
including in an array. Build the vector and list using the array name for
the begin iterator and the name + array length as the end iterator for the two
constructor arguments. Use the modifying algorithm remove (Display 19.19)
to remove from the list and from the vector all elements equal to 4.0 (or the
value you duplicated in building the array). Display the contents of the vector
and list and explain the results.

 c. Modify the code from part b to assign to an iterator variable of appropriate type
the iterator value returned by the call to the remove generic function. Review
the documentation for remove to be certain you know what these iterator values
mean. Output the contents of the array, the vector and the list , begin()
to end() , using the “begin” and “end” we described previously for the array.
Output the contents of the two containers starting at the iterator returned from
remove to the end() of each container. Explain your results.

 3. A prime number is an integer greater than 1 and divisible only by itself and 1. An
integer x is divisible by an integer y if there is another integer z such x = y*z . The
Greek mathematician Erathosthenes (pronounced Er-ah - tos-thin-eeze) gave an al-
gorithm for finding all prime numbers less than some integer N . This algorithm
is called the S ieve of Erathosthenes . It works like this: Begin with a list of integers 2
through N . The number 2 is the first prime. (It is instructive to consider why this
is true.) The multiples of 2—that is, 4, 6, 8, etc.—are not prime . We cross these off
the list. Then the first number after 2 that was not crossed off, which is 3, is the
next prime. The multiples of 3 are not primes . Cross these off the list. Note that 6
is already gone, cross off 9, 12 is already gone, cross off 15, etc. The first number
not crossed off is the next prime. The algorithm continues on this fashion until we
reach N . All the numbers not crossed off the list are primes.

 a. Write a program using this algorithm to find all primes less than a user-supplied
number N . Use a vector container for the integers. Use an array of bool initially
set to all true to keep track of crossed off integers. Change the entry to false
for integers that are crossed off the list.

 b. Test for N = 10, 30, 100, and 300.

 Improvements:

 c. Actually, we do not need to go all the way to N . You can stop at N√2. Try this
and test your program. N√2 works and is better, but is not the smallest number
we could use. Argue that to get all the primes between 1 and N the minimum
limit is the square root of N .

 d. Modify your code from part a to use the square root of N as an upper limit.

 4. Suppose you have a collection of student records. The records are structures
of the following type:

struct StudentInfo
{
 string name;

int grade;
};

www.itpub.net

Programming Projects 907

 The records are maintained in a vector<StudentInfo> . Write a program that
prompts for and fetches data and builds a vector of student records, then sorts
the vector by name, calculates the maximum and minimum grades, and the class
average, then prints this summarizing data along with a class roll with grades. (We
are not interested in who had the maximum and minimum grade, though, just
the maximum, minimum, and average statistics.) Test your program.

 5. Continuing Programming Project 19.4 , write a function that separates the students
in the vector of StudentInfo records into two vectors, one containing records of
passing students and one containing records of failing students. (Use a grade of 60
or better for passing.)

 You are asked to do this in two ways, and to give some run-time estimates.

 a. Consider continuing to use a vector. You could generate a second vector of pass-
ing students and a third vector of failing students. This keeps duplicate records
for at least some of the time, so do not do it that way. You could create a vector
of failing students and a test-for-failing function. Then you push_back failing
student records, then erase (which is a member function) the failing student
records from the original vector. Write the program this way.

 b. Consider the efficiency of this solution. You are potentially erasing O (N) mem-
bers from the middle of a vector. You have to move a lot of members in this
case. Erase from the middle of a vector is an O (N) operation. Give a big- O
estimate of the running time for this program.

 c. If you used a list<StudentInfo>, what is the run time for the erase and
insert functions? Consider how the time efficiency of erase for a list affects
the runtime for the program. Rewrite this program using a list instead of a
vector . Remember that a list provides neither indexing nor random access,
and its iterators are only bidirectional, not random access.

 6. a. Here is pseudocode for a program that inputs a value n from the user and then
inserts n random numbers, ensuring that there are no duplicates:

Input n from user
Create vector v of type int
Loop i = 1 to n

r = random integer between 0 and n-1
 Linearly search through v for value r
 if r is not in vector v then add r to the end of v
End Loop
Print out number of elements added to v

 Implement this program with your own linear search routine and add wrapper
code that will time how long it takes to run. Test the program for different
values of n . Depending on the speed of your system, you may need to input
large values for n so that the program takes at least one second to run. Here is
a sample that indicates how to calculate the difference in time: (time.h is a
library that should be available on your version of C ++).

908 CHAPTER 19 Standard Template Library

#include <time.h>

time_t start,end;
double dif;

time (&start); // Record start time
// Rest of program goes here.
time (&end); // Record end time
dif = difftime(end,start);
cout << "It took " << dif << " seconds to execute. " << endl;

 b. Next, create a second program that has the same behavior except that it uses an
STL set to store the numbers instead of a vector:

Input n from user
Create set s of type int
Loop i = 1 to n

r = random integer between 0 to n-1
 Use s.find(r) to search if r is already in the set
 if r is not in set s then add r to s
End Loop
Print out number of elements added to s

 Time your new program with the same values of n that you used in the vector
version. What do the results tell you about the Big- O run time of the find()
function for the set compared with linear search through the vector? Note that
the find() function is really redundant because insert has no effect if the
element is already in the set. However, use the find() function anyway to
create a program comparable to the vector algorithm.

 7. Modify your program from part a of Programming Project 19.6 so that the generic
find function is used to search the vector for an existing value in place of your own
code. You may wish to test your program with sample data to make sure that it is
working correctly.

 8. The field of information retrieval is concerned with finding relevant electronic
documents based on a query. For example, given a group of keywords, a search
engine retrieves Web pages (documents) and displays them in order, with the most
relevant documents listed first. This technology requires a way to compare a docu-
ment with the query to see which is most relevant to the query.

 A simple way to make this comparison is to compute the binary cosine coefficient.
The coefficient is a value between 0 and 1, where 1 indicates that the query is
very similar to the document and 0 indicates that the query has no keywords
in common with the document. This approach treats each document as a set of
words. For example, consider the following sample document:

 “Cows are big. Cows go moo. I love cows.”

www.itpub.net

Programming Projects 909

 This document would be parsed into keywords where case is ignored and
punctuation discarded and turned into the set containing the words “{cows, are,
big, go, moo, i, love}”. An identical process is performed on the query.

 Once we have a query Q represented as a set of words and a document D
represented as a set of words, the similarity between the query and document is
computed by

Sim =
� Q x D �2 � Q �2 � D �

 For example, if D = {cows, are, big, go, moo, i, love} and Q = {love, holstein,
cows} then

Sim =
� 5love, cows6 �2 � Q �2 � D �

=
22327

= 0 .436

 Write a program that allows the user to input a set of strings that represents a
document and a set of strings that represents a query. (If you are more ambitious,
you could write a program that parses an actual text file and computes the set of
unique strings.) Represent the document and query as an STL set of strings. Then
compute and print out the similarity between the query and document using
the binary cosine coefficient. The sqrt function is in cmath . Use the generic
set_intersection function to compute the intersection of Q and D .

 Here is an example of set_intersection to intersect set A with B and store the
result in C, where all sets are sets of strings:

#include <iterator>
#include <algorithm>
#include <set>
#include <string>
...
using std::insert_iterator;

set<string> A,B,C;
// Code below assumes strings have been inserted into A and B
// Note space between > > in line below
insert_iterator<set<string> > cIterator(C, C.begin());
set_intersection(A.begin(), A.end(),
 B.begin(),B.end(),
 cIterator);
// set C now contains the intersection of A and B

 9. Re-do or do for the first time Programming Project 5.8 in Chapter 5 . This project
asks you to approximate through simulation the probability that two or more people
in the same room have the same birthday, for two to fifty people in the room.

Solution to
Programming
Project 19.9

VideoNote

910 CHAPTER 19 Standard Template Library

 However, instead of creating a solution that uses arrays, write a solution that uses a
map. Over many trials (say, 5000), randomly assign birthdays (i.e., the numbers 1
through 365, assuming each number has an equal probability) to everyone in the
room. Use a map<int,int> to map from the birthday (1–365) to a count of how
many times that birthday occurs. Initially, each birthday should map to a count of 0.
As the birthdays are randomly generated, increment the corresponding counter
in the map. If a duplicate birthday is detected, then increment a counter for that
trial. Over all trials this counter should indicate how many of those trials had a
duplicate birthday. Divide the counter by the number of trials to get an estimated
probability that two or more people share the same birthday for a given room size.

 Your output should look the same as the output for Programming Project 5.8 in
 Chapter 5 .

 10. You have collected a file of movie ratings where each movie is rated from 1 (bad)
to 5 (excellent). The first line of the file is a number that identifies how many rat-
ings are in the file. Each rating then consists of two lines: the name of the movie
followed by the numeric rating from 1 to 5. Here is a sample rating file with four
unique movies and seven ratings:

7
Happy Feet
4
Happy Feet
5
Pirates of the Caribbean
3
Happy Feet
4
Pirates of the Caribbean
4
Flags of Our Fathers
5
Gigli
1

 Write a program that reads in a file in this format, calculates the average rating for
each movie, and outputs the average along with the number of reviews. Here is
the desired output for the sample data:

Happy Feet: 3 reviews, average of 4.3 / 5
Pirates of the Caribbean: 2 reviews, average of 3.5 / 5
Flags of Our Father: 1 review, average of 5 / 5
Gigli: 1 review, average of 1 / 5

 Use a map or multiple maps to generate the output. Your map should index
from a string representing each movie’s name to integers that store the number of
reviews for the movie and the sum of the ratings for the movie.

www.itpub.net

Programming Projects 911

 11. Write a program that outputs a histogram of grades for an assignment given to a
class of students. The program should input each student’s grade as an integer and
store the grade in a vector. Grades should be entered until the user enters −1 for a
grade. Use a map from an int to an int to compute the histogram. The first integer
in the map represents the grade, and the second integer represents the number of
times that grade occurred. Output the histogram to the console. See Programming
Project 5.7 for information on how to compute a histogram. There should be no
restrictions on the minimum and maximum grade for this programming project.

 12. Consider a text file of names, with one name per line, that has been compiled from
several different sources. A sample is shown in the following:

Brooke Trout
Dinah Soars
Jed Dye
Brooke Trout
Jed Dye
Paige Turner

 There are duplicate names in the file. We would like to generate an invitation
list but do not want to send multiple invitations to the same person. Write a
program that eliminates the duplicate names by using the set template class. Read
each name from the file, add it to the set, and then output all names in the set to
generate the invitation list without duplicates.

 13. Reverse Polish Notation (RPN) or postfix notation is a format to specify math-
ematical expressions. In RPN the operator comes after the operands instead of
the more common format in which the operator is between the operands (this
is called infix notation). Starting with an empty stack, a RPN calculator can be
implemented with the following rules:

• If a number is input, push it on the stack.
• If + is input, then pop the last two operands off the stack, add them, and push

the result on the stack.
• If - is input, then pop value1 , pop value2 , then push value2 - value1 on

the stack.
• If * is input, then pop the last two operands off the stack, multiply them, and

push the result on the stack.
• If / is input, then pop value1 , pop value2 , then push value2 / value1 on

the stack.
• If q is input, then stop inputting values, print out the top of the stack, and exit

the program.

Solution to
Programming
Project 19.12

VideoNote

912 CHAPTER 19 Standard Template Library

 Use the stack template class to implement a RPN calculator. Output an appropriate
error message if there are not two operands on the stack when given an operator.
Here is sample input and output that is equivalent to ((10 - (2 + 3))*2)√5:

10
2
3
+
−
2
*
5
/
q

The top of the stack is: 2

www.itpub.net

20.2 UML 925
History of UML 926
UML Class Diagrams 926
Class Interactions 926

This chapter is available on the book’s website.

20.1 PATTERNS 914
Adapter Pattern 915
The Model-View-Controller Pattern 915
Example: A Sorting Pattern 916
Efficiency of the Sorting Pattern 922
Tip: Pragmatics and Patterns 923
Pattern Formalism 924

20 Patterns and UML

Chapter Summary 927 Answers to Self-Test Exercises 927 Programming Projects 929

This page intentionally left blank

www.itpub.net

 C++ Keywords 1
 The following keywords should not be used for anything other than their predefined purposes in
the C++ language. In particular, do not use them for variable names or names for programmer-
defined functions. In addition to the keywords in the following list, identifiers containing a
double underscore (_ _) are reserved for use by C++ implementations and standard libraries and
should not be used in your code.

asm do inline short typeid
auto double int signed typename
bool dynamic_cast long sizeof union
break else mutable static unsigned
case enum namespace static_cast using
catch explicit new struct virtual
char extern operator switch void
class false private template volatile
const float protected this wchar_t
const_cast for public throw while
continue friend register true
default goto reinterpret_cast try
delete if return typedef

 These alternative representations for operators and punctuation are reserved and also
should not be used otherwise.

and && and_eq &= bitand &
not_eq != or || or_eq |=

bitor | compl ^ not ~
xor ^ xor_eq ^=

This page intentionally left blank

www.itpub.net

 Precedence of Operators 2
 All the operators in a given box have the same precedence. Operators in higher boxes have
higher precedence than operators in lower boxes. Unary operators and the assignment operator
are done right to left when operators have the same precedence. For example, x = y = z means
x = (y = z). Other operators that have the same precedences are done left to right. For example,
x + y + z means (x + y) + z.

:: scope resolution operator

. dot operator
-> member selection
[] array indexing
() function call
++ postfix increment operator (placed after the variable)
-- postfix decrement operator (placed after the variable)
typeid
static_cast
dynamic_cast
CONST_CAST
reinterpret_cast

++ prefix increment operator (placed before the variable)
-- prefix decrement operator (placed before the variable)
! not
- unary minus
+ unary plus
* dereference
& address of
~ complement
new
delete
delete[]
sizeof
(Type) old form of type cast

.* member selection: Object.*Pointer_to_Member
->* member selection: Pointer->*Pointer_to_Member

Highest precedence
(done first)

Lower precedence

918 APPENDIX 2 Precedence of Operators

* multiply
/ divide
% remainder (modulo)

+ addition
- subtraction

<< insertion operator (output), bitwise left shift
>> extraction operator (input), bitwise right shift

< less than <= less than or equal
> greater than >= greater than or equal

== equal
!= not equal

& bitwise and

^ bitwise exclusive or

| bitwise or

&& and

|| or

= assignment
+= add and assign -= subtract and assign
*= multiply and assign %= modulo and assign
<<= << and assign >>= >> and assign
&= & and assign ^= ^ and assign
|= | and assign /= division and assign

?: conditional operator

throw throw exception

, comma

Higher precedence

Lowest precedence
(done last)

www.itpub.net

 The ASCII Character Set

 Only the printable characters are shown. Character number 32 is the blank.

32 56 8 80 P 104 h

33 ! 57 9 81 Q 105 i

34 " 58 : 82 R 106 j

35 # 59 ; 83 S 107 k

36 $ 60 < 84 T 108 l

37 % 61 = 85 U 109 m

38 & 62 > 86 V 110 n

39 ' 63 ? 87 W 111 o

40 (64 @ 88 X 112 p

41) 65 A 89 Y 113 q

42 * 66 B 90 Z 114 r

43 + 67 C 91 [115 s

44 , 68 D 92 \ 116 t

45 - 69 E 93] 117 u

46 . 70 F 94 ^ 118 v

47 / 71 G 95 _ 119 w

48 0 72 H 96 ‘ 120 x

49 1 73 I 97 a 121 y

50 2 74 J 98 b 122 z

51 3 75 K 99 c 123 {

52 4 76 L 100 d 124 |

53 5 77 M 101 e 125 }

54 6 78 N 102 f 126 ~

55 7 79 O 103 g

3

This page intentionally left blank

www.itpub.net

 Some Library Functions 4
 The following lists are organized according to what the function is used for, rather than what
library it is in.

 Arithmetic Functions

 FUNCTION DECLARATION DESCRIPTION HEADER FILE

int abs(int); Absolute value cstdlib

long labs(long); Absolute value cstdlib

double fabs(double); Absolute value cmath

double sqrt(double); Square root cmath

double pow(double, double); Returns the first argument
raised to the power of the
second argument

cmath

double exp(double); Returns e (base of the natural
logarithm) to the power of its
argument

cmath

double log(double); Natural logarithm (ln) cmath

double log10(double); Base 10 logarithm cmath

double ceil(double); Returns the smallest integer that
is greater than or equal to its
argument

cmath

double floor(double); Returns the largest integer that is
less than or equal to its argument

cmath

 Input and Output Member Functions

 FORM OF A FUNCTION CALL DESCRIPTION HEADER FILE

Stream_Var.open
(External_File_Name);

Connects the file with the
External_File_Name to the stream
named by the Stream_Var.
The External_File_Name is a
C-string value.

fstream

Stream_Var.fail(); Returns true if the previous
operation (such as open) on the
stream Stream_Var has failed.

fstream or
iostream

922 APPENDIX 4 Some Library Functions

 FORM OF A FUNCTION CALL DESCRIPTION HEADER FILE

Stream_Var.close(); Disconnects the stream
Stream_Var from the file it is
connected to.

fstream

Stream_Var.bad(); Returns true if the stream
Stream_Var is corrupted.

fstream or
iostream

Stream_Var.eof(); Returns true if the program has
attempted to read beyond the last
character in the file connected
to the input stream Stream_Var.
Otherwise, it returns false.

fstream or
iostream

Stream_Var.get(Char_Variable); Reads one character from the
input stream Stream_Var and
sets the Char_Variable equal to
this character. Does not skip over
whitespace.

fstream or
iostream

Stream_Var.getline(String_Var,
Max_Characters +1);

One line of input from the
stream Stream_Var is read and
the resulting string is placed in
String_Var. If the line is more than
Max_Characters long, only the
first Max_Characters are read. The
declared size of the String_Var
should be Max_Characters
+1 or larger.

fstream or
iostream

Stream_Var.peek(); Reads one character from the input
stream Stream_Var and returns
that character. The character read
is not removed from the input
stream; the next read will read the
same character.

fstream or
iostream

Stream_Var.put(Char_Exp); Writes the value of the Char_Exp
to the output stream Stream_Var.

fstream or
iostream

Stream_Var.putback(Char_Exp); Places the value of Char_Exp in
the input stream Stream_Var so
that that value is the next input
value read from the stream. The
file connected to the stream is not
changed.

fstream or
iostream

Stream_Var.precision(Int_Exp); Specifies the number of digits
output after the decimal point for
floating-point values sent to the
output stream Stream_Var.

fstream or
iostream

Stream_Var.width(Int_Exp); Sets the field width for the next value
output to the stream Stream_Var.

fstream or
iostream

www.itpub.net

 Some Library Functions APPENDIX 4 923

 FORM OF A FUNCTION CALL DESCRIPTION HEADER FILE

Stream_Var.setf(Flag); Sets flags for formatting output
to the stream Stream_Var.
See Display 12.5 for the list of
possible flags.

fstream or
iostream

Stream_Var.unsetf(Flag); Unsets flags for formatting
output to the stream Stream_Var.
See Display 12.5 for the list of
possible flags.

fstream or
iostream

 Character Functions

 For all of these, the actual type of the argument is int , but for most purposes you can think of
the argument type as char . For tolower and toupper , the type returned is truly an int . To
use the value returned as a value of type char , you must perform an explicit or implicit typecast.

 FUNCTION DECLARATION DESCRIPTION HEADER FILE

bool isalnum(char); Returns true if its argument
satisfies either isalpha or
isdigit. Otherwise returns false.

cctype

bool isalpha(char); Returns true if its argument is
an upper- or lowercase letter.
It may also return true for
other arguments. The details
are implementation dependent.
Otherwise returns false.

cctype

bool isdigit(char); Returns true if its argument is a
digit. Otherwise returns false.

cctype

bool ispunct(char); Returns true if its argument is a
printable character that does not
satisfy isalnum and that is not
whitespace. (These characters are
considered punctuation characters.)
Otherwise returns false.

cctype

bool isspace(char); Returns true if its argument
is a whitespace character (e.g.,
blank, tab, newline). Otherwise
returns false.

cctype

bool iscntrl(char); Returns true if its argument is
a control character. Otherwise
returns false.

cctype

 FUNCTION DECLARATION DESCRIPTION HEADER FILE

bool islower(char); Returns true if its argument is
a lowercase letter. Otherwise
returns false.

cctype

bool isupper(char); Returns true if its argument is
an uppercase letter. Otherwise
returns false.

cctype

int tolower(char); Returns the lowercase version
of its argument. If there are no
lowercase versions, returns its
argument unchanged.

cctype

int toupper(char); Returns the uppercase version
of its argument. If there are no
uppercase versions, returns its
argument unchanged.

cctype

 C-String Functions

 FUNCTION DECLARATION DESCRIPTION HEADER FILE

int atoi(const char a[]); Converts a C-string of characters
to an integer.

cstdlib

long atol(const char a[]); Converts a C-string of characters
to a long integer.

cstdlib

double atof(const char a[]); Converts a C-string of characters
to a double.

cstdliba

strcat(C-String_Variable,
 C-String_Expression);

Appends the value of the
C-String_Expression to the end of
the string in the C-String_Variable.

cstring

strcmp(C-String_Exp1,
 C-String_Exp2)

Returns true if the values
of the two string expressions
are different; otherwise,
returns false.b

cstring

strcpy(C-String_Variable,
 C-String_Expression);

Changes the value of the
C-String_Variable to the value of
the C-String_Expression.

cstring

strlen(C-String_Expression) Returns the length of the
C-String_Expression.

cstring

aSome implementations place it in cmath.
bReturns an integer that is less than zero, zero, or greater than zero accordingly as C-String_Exp1 is
less than, equal to, or greater than C-String_Exp2, respectively. The ordering is lexicographic ordering.

924 APPENDIX 4 Some Library Functions

www.itpub.net

 Some Library Functions APPENDIX 4 925

 FUNCTION DECLARATION DESCRIPTION HEADER FILE

strncat(C-String_Variable,
 C-String_Expression, Limit);

Same as strcat except that
at most Limit characters
are appended.

cstring

strncmp(C-String_Exp1,
 C-String_Exp2, Limit)

Same as strcmp except that
at most Limit characters
are compared.

cstring

strncpy(C-String_Variable,
 C-String_Expression, Limit);

Same as strcat except that
at most Limit characters
are copied.

cstring

strstr(C-String_Expression,
 Pattern)

Returns a pointer to the first
occurrence of the string Pattern in
C-String_Expression. Returns NULL
if the Pattern is not found.

cstring

strchr(C-String_Expression,
 Character)

Returns a pointer to the first
occurrence of the Character in
C-String_Expression. Returns
NULL if Character is not found.

cstring

strrchr(C-String_Expression,
 Character)

Returns a pointer to the last
occurrence of the Character in
C-String_Expression. Returns
NULL if Character is not found.

cstring

 string Class Functions

 In all cases the header file is string .

 CONSTRUCTORS

string Variable_Name; Default constructor constructs an
empty string.

string Variable_Name(string_Object); Copy constructor.

string Variable_Name(C-String); C-string to string constructor.

 ELEMENT ACCESS

string_Object[i] Read/write access to character at
index i.

string_Object.at(i) Read/write access to character at
index i.

string_Object.substr(Position, Length) Returns the substring of the calling
object starting at Position and having
Length character.

 ASSIGNMENT/MODIFIERS

string_Object1 = string_Object2; Allocates space and initializes it to
string_Object2's data, releases memory
allocated for string_Object1, sets
string_Object1's size to that of
string_Object2.

string_Object1 += string_Object2; Character data of string_Object2 is
concatenated to the end of string_Object1;
the size is set appropriately.

string_Object.empty() Returns true if string_Object is
an empty string; otherwise,
returns false.

string_Object1 + string_Object2 Returns a string that has
string_Object2's data concatenated
onto the end of string_Object1's data.
The size is set appropriately.

string_Object1.insert(Position,
string_Object2);

Inserts string_Object2 into
string_Object1 beginning at Position.

string_Object.remove(Position, Length); Removes substring of size Length
starting at Position.

 COMPARISONS

string_Object1 == string_Object2
string_Object1!= string_Object2

Compare for equality or inequality;
returns a Boolean value.

string_Object1 < string_Object2
string_Object1 > string_Object2
string_Object1 <= string_Object2
string_Object1 >= string_Object2

Lexicographical comparisons.

 FINDS

string_Object1.find(string_Object2) Returns index of the first occurrence of
string_Object2 in string_Object1.

string_Object1.find(string_Object2, Position) Returns index of the first occurrence of
string_Object2 in string_Object1; the
search starts at Position.

string_Object1.find_first(string_Object2,
 Position)

Returns the index of the first instance
in string_Object1 of any character in
string_Object2, starting the search
at Position.

string_Object1.find_first_not_of
(string_Object2, Position)

Returns the index of the first instance
in string_Object1 of any character not
in string_Object2, starting the search
at Position.

aSome implementations place it in cmath.

926 APPENDIX 4 Some Library Functions

www.itpub.net

 Some Library Functions APPENDIX 4 927

 Random Number Generator

 FUNCTION DECLARATION DESCRIPTION HEADER FILE

int random(int); The call random(n) returns a pseudorandom
integer greater than or equal to 0 and less
than or equal to n − 1. (Not available in all
implementations. If not available, then you
must use rand.)

cstdlib

int rand(); The call rand() returns a pseudorandom
integer greater than or equal to 0 and less
than or equal to RAND_MAX. RAND_MAX is a
predefined integer constant that is defined
in cstdlib. The value of RAND_MAX is
implementation dependent but will be at
least 32767.

cstdlib

void srand(unsigned
int);

(The type unsigned
int is an integer type that
allows only nonnegative
values. You can think of
the argument type as int
with the restriction that it
must be nonnegative.)

Reinitializes the random number generator.
The argument is the seed. Calling srand
multiple times with the same argument will
cause rand or random (whichever you use) to
produce the same sequence of pseudorandom
numbers. If rand or random is called without
any previous call to srand, the sequence of
numbers produced is the same as if there had
been a call to srand with an argument of 1.

cstdlib

 Trigonometric Functions

 These functions use radians, not degrees.

 FUNCTION DECLARATION DESCRIPTION HEADER FILE

double acos(double); Arc cosine cmath

double asin(double); Arc sine cmath

double atan(double); Arc tangent cmath

double cos(double); Cosine cmath

double cosh(double); Hyperbolic cosine cmath

double sin(double); Sine cmath

double sinh(double); Hyperbolic sine cmath

double tan(double); Tangent cmath

double tanh(double); Hyperbolic tangent cmath

This page intentionally left blank

www.itpub.net

 Old and New Header Files

 In this book , we have used the header files for standard libraries that are part of the new ANSI/
ISO C++ standard. If you have an older compiler, you may need to use the older header files.
In the following, we list the new header file names that we have used in this book along with
their corresponding older header file names. If the new header files do not work for you, then
try the older header file names instead.

 If your compiler requires the older header file names, then it also may not accommodate
namespaces. In that case, you may have to eliminate all references to namespaces. If you have
a compiler that requires the older header file names and/or does not support namespaces, you
should consider obtaining a new compiler that comes closer to meeting the new standard.

 NEW HEADER FILE CORRESPONDING OLDER HEADER FILE

cassert assert.h

cctype ctype.h

cstddef stddef.h

cstdlib stdlib.h

cmath math.h

cstring string.h

fstream fstream.h

iomanip iomanip.h

iostream iostream.h

string string or no corresponding library

5

This page intentionally left blank

www.itpub.net

931

 Index

 Symbols
 !, 47
 !=, 404 , 793 , 859
 %, 21
 %=, 14
 &, 149 , 155 , 422 , 424
 &&, 46 – 47 , 336
 . See dereferencing () operator
 /*, 36
 */, 36
 *=, 14
 ', 17
 ", 17
 (), 20 , 28 , 47 , 50 , 58
 ;, 77 , 242 , 246
 /, 21 , 22 , 164 – 165
 //, 36
 /=, 14
 \, 17
 \\, 17 , 18
 \", 17 , 18
 \', 18
 \?, 18
 '\0', 369 , 370 , 371 – 372
 \a, 18
 \b, 18
 \f, 18
 \n, 6 , 18 , 29 – 30 , 382 , 383 ,

 386 – 387
 \r, 18
 \t, 18
 \v, 18., 243 – 244 , 255 , 257 , 734 – 735
 +, 323 , 393 , 395
 ++. See increment (++) operator
 +=, 14
 -, 323
 --. See decrement (--) operator
 [], 187 , 197 , 308 , 883
 _, 7
 {}, 58 , 242 , 488
 |, 535
 ||, 48 , 336
 ~, 459 , 460

 <, 48 , 404
 <<, 28

 overloading, 346 – 352 , 354 – 355 , 519
 <=, 46
 =. See assignment (=) operator
 = (equal) operator, 48
 -=, 14
 ==, 59 , 323 , 793 , 859

 with C-strings, 372 – 374
 string class, 404

 >, 48 , 404
 ->, 448 , 735 – 736
 >=, 46
 >>, 379 , 396 , 397 , 399 – 400 , 519 , 547

 overloading, 346 – 352 , 354 – 355 , 519
 : :, 255 – 256 , 257 , 492 , 634 – 635

 A
abs function, 102 – 103 , 104
 Absolute value functions, 102 – 103
 Abstract classes, 671 – 673
 Abstract data types (ADTs), 258 , 264 , 265
 Abstraction

 algorithm, 700
 data, 258 – 259
 procedural, 127 – 128

 Access
 container, running times, 894
 object, by class, 335
 to private members, 650
 random, 865 – 867

 to fi les, 556 – 557
 Accessor functions, 262 – 263
 Activation frame, 583
 Adapters, container, 878 – 882
 Addresses. See also pointers

 of bytes, 190
 numbers and, 422
 pointers, 420 – 437 , 444
 variable, 420 – 421
 of variables, 151 , 190 – 191 , 198

 Addressof (&) operator, 422 , 424
afterMe pointer, 743 – 744

932 Index

 Algorithm abstraction, 700
 Algorithms

 binary search, 595 – 602
 generic, 889 – 902
 linked list search, 748 – 750
 modifying sequence, 899 – 900
 nonmodifying sequence, 895 – 899
 selection sort, 213 – 214
 set, 900 – 902
 sorting, 902

 Ampersand (&) sign, 149 , 155
 Ancestor classes, 620
 And (&&) operator, 46 – 47 , 336
 API (application programmer interface), 264
 Appending, fi les, 522 – 524
 Application fi les, 479 – 481
argc parameter, 376
 Arguments, 101 , 104 – 105

 array, 196 , 199
 arrays as function, 196 – 199
 command-line, 376 – 377
 constructors with no, 281 – 282 , 284 – 285
 C-strings, 375
 default, 171 – 172
 function without, 120 – 121
 indexed variables as function, 195 – 196
 linked lists as, 737
 parameters and, 156
 structures as, 246
 for void functions, 107
 in wrong order, 115

argv parameter, 376
 Arithmetic expressions, 19 – 21

 in cout statements, 28
 evaluating, 49

 Arithmetic functions, 921
 Arithmetic if, 66 – 67
 Arithmetic operations, on pointers,

 444 – 445
 Arithmetic operators, 19 – 21
 Array [] operator, 358 – 360
 Array type, for strings, 368 – 381
 Arrays

 arguments, 196 , 199
 associative, 883
 base type, 187

 class template, 712 – 717
 compared with linked lists, 744 – 745
 declarations, 186 – 190 , 218
 declared size, 187 , 208
 dynamic. See dynamic arrays
 elements, 187
 as function arguments, 196 – 199
 in functions, 195 – 207
 functions that return, 202
 index out of range, 192
 indexes, 189 , 218
 initializing, 192 – 193
 introduction to, 186 – 195
for loops with, 189
 in memory, 190 – 191 , 198
 multidimensional, 218 – 225 , 445 – 447
 parameters, 196 – 199 , 219 – 220
 partially fi lled, 207 – 210 , 456 – 458 ,

 638 – 640 , 719 – 723
 production graph example, 202 – 206
 program using, 188
 programming with, 207 – 218
 referencing, 186 – 190
 searching, 211 – 213 , 595
 size, 187 , 189
 sorting, 213 – 217
 string objects behaving like, 401 – 402
 variables, 437 – 438

 Arrow (->) operator, 448 , 735 – 736
 ASCII character set, 919
 Assert macro, 173 – 174
 Assertions, 173 – 174
 Assignment (=) operator, 10 – 11 , 14 , 59 ,

 311 , 464 , 635
 copy constructors and, 463
 with C-strings, 372 – 374
 in derived classes, 636 – 637
 with dynamic data structures, 747
 overloading, 355 , 449 – 454 , 636 – 637 , 647
 pointer variables with, 424 – 425
 predefi ned, 449 – 450
 string class, 404

 Assignment statements, 10 – 11 , 14
 compatibility, 15
 pointers in, 423 – 424
 structure variables in, 244

www.itpub.net

Index 933

 Associative arrays, 883
 Associative containers, 882 – 887
 Augusta, Ada, 2
 Automatic type conversion, 166 – 168 ,

 336 – 338 , 408
 Automatic variables, 432

 B
 B language, 2
 Back, of list, 770
bad-alloc exception, 850
BankAccount class, 285 – 291 ,

 297 – 299
 Base cases, 579
 Base classes, 614 – 617

 constructors, 624
 private member variables of, 626 – 628

 Base type, of array, 187
basic_string template, 718
begin function, 793 , 862
 Bidirectional iterators, 866 – 868 , 897
 Big- O notation, 887 , 892 – 893
 Binary operators, 323 – 328
 Binary search, 594 – 602
 Binary search tree, 802 – 803
 Binary Search Tree Storage Rule,

 802 – 803 , 808
 Binary trees, 801 – 803
binary_search function, 897
 Bitwise or (|) operator, 535
 Black box, 127 – 128
 Blanks, reading, 382
 Blocks, 131 – 132 , 488 . See also

compound statements
 nested, 132

 Body
 function, 112
 loop, 68

bool type, 9 , 15 , 49
 constants, 17
 integers as, 54 – 55

 Boolean expressions, 46 – 56
 building, 46 – 47
 evaluating, 48 – 50 , 54 – 55
if-else statements, 56 – 58
 precedence rules, 50 – 54

 Boolean values
 functions that return, 118 – 119
 variables and, 15

 Braces {}, 58 , 242 , 488
 Branching mechanisms, 56 – 67

 compound statements, 58 – 60
 conditional operator, 66 – 67
 enumeration types, 66
 function calls in, 132 – 133
if statements, 61
if-else statements, 56 – 58
 multiway if-else statements, 61 – 62
 nested statements, 61
switch statements, 62 – 64

break statement, 64 , 65 , 80 – 81 , 83
 Buffered output, 520 , 522
 Bytes, 190

 C
 C language, 2 – 3
c_str() function, 534
c_strr() function, 408 – 409
 C++ language

 character of, 3 – 4
 introduction to, 2 – 6
 keywords, 915
 libraries, 37 , 38 – 39
 object-oriented programming and, 3
 origins of, 2 – 3
 program style, 36
 sample program, 4 – 6
 terminology, 4

 Call-by-reference parameters, 146 , 148 – 153 ,
 155 – 158 , 198 – 199 , 295

 Call-by-value parameters, 146 – 148 ,
 155 – 158 , 295

 default arguments, 171 – 172
 pointers as, 435 – 436

 Calling objects, 449 , 450
 Capacity, vectors, 311 – 312
 Case label, 64
 Case-sensitivity, 7
catch blocks, 830 , 832 – 834 , 836 , 840 – 841
 catch-block parameter, 832 , 834
 Catching exceptions. See exception handling
c.begin function, 860 , 876

934 Index

c.clear function, 877
 < cctype > library, 389 – 391
ceil function, 104 , 115
c.end function, 860 , 876
c.erase function, 877
cerr , 28 , 32 , 549
c.front function, 877
 Chaining, 777
char type, 8 , 9 , 17
 Character functions, 923 – 924
 Character input and output (I/O), 381 – 382 ,

 528 – 533
 Character manipulation tools, 381 – 392
 Character-manipulating functions, 389 – 392
 Child classes, 549 , 620
cin , 6 , 28 , 32 – 34 , 397 , 517 , 547 – 548
cin >> variable, 399 – 400
cin statements, 34 , 380 , 396
cin.get function, 382 , 384
cin.peek function, 387
cin.putback function, 387
c.insert function, 877
 Class templates, 707 – 718

 arrays, 712 – 717
basic_string , 718
 defi nition, 708 – 711
 within function

templates, 709
 member functions,

defi ning, 709
 object declaration, 708
 as parameters, 709
 syntax, 708 – 711
 type parameters, 708 , 710
 vector, 718

 Class type member variables, 257 , 292 – 293 ,
 345 – 346

 Classes, 252 . See also specifi c classes
 abstract, 671 – 673
 ancestor, 620
 base, 614 – 617 , 624 , 626 – 628
 child, 549 , 620
 with constructors, 280 – 281
 container, 858 , 872 – 889 . See also

container classes
 defi ning, 252 – 258

 derived, 547 – 552 , 614 – 626 , 633 , 636 – 638
 derived classes. See also derived classes
 descendant, 620
 destructors, 459 – 460
 dynamic arrays and, 448 – 464
 encapsulation, 258 – 259 , 264 , 265 – 266
 exception, 836 , 841 , 850
 friend, 341 – 343 , 774 – 777
 “has a” relationships, 650
 implementation, 265
 interface, 264
 introduction to, 240
 “is a” relationships, 650
 iterator, 792 – 800
 local, 307
 member functions, 252 – 258
 in namespaces, 496
 nested, 306 – 307
 object access by, 335
 objects, 267 – 268
 parent, 549 , 620
 public and private members, 259 – 262 , 473
 separate compilation of, 472 – 486
 static members, 303 – 306
 stream, inheritance among, 547 – 552
 versus structures, 266
 template, 307

clear function, 553
close function, 520 , 528
 Closing, fi les, 520
cmath library, 101
cnout , 28
 Coding, recursive, 596
 Collisions, 777 , 783
 Comma expression, 72
 Comma operator, 72 – 74 , 336
 Command-line arguments, 376 – 377
 Comments, 36
 Comparison operators, 48
 Compilation

 function templates, 698 – 699
 separate, 472 – 486

 Compilation units, 497 – 498 , 504
 Compilers

 friend functions and, 342
 iterator declarations and, 864

www.itpub.net

Index 935

 Complete evaluation, 53 , 55
 Compound statements, 58 – 60

 variables local to, 131 – 132
 Concatenation, strings, 393 , 395
 Conditional operator, 66 – 67
 Conditional operator expression, 67
 Console input/output (I/O), 6 , 28 – 35

 formatting numbers, 30 – 32
 line breaks in, 35
 new lines, 29 – 30
 using cerr , 32
 using cin , 32 – 34
 using cout , 28 – 29

const array parameter, 200 – 202
const modifi er, 19 , 128 , 353

 naming constants with, 21
 parameter modifi er, 200 – 202 ,

 295 – 300
const value, 329 – 331
 const_cast, 24
 Constant call-by-reference parameter,

1295–1296
 Constant value, returning by, 329 – 331
 Constants, 16 – 17

 declared, 19
 defi ned, for size of array, 189
 global, 128 – 131
 iterators, 868 – 869
 named, 17 – 19
 names, 20 – 21
 parameters, 295 – 300
 reference parameters, 153

 Constructors
 for automatic type conversion, 336 – 338
 base class, 624
 calling, 282 – 283
 class with, 280 – 281
 copy, 460 – 464 , 635 , 636 – 637
 default, 283 – 284 , 427 – 428
 defi nition, 276 – 281
 derived classes, 624 – 626
 explicit calls, 282 – 283
 initialization section, 279
 introduction to, 276
 with no arguments, 281 – 282 , 284 – 285
 order of constructor calls, 626

 retuning objects, 328 – 329
 string class, 394
 zero-argument, 740 , 743

 Container classes, 858 , 860 , 872 – 889
 adapters, 878 – 882
 associative, 882 – 887
 effi ciency, 887
 removing elements, 877
 running time access, 894
 sequential, 872 – 878
 type defi nitions, 878

 continue statements, 80 , 82 – 83
 Controlling expressions, 62
 Copy constructors, 460 – 464 , 635

 in derived classes, 636 – 637
cout , 6 , 28 – 29 , 31 , 380 , 396 , 517 , 549
cout.put , 383 – 384
c.push_back function, 877
c.rbegin() function, 876
c.rend() function, 877
c.size() function, 876
cstdlib , 105 , 108
<cstring> library, 372 , 374 – 376
 C-strings, 6 , 17 , 368 , 369 – 381 , 393

 = and == with, 372 – 374
 arguments, 375
 assigning values, 372 – 373
 converting to string objects, 395 ,

 408 – 409
<cstring> library, 372 , 374 – 376
 fi le names as, 534
 functions, 924 – 925
 input and output, 379 – 381
 parameters, 375
 testing for equality, 373 – 374
 variables, 369 – 372

 D
 Dangling pointers, 432
 Data abstraction, 258 – 259
 Data type, 258
 Debugging, functions, 173 – 176
 Decimal points, 16 , 21 , 30 – 32
 Declared constants, 19
 Declared size, of array, 187 , 209

936 Index

 Declaring
 arrays, 186 – 190
 function templates, 700 – 701
 objects, in class templates, 708
 pointer variables, 421 , 422
 streams, 518
 variables, 8 , 10 , 13

 Decrement (--) operator, 25 – 27 , 71 , 865
 overloading, 355 – 356 , 793 , 859
 with pointers, 445

 Deep copy, 459
 Default arguments, 171 – 172
 Default constructors, 283 – 284 , 427 – 428
 Default label, 64
#define directive, 483
 Defi ned constants, for size of array, 189
 Defi ning

 classes, 252 – 258
 constructors, 276 – 281
 functions, 112 – 115 , 119 – 121
 member functions, 255 , 256 – 257

delete [] statement, 441 – 442 , 446
delete operator, 431 , 432 , 459 – 460 ,

 746 – 747
 Deque, 874
deque class, 876 , 877
 Dereferencing (*) operator, 422 , 424 , 448 ,

 734 – 735 , 793 , 860 , 863 , 864
 Derived classes, 547 – 552 , 614 – 624

 assignment operators in, 636 – 637
 constructors, 624 – 626
 copy constructors in, 636 – 637
 destructors in, 637 – 638
 exception specifi cation in, 845
 with multiple base classes, 652
 using, 633

 Descendant classes, 620
 Design, recursive, 593 – 594
 Destructors, 459 – 460 , 464 , 635

 in derived classes, 637 – 638
 virtual, 679 – 680

DigitalTime class, 482 – 483
 Discard parameter, 755
 Division

 fl oating-point, 21 – 23 , 111
 integer, 21 – 23 , 111

 negative integers, 21
 whole numbers, 22

 Division (/) operator, 21 , 22 , 164 – 165
 Dot (.) operator, 243 – 244 , 255 , 257 ,

 734 – 735
 Double quotes ("), 17
double type, 9 , 19

 constants, 16
 formatting, 30 – 32

 Double-precision numbers, 16
 Doubly linked lists, 750 – 759 , 873

 adding nodes, 752 , 753 , 755 – 756
 deleting nodes, 752 , 754 – 757

do-while statements, 68 – 70 , 529
 Downcasting, 680 – 681
 Driver fi le, 479 – 480 , 481
 Driver programs, 174 – 176
 Dynamic arrays, 420 , 437 – 447

 classes and, 448 – 464
 copy constructors, 460 – 461
 creating and using, 439 – 442
 multidimensional, 445 – 447
 size, 439 – 440
 using, 446
 variables, 437 – 438

 Dynamic binding, 663
 Dynamic data structures, 733 . See also

linked lists
 assignment operator with, 747

 Dynamic variables, 425 , 428 , 429 , 432 ,
 732 , 747

 deleting, 459 – 460
 Dynamically allocated arrays.

See dynamic arrays
 Dynamically allocated variables.

See dynamic variables

 E
 E notation, 16
 Effi ciency

 container classes, 887
 hash tables, 783 – 784
 sets, 790 – 791

 Elements, of array, 187
 Empty lists, 740 – 741 , 750
 Empty statements, 77

www.itpub.net

Index 937

 Empty trees, 802
 Encapsulation, 3 , 258 – 259 , 264 , 473

 test for, 265 – 266
 end function, 793 , 796 , 863
 End of line, 383
#endif directive, 484
 Ending, programs, 30
endl , 29 – 30
 End-of-fi le marker, 530
 Enumeration types, 66
eof function, 529 – 533
 Equality (==) operator, 59 , 323 , 793 , 859

 with C-strings, 372 – 374
 string class, 404

 Equality testing, C-strings, 373 – 374
 Error messages, stack overfl ow, 583
 Escape sequences, 17 , 18
 Evaluating

 arithmetic expressions, 49
 Boolean expressions, 48 – 50 , 54 – 55

 Evaluation
 complete, 53 , 55
 short-circuit, 53 , 55 , 892

 Exception classes, 836 – 837 , 841
 hierarchies, 850

 Exception handlers, 832
 Exception handling

 basics of, 827 – 846
catch blocks, 830 , 832 – 834 , 836 ,

 840 – 841
 defi ning exception classes, 836 – 837
 example of, 827 – 830
 introduction to, 826
 multiple exceptions, 836 , 838 – 841
 nested try-catch blocks, 849
 programming techniques for, 846 – 851
throw statement, 831 – 832 , 833
try blocks, 830 – 831 , 832 – 833 , 836
try-throw-catch mechanism, 834 – 835

 Exception specifi cation, 843 – 845
 Exceptions, 826

 multiple, 836 , 838 – 841
 overuse of, 849
 rethrowing, 851
 throwing, 826 , 831 – 832

 in a function, 841 – 843

 uncaught, 848 – 849
 when to throw, 847 – 848

exit function, 104 , 105 – 106
 Exponents, 16
 Expressions

 arithmetic, 19 – 21 , 28
 assignment statements as, 11
 Boolean, 46 – 58
 comma operator in, 72 – 73
 conditional operator, 67
 controlling, 62
 increment operator in, 73
 order of evaluation, 27

 External fi le name, 519 – 520
 Extraction (>>) operator, 396 , 397 , 399 – 400 ,

 519 , 547
 overloading, 346 – 352 , 354 – 355 , 519

 F
fabs function, 103 , 104
fail function, 526 , 527
false value, 15 , 17 , 49 , 50
 File input and output (I/O), 380 ,

 517 – 522
 formatting, 534 – 544
 introduction to, 83 – 87 , 516
 random access, 556 – 557

 Files
 appending, 522 – 524
 application, 479 – 480 , 481
 checking for end of, 529 – 533
 checking for open, 526
 closing, 520
 driver, 479 – 480
 editing, 544 – 546
 external names, 519 – 520
 header, 473 – 474 , 496
 implementation, 473 , 476 – 479 , 481 , 497
 interface, 473 – 475 , 479 , 481
 linking, 479
 names, as input, 533 – 534
 opening, 518 , 524 – 526
 pathnames, 518
 random access to, 556 – 557
 reading, 84 – 86 , 517 – 518
 writing, 517 – 518

938 Index

fill function, 540
find function, 895 – 899
 First-in/fi rst-out, 770 , 773
 Fixed-point notation, 535
 Flags, 535 , 536 , 537

 saving settings, 539
flags function, 539
float type, 9 , 16
 Floating-point division, 21 – 23 , 111
 Floating-point notation, 16
 Floating-point numbers, 8 – 9 , 20 , 103

 formatting, 30 – 32
 random, 109

floor function, 104 , 115 – 116
 Flow of control

 Boolean expressions, 46 – 56
 branching mechanisms, 56 – 67
break statement, 80 – 81
continue statements, 80 , 82 – 83
 fi le input, 83 – 87
 loops, 67 – 83

 fl ush function, 520
 Flush function, 522
for statements, 72 , 74 – 77

 with arrays, 189
 variables declared in, 133

 Formal parameters, 112 , 114 , 115 . See also
parameters

 Formatting
 numbers, 30 – 32
 output, 542 – 544

 with stream functions, 534 – 540
 Forward declaration, 341 – 342 , 776
 Forward iterators, 868 , 897
 Freestore, 429 , 431 , 747
 Freestore manager, 431
 Friend classes, 341 – 343 , 774 – 777
 Friend functions, 338 – 343 , 717

 overloading, 336
friend keyword, 338
 Front, of list, 770
Fstream class, 556 – 557
<fstream> library, 518 , 556
 Function calls, 101 , 106 , 154

 in branching and loop statements, 132 – 133
 operator, 335

 recursive, tracing, 576 – 578
 void, 119 – 120

 Function prototype, 112 , 120
 Function templates, 694 – 707

 calling, 698
 class templates within, 709
 compiling, 698 – 699
 declaring, 700 – 701
 defi ning, 700 – 701
 generic algorithms, 889 – 902
 generic sorting function example,

 701 – 705
 syntax, 695 – 698
 type parameters, 696 , 698
 using, with inappropriate type, 705 – 706

 Functions, 4 , 100 . See also specifi c functions
 in <cstring> library, 374 – 376
 accessing redefi ned, 634 – 635
 accessor, 262 – 263
 arguments, 101 , 104 – 105 , 107 , 115

 arrays as, 196 – 199
 default, 171 – 172
 indexed variables as, 195 – 196
 structures as, 246

 arrays in, 195 – 207
 body, 112
 boolean values returned by, 118 – 119
 calling, 115 – 117 , 255
 character manipulation, 389 – 392
 declaration, 112 , 114 – 115 , 120
 defi nition, 112 – 115 , 119 – 121 , 301 – 302
 friend, 336 , 338 – 343 , 717
 hash, 777 , 778
 headers, 112
 helping, 497 – 502 , 504
 inline, 301 – 303
 invocation, 101
 iterative version, 584 , 601 – 602
 library, 921 – 927
 local variables, 125 – 127
 manipulators, 538 – 539
 mathematical, 890 – 891
 member, 252 – 258 , 332 – 334 , 382 – 384 ,

 387 – 388 , 620 – 621
 redefi ning, 631 – 632

 mutator, 263

www.itpub.net

Index 939

 names
 overloading, 163 – 171

 with no arguments, 120 – 121
 overloading, 632 , 696
 parameters, 112 , 114 , 115
 postconditions, 121 , 123
 preconditions, 121 , 123
 predefi ned, 100 – 111
 private member, 628
 procedural abstraction, 127 – 128
 programmer-defi ned, 111 – 124
 random number generator, 107 – 111 , 113
 recursive, 123 , 572 , 585 – 599 . See also

recursion
 recursive void, 573 – 585
 return statements, 114 , 121 , 122
 scope rules, 125 – 133
 signature, 166 , 634
 static, 303 – 306
 stream, formatting output with, 534 – 540
 stubs, 174 – 175 , 176
 testing and debugging, 173 – 176
 that are not inherited, 635
 that return a value, 100 – 105 , 112 – 114 ,

 352 – 354 , 463 , 585 – 593
 that return an array, 202 , 442 – 444
 throwing exceptions in, 841 – 843
 virtual, 662 – 683
void, 100 , 105 – 107 , 119 – 122 ,

 573 – 585

 G
 Garbage collection, 3
 Generic algorithms, 889 – 902

 modifying sequence, 899 – 900
 nonmodifying sequence, 895 – 899
 running times, 890 – 894
 set, 900 – 902
 sorting, 902

 Generic sorting function, 701 – 705
get function, 382 – 384 , 386 – 387
getline function, 379 – 380 , 396 , 399 – 401
getLink function, 774
 Global constants, 128 – 131
 Global namespace, 487 , 502
 Global variables, 128 – 131 , 432

 Greater than (>), 48
 Greater than or equal to (>=), 48

 H
 “Has a” relationship, 650
 Hash functions, 777 , 778
 Hash maps, 777
 Hash tables

 with chaining, 777 – 783
 constructing, 779
 effi ciency, 783 – 784

hash_map class, 887
hash_set class, 887
HashTable class, 780 – 783
 Head node, 738
 Header fi les, 473 – 474 , 496 , 929
 Headers, function, 112
headInsert function, 741 , 742 , 743
 Heap, 429
 Helping functions, 497 – 502 , 504
 Hierarchical structures, 247 – 249
 Hierarchies

 exception class, 850
 stream, 547 – 555

 Higher precedence, 52
 High-level languages, 3

 I
 Identifi ers, 7 – 8
 IDEs (Integrated Development

Environments), 479
 if statements, 61 , 830
if-else statements, 6 , 56 – 58 , 529

 function calls in, 132 – 133
 with multiple statements, 58 – 60
 multiway, 61 – 62 , 65
 nested, 61
 recursive calls, 579

#ifndef directive, 483 – 485
ifstream class, 84 – 86 , 518 , 524 , 526 , 527 ,

 547 – 548 , 551
ignore function, 388
 Illegal array index, 192
 Implementation, 265 , 473
 Implementation fi le, 473 , 476 – 479 , 481 , 497

940 Index

 Inadvertent local variables, 158 – 159
 include directives, 37 , 101 – 102 , 104 , 372

 fi le I/O, 527
 header fi le, 474
 in separate compilation, 479 , 483

 Increment (++) operator, 25 – 27 , 71 , 73
 iterators, 865
 overloading, 355 – 358 , 793 , 859
 with pointers, 445

 Indenting, nested statements, 61
 Indexed variables, 187 , 190 – 191 , 218

 for C-string variables, 371
 as function arguments, 195 – 196

 Indexes
 array, 189 , 218
 out of range, 192

 Inequalities, strings of, 47
 Infi nite loops, 77 – 78
 Infi nite recursion, 580 – 581 , 594 , 600
 Information hiding, 128 , 258 – 259 , 681
 Inheritance, 3

 among stream classes, 547 – 552
 base classes, 614 – 617 , 624
 basics of, 614 – 636
 derived classes, 614 – 626 , 633 , 636 – 638
 member functions

 private, 628
 redefi ning, 620 – 621 , 631 – 632

 multiple, 652
 private, 651 – 652
 private member variables and, 626 – 628
 programming with, 636 – 652
 protected, 651 – 652
 protected qualifi er, 628 – 631
 public, 651 – 652
stringstream class, 553 – 555
 templates and, 718 – 724
 of virtual property, 669

 Inherited members, 617 – 621
 Initialization section, 279
 Initializing

 arrays, 192 – 193
 C-string variables, 370 – 371
 static variables, 303
 structures, 249 – 250
 variables, 13

 Inline functions, 301 – 303
 In-order processing, 802
 Input. See also fi le I/O; I/O streams

 character, 381 – 382
 checking, using newline function,

 384 – 386
 C-string, 379 – 381
 detecting end of line, 383
 fi le names as, 533 – 534
 line breaks in, 35
 with string class, 396 – 397
 unexpected, 386 – 387
 using cin , 32 – 34

 Input (>>) operator, 379
 Input iterators, 871
 Input member functions, 921 – 923
 Input parameters, for main function,

 376 – 377
 Input streams, 83 – 86 , 517 – 519 , 547 – 548 .

See also streams
insert function, 742 , 744 – 745 , 808
 Inserting nodes, 740 – 745
 Insertion (<<) operator, 28 , 379
inStream , 527
int type, 4 , 8 , 9 , 19

 assigning to double variables, 15
 constants, 16

 Integer division, 21 – 23 , 111
 Integers, 20

 as Boolean values, 54 – 55
 types, 8 – 10
 unsigned, 10

 Integrated Development Environments
(IDEs), 479

 Interface, 264 , 473
 Interface fi les, 473 – 475 , 479 , 481
IntNode class, 738 – 740 , 792
IntPtr , 434 , 435
 I/O functions, 263
 I/O streams, 517 – 533

 character I/O, 528 – 533
 fi le I/O, 517 – 522
 tools for, 533 – 546

<iomanip> library, 538 – 539
ios class, 522 , 535 , 537
ios::app , 522

www.itpub.net

Index 941

ios::fixed , 535
ios::showpoint , 535
<iostream> library, 28 , 517
 “Is a” relationship, 650
isalnum function, 390
isalpha function, 390
isctrl function, 391
isdigit function, 390
isgraph function, 391
islower function, 390
isprint function, 391
ispunct function, 390
isspace function, 389 , 390
istream class, 547 – 548 , 551
isupper function, 390
 Iteration

 loop, 68
 versus recursion, 584 – 585

 Iterative version, 584 , 601 – 602
 Iterators, 791 – 800 , 858 , 859 – 872

 basics of, 859 – 865
 classes, 792 – 800
 compiler problems, 864
 constant, 868 – 869
 input, 871
 for linked lists, 794 – 796
 mutable, 868 – 869
 operator overloading, 859 – 860
 output, 871
 pointers and, 792 , 859
 removing elements and, 877
 reverse, 870 – 871
 types of, 865 – 868 , 897
 with a vector, 860 – 863

 K
 Keys

 associative containers, 882
 hash table, 777

 Keywords, 8 , 915

 L
labs function, 102 – 103 , 104
 Last-in/fi rst-out, 582 , 583 , 763
 Late binding, 662 – 663 . See also

virtual functions

 Leaf nodes, 802
length function, 401
 Less than (<), 48
 Less than or equal to (<=), 48
 Lexicographic order, 374
 Libraries, 37

 defi ning other, 485
 names, 38 – 39
 STL. See Standard Template

Library (STL)
 Library functions, 921 – 927
 Line, detecting end of, 383
 Line breaks, in I/O, 35
 Linear running times, 893
 Linked data structures

 introduction to, 732 – 733
 iterators, 791 – 800
 linked lists, 733 , 738 – 791
 nodes, 733 – 738
 trees, 800 – 808

 Linked lists, 732 , 733 , 738 – 740
 applications, 763 – 791
 as arguments, 737
 compared with arrays, 744 – 745
 creating, 739 – 740
 doubly, 750 – 759 , 873
 empty, 740 – 741
 generic sorting template, 755 – 756
 inserting nodes, 740 – 745
 iterator class for, 794 – 796
 library, 760 – 762
 losing nodes from, 743 , 744
 nodes, 733 – 738
 one-node, 739 – 740
 removing nodes, 745 – 747
 searching, 747 – 751
 sets and, 784 – 791
 singly, 872 – 874

 Linker, 479
 Linking, fi les, 479
list class, 873 , 874 , 875 , 876 , 877 , 899
 List containers, 874
listIterator class, 794 – 796
 Lists

 empty, 750 , 7410–7411
 linked. See linked lists

942 Index

 Literals, 16 – 17
 Local classes, 307
 Local variables, 125 – 127 , 131 – 132

 inadvertent, 158 – 159
 parameters used as, 147 – 148

long double type, 9
long type, 9
 Loops, 67 – 83

 with arrays, 189
 body, 68
break statement, 80 – 81 , 83
continue statements, 80 , 82 – 83
do-while statements, 68 – 70 , 529
 checking for end of fi le, 529 – 533
 function calls in, 132 – 133
 infi nite, 77 – 78
 iteration, 68
 nested, 83
 reading text fi les using, 85 – 86
 repeat- N -times, 76
for statements, 72 , 74 – 77 , 133 , 189
while statements, 68 – 70 , 529

 Low-level languages, 3
 L-values, 11 , 345 , 360

 M
 Macros, 173

 assert, 173 – 174
 Magic formula, 31 – 32
main function, 4 , 123

 application fi le, 479
 input parameters for, 376 – 377

 Make facility, 479
 Manipulators, 538 – 539
map objects, 883
map template class, 883 , 886 – 889
 Maps, 883
 Mathematical functions, 890 – 891
 Mathematical induction, 594
 Member functions, 252 – 258 . See also

specifi c functions
 calling, 255
 class templates, 709
 defi ning, 255 , 256 – 257
 destructors, 459 – 460
 get, 382 – 384 , 386 – 387

 ignore, 388
 inherited, 620 – 621
 length, 401
 overloading as, 332 – 334
 peek, 387
 put, 383 – 384
 putback, 387
 redefi ning, 620 – 621 , 631 – 632
string class, 403 – 404 , 408 – 409
 virtual, 670

 Member names, 242 , 243
 Member operators, automatic type conversion

and, 337 – 338
 Member value, 242
 Member variables, 243 , 256

 class type, 292 – 293
 inherited, 617 – 620
 protected, 628 – 631
 returning, of class type, 345 – 346

 Memory
 addresses, 420
 arrays in, 190 – 191 , 198
 freestore, 419 , 431 , 747
 heap, 429
 last-in/fi rst-out, 582 , 583
 locations, 151 , 152 , 198
 management, 3 – 4 , 429 – 431 , 874
 testing for available, 850

 Memory leaks, 743
 Menus, switch statements for, 65
 Mixing types, 15 , 19
 Modifi ers, 19
 Modifying sequence algorithms, 899 – 900
 Money, formatting, 31
 Multidimensional arrays, 218 – 225

 declaration, 218 , 219
 grading program example, 220 – 224
 parameters, 219 – 220

 Multidimensional dynamic arrays, 445 – 447
 Multimap template class, 887
 Multiple inheritance, 652
multiset template class, 887
 Multiway if-else statements, 61 – 62 , 65
 Mutable iterators, 868 – 869
 Mutator functions, 263
 Mutual recursion, 591 – 593

www.itpub.net

Index 943

 N
 Named constants, 17 – 21

 global, 129 – 131
 Names

 fi le
 external, 519 – 520
 as input, 533 – 534

 function, overloading, 163 – 171
 implementation fi le, 474
 library, 38 – 39
 meaningful, 13
 member, 242 , 243
 for namespaces, 495
 parameter, choosing, 159
 pathnames, 518
 qualifying, 493 – 495
 variable, 13

 Namespace grouping, 489 , 491
 Namespaces, 37 – 38 , 773 – 774

 class defi nition in, 496
 creating, 489 – 491
 global, 487 , 502
 introduction to, 487
 name for, 495
 nested, 505
 putting name defi nition in, 491
 qualifying names, 493 – 495
 specifi cation, 505 – 506
 unnamed, 497 – 504
 using declarations, 492 – 493 , 506
 using directives, 487 – 488
 using multiple, 487 – 488

 Naming conventions, identifi ers, 7
 Negative integers, division of, 21
 Nested blocks, 132
 Nested classes, 306 – 307
 Nested loops, 83
 Nested namespaces, 505
 Nested scopes, 132
 Nested statements, 61
 New lines, in output, 29 – 30
new operator, 425 – 430 , 439 , 442 , 446 ,

 732 , 733
 inserting nodes with, 740 – 742

 Newline character (\n), 6 , 29 – 30 , 382 , 383 ,
 386 – 387

newLine function, 384 – 386 , 549 – 551
 Nodes, 733 – 738

 adding, to doubly linked list, 752 , 753 ,
 755 – 756

 changing data in, 734
 data, accessing, 735
 deleting, 745 – 747

 from doubly linked list, 752 , 754 – 757
 head, 738
 inserting, 740 – 745
 leaf, 802
 locating, in linked list, 750 – 751
 losing, 743 , 744
 pointers and, 734 – 737
 root, 802
 tree, 800 – 808
 type defi nition, 733 – 734 , 738 – 739

 Nonmodifying sequence algorithm, 895 – 899
 Not equal to, 48
 Notation

 Big- O , 887 , 892 – 893
 fl oating-point, 16
 postfi x, 355 , 865
 prefi x, 355 , 865
 scientifi c, 16

 NULL, 429 – 431 , 432 , 736 – 737 , 739 ,
 750 , 755

null character, 369 , 370 – 372
null statements, 77
 Numbers. See also integers

 addresses and, 422
 decimal points, formatting, 30 – 32
 double-precision, 16
 fl oating-point, 8 – 9 , 20 , 103
 input, 33
 naming, 17 – 19
 pseudorandom, 108 – 109
 random, 107 – 111 , 113
 single-precision, 16
 vertical, 573 – 575
 whole, division with, 22

 O
 Object-oriented programming (OOP), 3
 Objects, 252 , 267 – 268

 calling, 449 , 450

944 Index

Objects (continued)
 constructors returning, 328 – 329
 of derived class, 625
 string, 397 , 400 – 402 , 408 – 409 , 534

ofstream class, 518 , 519 , 522 , 524 , 526 ,
 548 – 549 , 551

open function, 84 , 519 , 526 , 527
 Opening, fi les, 518 , 524 – 526
 Operands, 322 , 323 , 328
 Operations, 891 – 892

 set, 784 – 785 , 900 – 901
 Operator overloading

 >> and <<, 346 – 352 , 354 – 355 , 519
 array [] operator, 358 – 360
 assignment operator, 355 , 449 – 454 ,

 636 – 637 , 647
 automatic type conversion and, 337 – 338
 basics of, 322 – 336
 decrement operator, 355 – 356
 friend functions and, 339 – 340
 function application (), 335
 increment operator, 355 – 358
 iterators, 793 , 859 – 860
 as member functions, 332 – 334
 rules, 343
 unary operators, 332

 Operators
 addressof, 422 , 424
 and, 46 – 47 , 336
 arithmetic, 19 – 21
 array, 358 – 360
 arrow, 448 , 735 – 736
 assignment. See assignment (=) operator
 binary, 323 – 328
 bitwise or, 335
 comma, 72 – 74 , 336
 comparison, 48
 conditional, 66 – 67
 decrement, 25 – 27 , 71
 delete, 431 , 432 , 459 – 460 , 746 – 747
 dereferencing. See dereferencing (*)

 operator
 division, 21 , 22 , 164 – 165
 dot, 243 – 244 , 255 , 257 , 734
 equality. See equality (==) operator

 extraction. See extraction (>>) operator
 function call (), 335
 increment, 25 – 27 , 71 , 73
 insertion, 28 , 379
 member, 337 – 338
 new, 425 – 430 , 439 , 442 , 446 , 740 – 742
 or, 47 , 48 , 336
 order of evaluation, 27
 precedence rules, 20 – 21 , 50 – 54 , 917 – 918
 scope resolution, 255 – 257 , 492 , 634 – 635
 ternary, 66 – 67
 unary, 332

 Or (||) operator, 47 , 48 , 336
 Order of evaluation, 27
ostream , 548 – 549 , 551
 Out of range, array index, 192
 Output. See also fi le I/O; I/O streams

 buffered, 520 , 522
 with cerr , 32
 character, 381 – 382
 C-strings, 379 – 381
 formatting, 542 – 544

 numbers, 30 – 32
 with stream functions, 534 – 540

 line breaks in, 35
 new lines in, 29 – 30
 spaces in, 29
 with string class, 396 – 397
 using cout , 28 – 29

 Output iterators, 871
 Output member functions, 921 – 923
 Output streams, 517 , 519 , 548 – 549 . See also

streams
 member functions, 534 – 540

outStream , 528 , 535
 Overloading, 360

 automatic type conversion and,
 166 – 167 , 168

 based on l-value and r-value, 360
 function application (), 335
 functions, 696
 introduction to, 163 – 167
 as member functions, 332 – 334
 operator, 322 – 336 , 343 , 346 – 352 ,

 355 – 360 , 449 – 454

www.itpub.net

Index 945

 versus redefi ning, 632
 rules for resolving, 167 – 171
 unary operators, 332

 Overridden functions, 669

 P
pair template class, 887
 Parameters, 112 , 114 , 115

 arguments and, 156
 array, 196 – 199
 call-by-reference, 146 , 148 – 153 , 155 – 158 ,

 198 – 199 , 295
 call-by-value, 146 – 148 , 155 – 158 , 171 – 172 ,

 295 , 435 – 436
 catch-block, 832 , 834
 class templates as, 709
 comparing types of, 156 – 158
 const modifi er, 200 – 202
 constant, 295 – 300
 constant reference, 153
 C-strings, 375
 input, 376 – 377
 introduction to, 146
 mixed lists, 155 – 156
 multidimensional arrays, 219 – 220
 names, choosing, 159
 pointer, 428
 stream, 551
 type, 696 , 698 , 708 , 710
 used as local variable, 147 – 148

 Parent classes, 549 , 620
 Parentheses (), 20 , 28 , 47 , 50 , 58
 Parsing, strings, 553 – 555
 Partially fi lled arrays, 207 – 210 , 456 – 458 ,

 638 – 640 , 719 – 723
 Pathnames, 518
peek function, 387
PFArray template class, 712 – 717
PFArrayBak template class, 719 – 723
PFArrayD class, 453 – 458 , 638 – 642 , 682
PFArrayDBak class, 642 – 646 , 647 – 649 , 682
 Pi, 129
 Pointers

 arithmetic operations on, 444 – 445
 arrow operator, 448

 assignment operator with, 424 – 425
 in assignment statements, 423 – 424
 as call-by-value parameters, 435 – 436
 dangling, 432
 defi ning, 433 – 434 , 446
 introduction to, 420 – 421
 iterators and, 792 , 859
 manipulations, 426 – 427
 memory management, 429 – 431
 nodes and, 734 – 737
 parameters, 428
 returning, to an array, 442 – 444
this , 449
 types, 423 , 433 – 434 , 446
 uses for, 436 – 437
 variables, 421 – 429 , 437 – 438 , 446
 virtual functions and, 674 – 683

 Polymorphism, 3 , 662 , 669 . See also
virtual functions

pop , 764 , 770
 Postconditions, 121 , 123
 Postfi x notation, 355 , 865
 Postorder processing, 802
pow function, 103 , 104 , 105 , 586
power function, 586 – 589
 Precedence rules, 20 – 21 , 917 – 918

 Boolean expressions, 50 – 54
precision function, 535 , 537 , 538 ,

 539 , 540
 Preconditions, 121 , 123
 Predefi ned functions, 100 – 111

 that return a value, 100 – 105
 void, 105 – 107

 Predefi ned identifi ers, 7
 Prefi x notation, 355 , 865
 Preorder processing, 802
 Preprocessor, 37
 Priority queues, 878
priority_queue template

class, 878
 Private inheritance, 651 – 652
private: keyword, 259
 Private member functions, 628
 Private member variables, 473

 inheritance and, 626 – 628

946 Index

 Private members, 259 – 262
 access to, 650

 Procedural abstraction, 127 – 128
 Programmer-defi ned functions, 111 – 124
 Programming

 with arrays, 207 – 218
 for exception handling, 846 – 851
 with inheritance, 636 – 652
 object-oriented, 3
 style, 36

 Programs, 4
 closing, 520
 comments in, 36
 driver, 174 – 176
 ending, 30
 running times, 890 – 894
 sample C++, 4 – 6

 Projects, 479
 Protected inheritance, 651 – 652
 Protected members, 628 – 631
 Protected qualifi er, 628 – 631
 Pseudorandom numbers, 108 – 109
 Public inheritance, 651 – 652
public keyword, 259 , 651
 Public members, 262
 Pure virtual functions, 670 – 673
 push, 764 , 769 , 770
push_back function, 308 , 309 , 874 , 877
put function, 383 – 384
putback function, 387

 Q
 Quadratic running times, 893
queue template class, 770 – 776 , 796 – 800 ,

 878 – 881
 Queues, 770 – 773

 priority, 878
 Quotes, 17

 R
rand function, 104 , 108
 RAND_MAX, 108
 Random access, 865 – 867

 to fi les, 556 – 557
 Random number generator, 107 – 111 , 113 , 927
 Random-access iterators, 865 – 868 , 897

 Range [fi rst, last), 897
 Reading

 blanks, 382
 fi les, 84 – 86 , 517 – 518

 Recursion
 binary search, 594 – 596
 checking for, 600
 coding, 596
 design techniques, 593 – 594
 effi ciency, 585 , 600 – 602
 ending, 579
 infi nite, 580 – 581 , 594 , 600
 introduction to, 572
 versus iteration, 584 – 585
 mutual, 591 – 593
 stacks for, 582 – 583
 tail, 584 – 585
 workings of, 579

 Recursive calls, 579 , 600
 stacks and, 582 – 583
 tracing, 576 – 578

 Recursive functions, 123 , 572
 binary search, 594 – 599
 defi nition, 580
 design techniques, 593 – 594
 that return a value, 585 – 593
void , 573 – 585 , 594

 Redefi ning
 member functions, 620 – 621 , 631 – 632
 versus overloading, 632

 References, 344 – 346 , 349
 Repeat- N -times loops, 76
 Reserved words, 8
return 0; , 4
return statements, 114

 in void functions, 121 , 122
 Returned values, 463

 recursive functions, 585 – 593
 Returning a reference, 344 – 346 , 349
 Returning by const value, 329 – 331
 Reverse iterators, 870 – 871
 Ritchie, Dennis, 2
 Root node, 802
round function, 116 – 117
rounding function, 115 – 116

www.itpub.net

Index 947

 Rules
 overloading operators, 343
 precedence, 20 – 21 , 50 – 54 , 917 – 918
 for resolving overloading, 167 – 171
 scope, 125 – 133 , 488

 Running times, 890 – 894
 big- O estimates, 892 – 893
 comparison, 894
 container access, 894
 linear, 893
 quadratic, 893
 worst-case, 891 – 893

 R-values, 11 , 345 , 360

 S
 Scaling, 108
 Scientifi c notation, 16
 Scope

 rules, 125 – 133
 of using directive, 488

 Scope resolution (: :) operator, 255 – 257 , 492 ,
 634 – 635

 Search function, 211 , 596 – 602 , 748 – 751 , 897
 Searching

 arrays, 211 – 213
 binary, 594 – 602
 linked lists, 747 – 751

SearchTree class, 803 – 808
 Seed, 108
seekg function, 557
 Selection sort, 213 – 214
 Semicolon (;), 77 , 242 , 246
 Separate compilation, 472 – 486
#ifndef directive, 483 – 485
 application fi les, 479 – 480 , 481
 encapsulation and, 473
 example, 482 – 483
 header fi les, 473 – 474
 implementation fi les, 473 – 474 , 476 – 479 , 481
include directive, 479 , 483
 interface fi les, 473 – 475 , 479 , 481
 linking fi les, 479

 Sequential containers, 872 – 878
 Set algorithms, 900 – 902
 Set objects, 882 – 883
 Set operations, 784 – 785 , 900 – 901

set template class, 784 – 791 , 882 – 885
setf function, 535 , 536 , 539 , 540
setIntersection function, 790 – 791
setLink function, 774
setprecision function, 538
 Sets, 784 – 791

 effi ciency, 790 – 791
setw function, 538
 Shallow copy, 459
short type, 9
 Short-circuit evaluation, 53 , 55 , 892
 Signature, 166 , 634
 Single quote ('), 17
 Single-precision numbers, 16
 Singly linked lists, 872 – 874
 Size

 of array, 187 , 189
 of dynamic array, 439 – 440
 of task, 893
 of vector, 309 , 312

size_type , 878
sizeof operator, 557
 Slicing problem, 675 – 679 , 680 – 681
slist class, 873 – 874 , 877 , 899
sort function, 213 – 217
 Sorting, arrays, 213 – 217
 Sorting algorithms, 902
sorting function, 701 – 705
 Spaces

 in output, 29
 separating numbers with, 33

sqrt function, 100 – 101 , 104
 Square brackets [], 187 , 197 , 308 , 309 ,

 358 – 360 , 883
srand function, 104 , 108 – 109
 Stack frame, 764
 Stack overfl ow, 583
stack template class, 763 – 770 , 773 – 774 ,

 878 – 882
 Stacks, 763 – 770

 for recursion, 582 – 583
 Standard Template Library (STL), 368 , 851

 container classes, 872 – 889
 adapters, 878 – 882
 associative, 882 – 887
 effi ciency, 887
 sequential, 872 – 878

948 Index

Standard Template Library (STL) (continued)
 generic algorithms, 889 – 902

 modifying sequence, 899 – 900
 nonmodifying sequence, 895 – 899
 running times, 890 – 894
 set, 900 – 902
 sorting, 902

 introduction to, 858 – 859
 iterators, 859 – 872

 basics of, 859 – 865
 constant, 868 – 869
 input, 871
 mutable, 868 – 869
 output, 871
 reverse, 870 – 871
 types of, 865 – 868

 Statements
 assignment, 10 – 11 , 14 , 423 – 424
break , 64 , 65 , 80 – 81 , 83
 compound, 58 – 60 , 131 – 132
continue, 80 , 82 – 83
do-while , 68 – 70 , 529
 empty, 77
for, 72 , 74 – 77
if , 61 , 830
if-else , 56 – 58 , 529 , 579
 multiway if-else , 61 – 62 , 65
 nested, 61
null , 77
return , 114 , 121 , 122
switch , 62 – 64 , 65
throw , 831 – 832 , 833 , 836 , 847 – 848
while , 68 – 70 , 529

 Static functions, 303 – 306
static keyword, 305
 Static members, 303 – 306
static qualifi er, 504
 Static variables, 303 – 306
static_cast , 24
 Statically allocated variables, 432
std namespace, 38 , 104 , 487 , 517
 STL. See Standard Template Library (STL)
 Stopping cases, 579 , 594 , 596 , 600
Stopping_Condition , 796
strcat function, 374 , 375
strcmp function, 373 – 374 , 376

strcpy function, 373 , 375 , 408
 Streams, 346

 connecting to fi les, 518
 declaring, 518
 functions, formatting output with,

 534 – 537 , 540
 hierarchies, 547 – 555
 inheritance, 547 – 552
 input, 83 , 84 – 86 , 517 – 519 , 547
 introduction to, 516
 I/O, 517 – 533

 tools for, 533 – 546
 names, 519 – 520
 output, 517 , 519 , 548 – 549
 parameters, 551
 random access to fi les, 556 – 557
stringstream class, 553 – 555
 variables, restrictions on, 522

 Strict weak ordering, 883
string class, 12 , 17 , 368 , 393 – 409 , 718
cin , 399 – 400
 constructors, 394
 converting string objects to C-strings,

 408 – 409
 functions, 925 – 926
getline , 399 – 401
 introduction to, 393 – 395
 I/O with, 396 – 397
 member functions, 403 – 404 , 408 – 409
 palindrome testing program, 404 – 408
 program using, 394 , 397 – 398
 string processing, 401 – 408

 String objects, fi le names as, 534
<string> library, 393 , 396
 Strings, 6

 array type for, 368 – 381
 character manipulation tools, 381 – 392
 concatenation, 393 , 395
 C-strings, 17 , 368 , 369 – 381 , 393
 hash function for, 778
 of inequalities, 47
 input and output, 379 – 381
 introduction to, 368
 parsing, 553 – 555
 processing, 401 – 408
 using cin and cout with, 33 – 34

www.itpub.net

Index 949

stringstream class, 553 – 555
strlen function, 374 , 375
strncat function, 375
strncmp function, 376
strncpy function, 375
 Stroustrup, Bjarne, 3
struct keyword, 242
struct type, 733
 Structs, 733 – 734
 Structure tag, 242
 Structure variables, 244
 Structures

 versus classes, 266
 defi nition, 241 – 242 , 246
 as function arguments, 246
 hierarchical, 247 – 249
 initializing, 249 – 250
 node, 733 – 738
 overview of, 240 – 241
 types, 242 – 246
 value, 242 , 244

 Stubs, 174 – 176
 Subscripted variables, 187
swapValues function, 153 – 154 , 694 – 696 , 698
switch statements, 62 – 64

 forgetting a break in, 65
 function calls in, 132 – 133
 for menus, 65

 Syntactic sugar, 322
 Syntax

 class templates, 708 – 711
 function templates, 695 – 698

 T
 Tables

 hash, 777 – 784
 truth, 49 – 50
 virtual function, 682 – 683

 Tail recursion, 584 – 585
 Template classes, 307 . See also specifi c classes

 STL, 858
 Template prefi x, 696
 Templates
basic_string , 718
 class, 707 – 718
 function, 694 – 707 , 889 – 902

 inheritance and, 718 – 724
 linked list, 759 – 760
Queue template class, 770 – 776 , 796 – 800
Set template class, 784 – 791
Stack template class, 763 – 770 , 773 – 774
Tree template class, 803 – 808
 vector, 718

terminate function, 844 , 848
 Terminology, C++ language, 4
 Ternary operator, 66 – 67
 Testing

 for available memory, 850
 for encapsulation, 265 – 266
 equality, C-strings, 373 – 374
 functions, 173 – 176

 Text fi les, 517 . See also fi les
 editing, 544 – 546
 reading, 84 – 86

this pointer, 449 , 451
 Thompson, Ken, 2
 Throw list, 843
throw statement, 831 – 832 , 833 , 836 ,

 847 – 848
 Throwing exceptions, 826 , 831 – 832 ,

 847 – 848
 Tilde (~), 459 , 460
 Time-space tradeoff, 784
tolower function, 389 , 390 , 391 – 392
toupper function, 389 , 390 , 391 – 392
 Trees, 800 –808

 binary, 801 –803
 binary search, 802 –803
 empty, 802
 properties of, 801 – 803
 template class, 803 – 808

 Trigonometric functions, 927
true value, 15 , 17 , 49 , 50
 Truth tables, 49 – 50
try blocks, 830 – 831 ,

 832 – 833 , 836
try-catch blocks, nested, 849
try-throw-catch mechanism,

 834 – 835
 Two-dimensional arrays, 219 – 225
 Two-dimensional dynamic arrays, 447
tyepdef keyword, 435

950 Index

 Type casting, 23 – 25
 downcasting, 680 – 681
 upcasting, 680 – 681

 Type coercion, 25
 Type conversion

 automatic, 166 – 167 , 168 , 336 – 338 , 408
 explicit, 408 – 409

 Type defi nitions, 435
 containers, 878
 nodes, 733 – 734 , 738 – 739

 Type mismatch, 15
 Type parameters, 696 , 698 , 708 , 710
 Type qualifi ers, 256
typedef , 433
 Types, 8 – 9

 enumeration, 66
 mixing, 15 , 19
 pointer, 423
 structure, 242 – 246
 unsigned, 10

 U
 Unary operators, overloading, 332
 Uncaught exceptions, 848 – 849
 Underlying containers, 879
 Underscore (_), 7
unexpected function, 844 – 845 , 849
 Unitialized variables, 12 – 13
 UNIX operating system, 2
 Unnamed namespaces, 497 – 504
unsetf function, 537
 Unsigned int , 309
 Unsigned types, 10
 Upcasting, 680 – 681
 Using declarations, 492 – 493 , 506
using directives, 101 – 102 , 372 , 487 – 488

 fi le I/O, 527
 namespaces, 505 – 506
 versus using declaration, 493

 V
 v++ versus ++v, 27
 Value returned, 101
value_type , 878
 Values

 assigning, C-strings, 372 – 373

 Boolean, 118 – 119
 functions that return, 100 – 105 , 112 – 114 ,

 118 – 119
 member, 242
 returned, 352 – 354
 structure, 242 , 244
 type mismatch, 15

 Variable declarations, 5 , 8 , 10 , 13
 Variables, 8 – 10

 array, 437 – 438
 assignment compatibility, 15
 automatic, 432
 Booleans and, 15
 class type, 252
 class type member, 292 – 293
 C-string, 369 – 372
 declared in for loops, 133
 declaring, 8 , 10
 dynamic, 425 , 428 , 429 , 432 , 732 , 747
 global, 128 – 131 , 432
 indexed. See indexed variables
 initializing, 13
 local, 125 – 127 , 131 – 132 , 147 – 148 ,

 158 – 159
 member, 243 , 256 , 345 – 346 , 617 – 620
 names, 13
 pointer, 421 – 429 , 437 – 438 , 446 , 734 – 737
 private member, 259 – 262 , 473 , 626 – 628
 protected, 628 – 631
 public member, 262
 static, 303 – 306 , 432
 stream, 522
 structure, 244
 subscripted, 187
 uninitialized, 12 – 13
 unsigned, 10
 vector, declaring, 307

 Vector containers, 874
vector template class, 718 , 858 , 860 , 876 , 877
 Vectors

 assignment operator, 311
 basics of, 307 – 309
 capacity, 311 – 312
 declaring variables, 307
 effi ciency issues, 311 – 312
 elements, 308

www.itpub.net

Index 951

 introduction to, 307
 iterators with, 860 – 863
 size, 309 , 312
 using, 310

 Vertical numbers, 573 – 575
 Virtual destructors, 679 – 680
 Virtual function tables, 682 – 683
 Virtual functions

 abstract classes and, 671 – 673
 basics of, 662 – 673
 in C++, 663 – 670
 extended type compatibility, 674 – 678
 implementation of, 681 – 683
 inheritance of virtual property, 669
 late binding, 662 – 663
 omitting function defi nition, 670
 overriding, 669
 pointers and, 674 – 683
 pure, 670 – 673
 when to use, 670

void , 4
void functions, 100 , 105 – 107

 arguments for, 107
 defi ning, 119 – 121
 recursive, 573 – 585 , 594
 return statements in, 121 , 122

 W
while statements, 68 – 70 , 529
 Whitespace, 33 , 389
 Whole numbers, 22
width function, 537 , 538 , 540
 Worst-case running time, 891 – 893
write function, 557
 Writing, to fi les, 517 – 518

 Z
 Zero, division by, 826 , 827 , 839 , 841 , 848
 Zero-argument constructor, 740 , 743

	Cover
	Title Page
	Copyright Page
	Preface
	Acknowledgments
	Brief Contents
	Contents
	Chapter 1 C++ Basics
	1.1 INTRODUCTION TO C++
	Origins of the C++ Language
	C++ and Object-Oriented Programming
	The Character of C++
	C++ Terminology
	A Sample C++ Program

	1.2 VARIABLES, EXPRESSIONS, AND ASSIGNMENT STATEMENTS
	Identifiers
	Variables
	Assignment Statements
	Introduction to the string class
	PITFALL: Uninitialized Variables
	TIP: Use Meaningful Names
	More Assignment Statements
	Assignment Compatibility
	Literals
	Escape Sequences
	Naming Constants
	Arithmetic Operators and Expressions
	Integer and Floating-Point Division
	PITFALL: Division with Whole Numbers
	Type Casting
	Increment and Decrement Operators
	PITFALL: Order of Evaluation

	1.3 CONSOLE INPUT/OUTPUT
	Output Using cout
	New Lines in Output
	TIP: End Each Program with \n or endl
	Formatting for Numbers with a Decimal Point
	Output with cerr
	Input Using cin
	TIP: Line Breaks in I/O

	1.4 PROGRAM STYLE
	Comments

	1.5 LIBRARIES AND NAMESPACES
	Libraries and include Directives
	Namespaces
	PITFALL: Problems with Library Names
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 2 Flow of Control
	2.1 BOOLEAN EXPRESSIONS
	Building Boolean Expressions
	PITFALL: Strings of Inequalities
	Evaluating Boolean Expressions
	Precedence Rules
	PITFALL: Integer Values Can Be Used as Boolean Values

	2.2 BRANCHING MECHANISMS
	if-else Statements
	Compound Statements
	PITFALL: Using = in Place of ==
	Omitting the else
	Nested Statements
	Multiway if-else Statement
	The switch Statement
	PITFALL: Forgetting a break in a switch Statement
	TIP: Use switch Statements for Menus
	Enumeration Types
	The Conditional Operator

	2.3 LOOPS
	The while and do-while Statements
	Increment and Decrement Operators Revisited
	The Comma Operator
	The for Statement
	TIP: Repeat-N-Times Loops
	PITFALL: Extra Semicolon in a for Statement
	PITFALL: Infinite Loops
	The break and continue Statements
	Nested Loops

	2.4 INTRODUCTION TO FILE INPUT
	Reading From a Text File Using ifstream
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 3 Function Basics
	3.1 PREDEFINED FUNCTIONS
	Predefined Functions That Return a Value
	Predefined void Functions
	A Random Number Generator

	3.2 PROGRAMMER-DEFINED FUNCTIONS
	Defining Functions That Return a Value
	Alternate Form for Function Declarations
	PITFALL: Arguments in the Wrong Order
	PITFALL: Use of the Terms Parameter and Argument
	Functions Calling Functions
	EXAMPLE: A Rounding Function
	Functions That Return a Boolean Value
	Defining void Functions
	return Statements in void Functions
	Preconditions and Postconditions
	main Is a Function
	Recursive Functions

	3.3 SCOPE RULES
	Local Variables
	Procedural Abstraction
	Global Constants and Global Variables
	Blocks
	Nested Scopes
	TIP: Use Function Calls in Branching and Loop Statements
	Variables Declared in a for Loop
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 4 Parameters and Overloading
	4.1 PARAMETERS
	Call-by-Value Parameters
	A First Look at Call-by-Reference Parameters
	Call-by-Reference Mechanism in Detail
	Constant Reference Parameters
	EXAMPLE: The swapValues Function
	TIP: Think of Actions, Not Code
	Mixed Parameter Lists
	TIP: What Kind of Parameter to Use
	PITFALL: Inadvertent Local Variables
	TIP: Choosing Formal Parameter Names
	EXAMPLE: Buying Pizza

	4.2 OVERLOADING AND DEFAULT ARGUMENTS
	Introduction to Overloading
	PITFALL: Automatic Type Conversion and Overloading
	Rules for Resolving Overloading
	EXAMPLE: Revised Pizza-Buying Program
	Default Arguments

	4.3 TESTING AND DEBUGGING FUNCTIONS
	The assert Macro
	Stubs and Drivers
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 5 Arrays
	5.1 INTRODUCTION TO ARRAYS
	Declaring and Referencing Arrays
	TIP: Use for Loops with Arrays
	PITFALL: Array Indexes Always Start with Zero
	TIP: Use a Defined Constant for the Size of an Array
	Arrays in Memory
	PITFALL: Array Index out of Range
	Initializing Arrays

	5.2 ARRAYS IN FUNCTIONS
	Indexed Variables as Function Arguments
	Entire Arrays as Function Arguments
	The const Parameter Modifier
	PITFALL: Inconsistent Use of const Parameters
	Functions That Return an Array
	EXAMPLE: Production Graph

	5.3 PROGRAMMING WITH ARRAYS
	Partially Filled Arrays
	TIP: Do Not Skimp on Formal Parameters
	EXAMPLE: Searching an Array
	EXAMPLE: Sorting an Array

	5.4 MULTIDIMENSIONAL ARRAYS
	Multidimensional Array Basics
	Multidimensional Array Parameters
	EXAMPLE: Two-Dimensional Grading Program
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 6 Structures and Classes
	6.1 STRUCTURES
	Structure Types
	PITFALL: Forgetting a Semicolon in a Structure Definition
	Structures as Function Arguments
	TIP: Use Hierarchical Structures
	Initializing Structures

	6.2 CLASSES
	Defining Classes and Member Functions
	Encapsulation
	Public and Private Members
	Accessor and Mutator Functions
	TIP: Separate Interface and Implementation
	TIP: A Test for Encapsulation
	Structures versus Classes
	TIP: Thinking Objects
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 7 Constructors and Other Tools
	7.1 CONSTRUCTORS
	Constructor Definitions
	PITFALL: Constructors with No Arguments
	Explicit Constructor Calls
	TIP: Always Include a Default Constructor
	EXAMPLE: BankAccount Class
	Class Type Member Variables

	7.2 MORE TOOLS
	The const Parameter Modifier
	PITFALL: Inconsistent Use of const
	Inline Functions
	Static Members
	Nested and Local Class Definitions

	7.3 VECTORS—A PREVIEW OF THE STANDARD TEMPLATE LIBRARY
	Vector Basics
	PITFALL: Using Square Brackets beyond the Vector Size
	TIP: Vector Assignment Is Well Behaved
	Efficiency Issues
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 8 Operator Overloading, Friends, and References
	8.1 BASIC OPERATOR OVERLOADING
	Overloading Basics
	TIP: A Constructor Can Return an Object
	Returning by const Value
	Overloading Unary Operators
	Overloading as Member Functions
	TIP: A Class Has Access to All Its Objects
	Overloading Function Application ()
	PITFALL: Overloading &&, ||, and the Comma Operator

	8.2 FRIEND FUNCTIONS AND AUTOMATIC TYPE CONVERSION
	Constructors for Automatic Type Conversion
	PITFALL: Member Operators and Automatic Type Conversion
	Friend Functions
	Friend Classes
	PITFALL: Compilers without Friends

	8.3 REFERENCES AND MORE OVERLOADED OPERATORS
	References
	TIP: Returning Member Variables of a Class Type
	Overloading >> and <<
	TIP: What Mode of Returned Value to Use
	The Assignment Operator
	Overloading the Increment and Decrement Operators
	Overloading the Array Operator []
	Overloading Based on L-Value versus R-Value
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 9 Strings
	9.1 AN ARRAY TYPE FOR STRINGS
	C-String Values and C-String Variables
	PITFALL: Using = and == with C-strings
	Other Functions in <cstring>
	EXAMPLE: Command-Line Arguments
	C-String Input and Output

	9.2 CHARACTER MANIPULATION TOOLS
	Character I/O
	The Member Functions get and put
	EXAMPLE: Checking Input Using a Newline Function
	PITFALL: Unexpected '\n' in Input
	The putback, peek, and ignore Member Functions
	Character-Manipulating Functions
	PITFALL: toupper and tolower Return int Values

	9.3 THE STANDARD CLASS string
	Introduction to the Standard Class string
	I/O with the Class string
	TIP: More Versions of getline
	PITFALL: Mixing cin >> variable; and getline
	String Processing with the Class string
	EXAMPLE: Palindrome Testing
	Converting between string Objects and C-Strings
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 10 Pointers and Dynamic Arrays
	10.1 POINTERS
	Pointer Variables
	Basic Memory Management
	PITFALL: Dangling Pointers
	Dynamic Variables and Automatic Variables
	TIP: Define Pointer Types
	PITFALL: Pointers as Call-by-Value Parameters
	Uses for Pointers

	10.2 DYNAMIC ARRAYS
	Array Variables and Pointer Variables
	Creating and Using Dynamic Arrays
	EXAMPLE: A Function That Returns an Array
	Pointer Arithmetic
	Multidimensional Dynamic Arrays

	10.3 CLASSES, POINTERS, AND DYNAMIC ARRAYS
	The -> Operator
	The this Pointer
	Overloading the Assignment Operator
	EXAMPLE: A Class for Partially Filled Arrays
	Destructors
	Copy Constructors
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 11 Separate Compilation and Namespaces
	11.1 SEPARATE COMPILATION
	Encapsulation Reviewed
	Header Files and Implementation Files
	EXAMPLE: DigitalTime Class
	TIP: Reusable Components
	Using #ifndef
	TIP: Defining Other Libraries

	11.2 NAMESPACES
	Namespaces and using Directives
	Creating a Namespace
	using Declarations
	Qualifying Names
	TIP: Choosing a Name for a Namespace
	EXAMPLE: A Class Definition in a Namespace
	Unnamed Namespaces
	PITFALL: Confusing the Global Namespace and the Unnamed Namespace
	TIP: Unnamed Namespaces Replace the static Qualifier
	TIP: Hiding Helping Functions
	Nested Namespaces
	TIP: What Namespace Specification Should You Use?
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 12 Streams and File I/O
	12.1 I/O STREAMS
	File I/O
	PITFALL: Restrictions on Stream Variables
	Appending to a File
	TIP: Another Syntax for Opening a File
	TIP: Check That a File Was Opened Successfully
	Character I/O
	Checking for the End of a File

	12.2 TOOLS FOR STREAM I/O
	File Names as Input
	Formatting Output with Stream Functions
	Manipulators
	Saving Flag Settings
	More Output Stream Member Functions
	EXAMPLE: Cleaning Up a File Format
	EXAMPLE: Editing a Text File

	12.3 STREAM HIERARCHIES: A PREVIEW OF INHERITANCE
	Inheritance among Stream Classes
	EXAMPLE: Another newLine Function
	Parsing Strings with the stringstream Class

	12.4 RANDOM ACCESS TO FILES
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 13 Recursion
	13.1 RECURSIVE void FUNCTIONS
	EXAMPLE: Vertical Numbers
	Tracing a Recursive Call
	A Closer Look at Recursion
	PITFALL: Infinite Recursion
	Stacks for Recursion
	PITFALL: Stack Overflow
	Recursion versus Iteration

	13.2 RECURSIVE FUNCTIONS THAT RETURN A VALUE
	General Form for a Recursive Function That Returns a Value
	EXAMPLE: Another Powers Function
	Mutual Recursion

	13.3 THINKING RECURSIVELY
	Recursive Design Techniques
	Binary Search
	Coding
	Checking the Recursion
	Efficiency
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 14 Inheritance
	14.1 INHERITANCE BASICS
	Derived Classes
	Constructors in Derived Classes
	PITFALL: Use of Private Member Variables from the Base Class
	PITFALL: Private Member Functions Are Effectively Not Inherited
	The protected Qualifier
	Redefinition of Member Functions
	Redefining versus Overloading
	Access to a Redefined Base Function
	Functions That Are Not Inherited

	14.2 PROGRAMMING WITH INHERITANCE
	Assignment Operators and Copy Constructors in Derived Classes
	Destructors in Derived Classes
	EXAMPLE: Partially Filled Array with Backup
	PITFALL: Same Object on Both Sides of the Assignment Operator
	EXAMPLE: Alternate Implementation of PFArrayDBak
	TIP: A Class Has Access to Private Members of All Objects of the Class
	TIP: “Is a” versus “Has a”
	Protected and Private Inheritance
	Multiple Inheritance
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 15 Polymorphism and Virtual Functions
	15.1 VIRTUAL FUNCTION BASICS
	Late Binding
	Virtual Function in C++
	TIP: The Virtual Property Is Inherited
	TIP: When to Use a Virtual Function
	PITFALL: Omitting the Definition of a Virtual Member Function
	Abstract Classes and Pure Virtual Functions
	EXAMPLE: An Abstract Class

	15.2 POINTERS AND VIRTUAL FUNCTIONS
	Virtual Functions and Extended Type Compatibility
	PITFALL: The Slicing Problem
	TIP: Make Destructors Virtual
	Downcasting and Upcasting
	How C++ Implements Virtual Functions
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 16 Templates
	16.1 FUNCTION TEMPLATES
	Syntax for Function Templates
	PITFALL: Compiler Complications
	TIP: How to Define Templates
	EXAMPLE: A Generic Sorting Function
	PITFALL: Using a Template with an Inappropriate Type

	16.2 CLASS TEMPLATES
	Syntax for Class Templates
	EXAMPLE: An Array Template Class
	The vector and basic_string Templates

	16.3 TEMPLATES AND INHERITANCE
	EXAMPLE: Template Class For a Partially Filled Array with Backup
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 17 Linked Data Structures
	17.1 NODES AND LINKED LISTS
	Nodes
	Linked Lists
	Inserting a Node at the Head of a List
	PITFALL: Losing Nodes
	Inserting and Removing Nodes Inside a List
	PITFALL: Using the Assignment Operator with Dynamic Data Structures
	Searching a Linked List
	Doubly Linked Lists
	Adding a Node to a Doubly Linked List
	Deleting a Node from a Doubly Linked List
	EXAMPLE: A Generic Sorting Template Version of Linked List Tools

	17.2 LINKED LIST APPLICATIONS
	EXAMPLE: A Stack Template Class
	EXAMPLE: A Queue Template Class
	TIP: A Comment on Namespaces
	Friend Classes and Similar Alternatives
	EXAMPLE: Hash Tables With Chaining
	Efficiency of Hash Tables
	EXAMPLE: A Set Template Class
	Efficiency of Sets Using Linked Lists

	17.3 ITERATORS
	Pointers as Iterators
	Iterator Classes
	EXAMPLE: An Iterator Class

	17.4 TREES
	Tree Properties
	EXAMPLE: A Tree Template Class
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 18 Exception Handling
	18.1 EXCEPTION HANDLING BASICS
	A Toy Example of Exception Handling
	Defining Your Own Exception Classes
	Multiple Throws and Catches
	PITFALL: Catch the More Specific Exception First
	TIP: Exception Classes Can Be Trivial
	Throwing an Exception in a Function
	Exception Specification
	PITFALL: Exception Specification in Derived

	18.2 PROGRAMMING TECHNIQUES FOR EXCEPTION HANDLING
	When to Throw an Exception
	PITFALL: Uncaught Exceptions
	PITFALL: Nested try-catch Blocks
	PITFALL: Overuse of Exceptions
	Exception Class Hierarchies
	Testing for Available Memory
	Rethrowing an Exception
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 19 Standard Template Library
	19.1 ITERATORS
	Iterator Basics
	PITFALL: Compiler Problems
	Kinds of Iterators
	Constant and Mutable Iterators
	Reverse Iterators
	Other Kinds of Iterators

	19.2 CONTAINERS
	Sequential Containers
	PITFALL: Iterators and Removing Elements
	TIP: Type Definitions in Containers
	The Container Adapters stack and queue
	PITFALL: Underlying Containers
	The Associative Containers set and map
	Efficiency

	19.3 GENERIC ALGORITHMS
	Running Times and Big-O Notation
	Container Access Running Times
	Nonmodifying Sequence Algorithms
	Modifying Sequence Algorithms
	Set Algorithms
	Sorting Algorithms
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 20 Patterns and UML
	Appendix 1 C++ Keywords
	Appendix 2 Precedence of Operators
	Appendix 3 The ASCII Character Set
	Appendix 4 Some Library Functions
	Appendix 5 Old and New Header Files
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

